Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49.677
Filter
1.
Environ Geochem Health ; 46(8): 277, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958782

ABSTRACT

The effect of metallic elements on semen quality remains controversial, with limited evidence on the effects of metal mixtures. We conducted a study involving 338 participants from multiple centers in Eastern China, measuring 17 urinary metals and semen quality parameters. Our analysis used various statistical models, including multivariate logistic and linear regression, Bayesian Kernel Machine Regression, and weighted quantile sum models, to examine the associations between metal levels and semen quality. Logistic regression showed that higher urinary lead was associated with increased risk of abnormal sperm concentration (OR = 1.86, p = 0.021), arsenic to higher abnormal progressive motility risk (OR = 1.49, p = 0.027), and antimony to greater abnormal total motility risk (OR = 1.37, p = 0.018). Conversely, tin was negatively correlated with the risk of abnormal progressive motility (OR = 0.76, p = 0.012) and total motility (OR = 0.74, p = 0.003), respectively. Moreover, the linear models showed an inverse association between barium and sperm count, even after adjusting for other metals (ß = - 0.32, p < 0.001). Additionally, the WQS models showed that the metal mixture may increase the risk of abnormal total motility (ßWQS = 0.55, p = 0.046). In conclusion, semen quality may be adversely affected by exposure to metals such as arsenic, barium, lead, and antimony. The combined effect of the metal mixture appears to be particularly impaired total motility.


Subject(s)
Semen Analysis , Male , Humans , China , Cross-Sectional Studies , Adult , Metals/urine , Arsenic/urine , Sperm Motility/drug effects , Sperm Count , Middle Aged , Environmental Pollutants , Young Adult
2.
Environ Monit Assess ; 196(8): 687, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958826

ABSTRACT

Fluvial sediment analysis and water quality assessment are useful to identify anthropic and natural sources of pollution in rivers. Currently, there is a lack of information about water quality in the Pixquiac basin (Veracruz state, Mexico), and this scarcity of data prevents authorities to take adequate measures to protect water resources. The basin is a crucial territory for Xalapa, the capital city of Veracruz state, as it gets 39% of its drinkable water from it. This research analyzed 10 physicochemical parameters and 12 metal concentrations in various rivers and sources during two seasons. Dissolved metals presented average concentrations (µg/L): Al (456.25) > Fe (199.4) > Mn (16.86) > Ba (13.8) > Zn (7.6) > Cu (1.03) > Pb (0.27) > As (0.12) > Ni (0.118) (Cd, Cr and Hg undetectable). Metals in sediment recorded average concentrations (ppm): Fe (38575) > Al (38425) > Mn (460) > Ba (206.2) > Zn (65.1) > Cr (29.8) > Ni (20.9) > Cu (16.4) > Pb (4.8) > As (2.1) (Cd and Hg undetectable). During the rainy season, Water Quality Index (WAWQI) classified stations P17 and P18's water as "unsuitable for drinking" with values of 110.4 and 117.6. Enrichment factor (EF) recorded a "moderate enrichment" of Pb in sediment in P24. Pollution was mainly explained by wastewater discharges in rivers but also because of erosion and rainfall events. Statistical analysis presented strong relationships between trace and major metals which could explain a common natural origin for metals in water and sediment: rock lixiviation.


Subject(s)
Drinking Water , Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical , Water Quality , Water Supply , Mexico , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Drinking Water/chemistry , Rivers/chemistry , Metals, Heavy/analysis , Metals/analysis
3.
Environ Health ; 23(1): 60, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951908

ABSTRACT

BACKGROUND: Gestational exposure to toxic environmental chemicals and maternal social hardships are individually associated with impaired fetal growth, but it is unclear whether the effects of environmental chemical exposure on infant birth weight are modified by maternal hardships. METHODS: We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a pan-Canadian cohort of 1982 pregnant females enrolled between 2008 and 2011. We quantified eleven environmental chemical concentrations from two chemical classes - six organochlorine compounds (OCs) and five metals - that were detected in ≥ 70% of blood samples collected during the first trimester. We examined fetal growth using birth weight adjusted for gestational age and assessed nine maternal hardships by questionnaire. Each maternal hardship variable was dichotomized to indicate whether the females experienced the hardship. In our analysis, we used elastic net to select the environmental chemicals, maternal hardships, and 2-way interactions between maternal hardships and environmental chemicals that were most predictive of birth weight. Next, we obtained effect estimates using multiple linear regression, and plotted the relationships by hardship status for visual interpretation. RESULTS: Elastic net selected trans-nonachlor, lead, low educational status, racially minoritized background, and low supplemental folic acid intake. All were inversely associated with birth weight. Elastic net also selected interaction terms. Among those with increasing environmental chemical exposures and reported hardships, we observed stronger negative associations and a few positive associations. For example, every two-fold increase in lead concentrations was more strongly associated with reduced infant birth weight among participants with low educational status (ß = -100 g (g); 95% confidence interval (CI): -215, 16), than those with higher educational status (ß = -34 g; 95% CI: -63, -3). In contrast, every two-fold increase in mercury concentrations was associated with slightly higher birth weight among participants with low educational status (ß = 23 g; 95% CI: -25, 71) compared to those with higher educational status (ß = -9 g; 95% CI: -24, 6). CONCLUSIONS: Our findings suggest that maternal hardships can modify the associations of gestational exposure to some OCs and metals with infant birth weight.


Subject(s)
Birth Weight , Environmental Pollutants , Hydrocarbons, Chlorinated , Maternal Exposure , Humans , Female , Pregnancy , Hydrocarbons, Chlorinated/blood , Birth Weight/drug effects , Adult , Environmental Pollutants/blood , Canada , Infant, Newborn , Young Adult , Metals/blood , Socioeconomic Factors , Cohort Studies , Male
4.
Sci Rep ; 14(1): 13662, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871786

ABSTRACT

The fabricated metal product industries were identified as producers of variable and heterogeneous pollution. Workers in these manufacturing facilities are exposed to multiple pollutants present at variable concentrations. Specific known adverse health effects include bladder cancer associated with metalworking fluid exposure and lung cancer associated with electroplating processes. To reduce the incidence of these adverse effects, the main challenge is to identify the most hazardous pollutants within this complex exposure environment and evaluate the corresponding health potentials. In this study, exposure indices were formulated to assess multiple metal exposures with the ultimate goal of providing relevant information for exposure reduction and control measures. Fifteen plants, including metal mold manufacturing, metal casting, and surface treatment plants, were investigated in terms of total concentration, summation of corresponding ratio to threshold limit value (STLVr), hazard index (HI), and incremental cancer risk. The results revealed that emissions of aluminum, iron, and manganese were primarily found in the metal mold manufacturing/casting plants, while emissions of chromium, nickel, and zinc were found in surface treatment plants. STLVr and HI were more useful than the total concentration for identifying hazardous metals, which were chromium and nickel, and could specify the facilities that were in need of control measures. As for cancer risk, the metal mold manufacturing/casting plants had lower risk than the surface treatment plants, and the contributing metals for these two plant types were cobalt and chromium, respectively. This study established a useful procedure to evaluate health hazards and cancer risk. The resulting information is useful for prioritizing mitigation control of multiple metal exposures.


Subject(s)
Metals , Occupational Exposure , Occupational Exposure/analysis , Occupational Exposure/adverse effects , Humans , Metals/analysis , Risk Assessment , Environmental Monitoring/methods
5.
Environ Geochem Health ; 46(7): 256, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884822

ABSTRACT

Previous studies have related single toxic metals (TMs) to hyperuricemia (HUA) among the general population, however, the association of the TM mixture with HUA, especially in older adults, remains poorly understood. We aimed to examine the relationships between individual TMs and their mixture and HUA in Chinese rural older adults. This study consisted of 2075 rural older adults aged 60 years or over. Blood concentrations of aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), gallium (Ga), mercury (Hg), lead (Pb), thallium (Tl), and uranium (U) were detected using inductively coupled plasma mass spectrometry. The associations of single TMs with HUA were assessed using logistic regression and restricted cubic spline (RCS) models, and the association of TM mixture with HUA was explored using the elastic net with environmental risk score (ENET-ERS), quantile g-computation (QGC), and Bayesian kernel machine regression (BKMR) models, respectively. Adjusted logistic regression model showed that Cs (OR = 1.65, 95% CI 1.37-1.99) and Pb (OR = 1.46, 95% CI 1.28-1.67) were positively related to HUA, and RCS model exhibited a positive linear association of Cs and Pb with HUA. ENET-ERS and QGC models quantified a positive correlation between the TM mixture and the odds of HUA, with estimated ORs of 1.15 (95% CI 1.11-1.19) and 1.84 (95% CI 1.37-2.47), respectively, and Cs and Pb had the most weight. BKMR model demonstrated a significant linear association between the TM mixture and increased odds of HUA, with the posterior inclusion probabilities (PIPs) of both Cs and Pb being 1.00. Moreover, we observed a positive interaction between Cs and Pb on HUA. The TM mixture is associated with increased odds of HUA in rural older adults, which may mainly be driven by Cs and Pb. Subsequent studies are warranted to confirm these findings and clarify the mechanisms linking multiple TMs with HUA.


Subject(s)
Hyperuricemia , Humans , Aged , Male , Female , Hyperuricemia/epidemiology , China/epidemiology , Middle Aged , Rural Population , Logistic Models , Metals/blood , Aged, 80 and over , Metals, Heavy/blood , Environmental Exposure , East Asian People
6.
Sci Total Environ ; 941: 173657, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838997

ABSTRACT

Epidemiological findings have determined the linkage of fine particulate matter (PM2.5) and the morbidity of hypertension. However, the mode of action and specific contribution of PM2.5 component in the blood pressure elevation remain unclear. Platelets are critical for vascular homeostasis and thrombosis, which may be involved in the increase of blood pressure. Among 240 high-PM2.5 exposed, 318 low-PM2.5 exposed workers in a coking plant and 210 workers in the oxygen plant and cold-rolling mill enrolled in present study, both internal and external exposure characteristics were obtained, and we performed linear regression, adaptive elastic net regression, quantile g-computation and mediation analyses to analyze the relationship between urine metabolites of polycyclic aromatic hydrocarbons (PAHs) and metals fractions with platelets indices and blood pressure indicators. We found that PM2.5 exposure leads to increased systolic blood pressure (SBP) and pulse pressure (PP). Specifically, for every 10 µg/m3 increase in PM2.5, there was a 0.09 mmHg rise in PP. Additionally, one IQR increase in urinary 1-hydroxypyrene (1.06 µmol/mol creatinine) was associated with a 3.43 % elevation in PP. Similarly, an IQR increment of urine cobalt (2.31 µmol/mol creatinine) was associated with a separate 1.77 % and 4.71 % elevation of SBP and PP. Notably, platelet-to-lymphocyte ratio (PLR) played a mediating role in the elevation of SBP and PP induced by cobalt. Our multi-pollutants results showed that PAHs and cobalt were deleterious contributors to the elevated blood pressure. These findings deepen our understanding of the cardiovascular effects associated with PM2.5 constituents, highlighting the importance of increased vigilance in monitoring and controlling the harmful components in PM2.5.


Subject(s)
Air Pollutants , Blood Pressure , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Particulate Matter/analysis , Humans , Blood Pressure/drug effects , Male , Blood Platelets/drug effects , Adult , Metals/urine , Female , Occupational Exposure/statistics & numerical data , Middle Aged , Hypertension/epidemiology
7.
J Environ Manage ; 363: 121350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850901

ABSTRACT

Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.


Subject(s)
Chelating Agents , Edetic Acid , Metals , Chelating Agents/chemistry , Edetic Acid/chemistry , Metals/chemistry , Deep Eutectic Solvents/chemistry , Solvents/chemistry
8.
Sci Rep ; 14(1): 13808, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877154

ABSTRACT

Poaching is again driving rhinos to the brink of extinction due to the demand for rhino horn products consumed for cultural, medicinal, and social purposes. Paradoxically, the same horn for which rhinos are killed may contain valuable clues about the species' health. Analyses of horn composition could reveal such useful bioindicators while elucidating what people actually ingest when they consume horn derivatives. Our goals were to quantify minerals (including metals) in rhino horn and investigate sampling factors potentially impacting results. Horns (n = 22) obtained during necropsies of white (n = 3) and black (n = 13) zoo rhinos were sampled in several locations yielding 182 specimens for analysis. Initial data exposed environmental (soil) contamination in the horn's exterior layer, but also confirmed that deep (≥ 1 cm), contaminant-free samples contained measurable concentrations of numerous minerals (n = 18). Of the factors examined in deep samples, color-associated mineral differences were the most profound with dark samples higher in zinc, copper, lead, and barium (p < 0.05). Our data demonstrate that rhino horns contain both essential and potentially toxic minerals that could be relevant to rhino health status, but low concentrations make their human health benefits or risks unlikely following consumption.


Subject(s)
Horns , Minerals , Perissodactyla , Animals , Minerals/analysis , Horns/chemistry , Metals/analysis , Animals, Zoo , Copper/analysis , Lead/analysis
9.
Chemosphere ; 361: 142533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849099

ABSTRACT

Development of effective adsorbents for the removal of contaminants from wastewater is indispensable due to increasing water scarcity and a lack of pure drinking water, which are prevailing as a result of rapid industrialization and population growth. Recently, the development of new adsorbents and their effective use without generating secondary waste is receiving huge consideration. In order to protect the environment from primary and secondary pollution, the development of adsorbents from wastes and their recycling have become conventional practices aimed at waste management. As a result, significant progress has been made in the synthesis of new porous carbon and metal-organic frameworks as adsorbents, with the objective of using them for the removal of pollutants. While many different kinds of pollutants are produced in the environment, drug pollutants are the most vicious because of their tendency to undergo significant structural changes, producing metabolites and residues with entirely different properties compared to their parent compounds. Chemical reactions involving oxidation, hydrolysis, and photolysis transform drugs. The resulting compounds can have detrimental effects on living beings that are present in soil and water. This review stresses the development of adsorbents with adjustable porosities for the broad removal of primary drug pollutants and their metabolites, which are formed as a result of drug transformations in environmental matrices. This keeps adsorbents from building up in the environment and prevents them from becoming significant pollutants in the future. Additionally, it stops secondary pollution caused by the deterioration of the used adsorbents. Focus on the development of effective adsorbents with flexible porosities allows for the complete removal of coexisting contaminants and makes a substantial contribution to wastewater management. In order to concentrate more on the development of flexible pore adsorbents, it is crucial to comprehend the milestones reached in the research and applications of porous magnetic adsorbents based on metal and carbon, which are discussed here.


Subject(s)
Carbon , Metal-Organic Frameworks , Wastewater , Water Pollutants, Chemical , Porosity , Adsorption , Water Pollutants, Chemical/chemistry , Metal-Organic Frameworks/chemistry , Carbon/chemistry , Wastewater/chemistry , Water Purification/methods , Metals/chemistry , Pharmaceutical Preparations/chemistry
10.
Neuroimage ; 296: 120661, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38838840

ABSTRACT

Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.


Subject(s)
Artifacts , Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/instrumentation , Adult , Female , Male , Algorithms , Metals , Signal Processing, Computer-Assisted , Young Adult , Brain/physiology
11.
Sci Rep ; 14(1): 14940, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942999

ABSTRACT

Systemic Immune Inflammatory Index (SII) is a novel indicator of inflammation. However, no studies have reported the effect of SII on the association between metals and total fat (TOFAT). We aim to investigate the mediated effect of SII on the relationship between urinary metals and TOFAT in a US adult population. This cross-sectional study was conducted among adults with complete information on SII, urine metal concentrations, and TOFAT from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). Multifactorial logistic regression and restricted cubic splines were used to explore the association between urine metal levels and TOFAT. Furthermore, serial mediation analyses were used to investigate the mediating effect of SII on metals and TOFAT. A total of 3324 subjects were included in this study. After adjusting for confounders, arsenic (As), cadmium (Cd), cobalt (Co), cesium (Cs), inorganic mercury (Hg), molybdenum (Mo), manganese (Mn), lead (Pb), antimony (Sb), and thallium(Tl) had negative decreased trends of odds ratios for TOFAT (all P for trend < 0.05). In the total population, we found that Cd, Co, and Tu were positively associated with SII (ß = 29.70, 79.37, and 31.08), whereas As and Hg had a negative association with SII. The mediation analysis showed that SII mediated the association of Co with TOFAT, with the ß of the mediating effect being 0.9% (95%CI: 0.3%, 1.6%). Our findings suggested that exposure to As, Cd, and Hg would directly decrease the level of TOFAT. However, Co would increase TOFAT, completely mediated by SII, mainly exerted in females rather than males.


Subject(s)
Inflammation , Nutrition Surveys , Humans , Female , Male , Adult , Inflammation/urine , Middle Aged , Cross-Sectional Studies , Metals/urine
12.
Ann Agric Environ Med ; 31(2): 205-211, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38940104

ABSTRACT

INTRODUCTION AND OBJECTIVE: Snow cover serves as a unique indicator of environmental pollution in both urban and rural areas. As a seasonal cover, it accumulates various pollutants emitted into the atmosphere, thus providing insight into air pollution types and the relative contributions of different pollution sources. The aim of the study is to analyze the distribution of trace elements in snow cover to assess the anthropogenic influence on pollution levels, and better understand ecological threats. MATERIAL AND METHODS: The study was conducted in rural areas around the village of Wólka in the Lublin Province of eastern Poland, and in urban districts of the city of Lublin, capital of the Province. Samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry, the Enrichment Factor (EF), and ecological risk indices (RI), were calculated to evaluate the contamination and potential ecological risks posed by the metals. RESULTS: The findings indicate higher concentrations of metals like sodium and iron in urban areas, likely due to road salt use and industrial activity, respectively. Enrichment factors showed significant anthropogenic contributions, particularly for metals like sodium, zinc, and cadmium, which had EF values substantially above natural levels. The potential ecological risk assessment highlighted a considerable ecological threat in urban areas compared to rural settings, primarily due to higher concentrations of metals. CONCLUSIONS: The variation in metal concentrations between urban and rural snow covers reflects the impact of human activities on local environments. Urban areas showed higher pollution levels, suggesting the need for targeted pollution control policies to mitigate the adverse ecological impacts. This study underscores the importance of continuous monitoring and comprehensive risk assessments to effectively manage environmental pollution.


Subject(s)
Environmental Monitoring , Metals , Snow , Snow/chemistry , Poland , Environmental Monitoring/methods , Risk Assessment , Metals/analysis , Humans , Air Pollutants/analysis , Cities , Rural Population
13.
Biofouling ; 40(5-6): 333-347, 2024.
Article in English | MEDLINE | ID: mdl-38836545

ABSTRACT

The corrosion behaviors of four pure metals (Fe, Ni, Mo and Cr) in the presence of sulfate reducing bacteria (SRB) were investigated in enriched artificial seawater (EASW) after 14-day incubation. Metal Fe and metal Ni experienced weight losses of 1.96 mg cm-2 and 1.26 mg cm-2, respectively. In contrast, metal Mo and metal Cr exhibited minimal weight losses, with values of only 0.05 mg cm-2 and 0.03 mg cm-2, respectively. In comparison to Mo (2.2 × 106 cells cm-2) or Cr (1.4 × 106 cells cm-2) surface, the sessile cell counts on Fe (4.0 × 107 cells cm-2) or Ni (3.1 × 107 cells cm-2) surface was higher.


Subject(s)
Bacterial Adhesion , Sulfates , Corrosion , Sulfates/chemistry , Metals/chemistry , Seawater/microbiology , Seawater/chemistry , Biofilms/drug effects , Biofilms/growth & development , Bacteria/drug effects , Biofouling/prevention & control
14.
Sci Rep ; 14(1): 14741, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926601

ABSTRACT

Potentially toxic metal(loid) assessment of tea and tea garden soil is a vital guarantee of tea safety and is very necessary. This study analyzed the distribution of seven potentially toxic metal(loid)s in different organs of the tea plants and soil at various depths in the Yangai tea farm of Guiyang City, Guizhou Province, China. Although soil potentially toxic metal(loid) in the study area is safe, there should be attention to the health risks of Cu, Ni, As, and Pb in the later stages of tea garden management. Soil As and Pb are primarily from anthropogenic sources, soil Zn is mainly affected by natural sources and human activities, and soil with other potentially toxic metal(loid) is predominantly from natural sources. Tea plants might be the enrichment of Zn and the exclusion or tolerance of As, Cu, Ni, and Pb. The tea plant has a strong ability for absorbing Cd and preferentially storing it in its roots, stems, and mature leaves. Although the Cd and other potentially toxic metal(loid)s content of tea in Guizhou Province is generally within the range of edible safety, with the increase of tea planting years, it is essential to take corresponding measures to prevent the potential health risks of Cd and other potentially toxic metal(loid)s in tea.


Subject(s)
Camellia sinensis , Soil Pollutants , Soil , Camellia sinensis/chemistry , Soil Pollutants/analysis , China , Soil/chemistry , Metals, Heavy/analysis , Metals, Heavy/toxicity , Plant Leaves/chemistry , Plant Leaves/metabolism , Tea/chemistry , Environmental Monitoring , Metals/analysis
15.
J Hazard Mater ; 475: 134862, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885585

ABSTRACT

The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.


Subject(s)
Environmental Pollutants , Gastrointestinal Microbiome , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , Humans , Halogenated Diphenyl Ethers/toxicity , Gastrointestinal Microbiome/drug effects , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Female , Male , Child , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Dust/analysis , Child, Preschool , Environmental Exposure , Metabolomics , Electronic Waste , China , Metals/metabolism , Metals/toxicity , Organophosphates/toxicity , Organophosphates/metabolism
16.
Appl Microbiol Biotechnol ; 108(1): 391, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910188

ABSTRACT

Metal cofactors are essential for catalysis and enable countless conversions in nature. Interestingly, the metal cofactor is not always static but mobile with movements of more than 4 Å. These movements of the metal can have different functions. In the case of the xylose isomerase and medium-chain dehydrogenases, it clearly serves a catalytic purpose. The metal cofactor moves during substrate activation and even during the catalytic turnover. On the other hand, in class II aldolases, the enzymes display resting states and active states depending on the movement of the catalytic metal cofactor. This movement is caused by substrate docking, causing the metal cofactor to take the position essential for catalysis. As these metal movements are found in structurally and mechanistically unrelated enzymes, it has to be expected that this metal movement is more common than currently perceived. KEY POINTS: • Metal ions are essential cofactors that can move during catalysis. • In class II aldolases, the metal cofactors can reside in a resting state and an active state. • In MDR, the movement of the metal cofactor is essential for substrate docking.


Subject(s)
Coenzymes , Metals , Metals/metabolism , Coenzymes/metabolism , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/genetics , Catalysis , Oxidoreductases/metabolism , Oxidoreductases/chemistry
17.
Front Immunol ; 15: 1379365, 2024.
Article in English | MEDLINE | ID: mdl-38915413

ABSTRACT

Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.


Subject(s)
Immunotherapy , Metals , Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Metals/immunology , Animals , Immunotherapy/methods , Ions/metabolism , T-Lymphocytes/immunology
18.
Clin Oral Investig ; 28(6): 356, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834721

ABSTRACT

OBJECTIVES: This ex-vivo study aimed to assess the influence of tube current (mA) and metal artifact reduction (MAR) on the diagnosis of early external cervical resorption (EECR) in cone-beam computed tomography (CBCT) in the presence of an adjacent dental implant. MATERIALS AND METHODS: Twenty-three single-rooted teeth were sectioned longitudinally and EECR was induced using a spherical drill and 5% nitric acid in 10 teeth. Each tooth was positioned in the socket of the lower right canine of a dry human mandible and CBCT scans were acquired using 90 kVp, voxel of 0.085 mm, field of view of 5 x 5 cm, and varying tube current (4, 8 or 12 mA), MAR (enabled or disabled) and implant conditions (with a zirconia implant in the socket of the lower right first premolar or without). Five oral radiologists evaluated the presence of EECR in a 5-point scale and the diagnostic values (area under the receiver operating characteristic curve - AUC, sensitivity, and specificity) were compared using multi-way Analysis of Variance (α = 0.05). Kappa test assessed intra-/inter-evaluator agreement. RESULTS: The tube current only influenced the AUC values in the presence of the implant and when MAR disabled; in this case, 8 mA showed lower values (p<0.007). MAR did not influence the diagnostic values (p>0.05). In general, the presence of an implant reduced the AUC values (p<0.0001); sensitivity values with 8 mA and MAR disabled, and specificity values with 4 mA and MAR enabled and 8 mA regardless MAR were also decreased (p<0.0001). CONCLUSIONS: Variations in tube current and MAR were unable to improve EECR detection, which was impaired by the presence of an adjacent implant. CLINICAL RELEVANCE: Increasing tube current or activating MAR tool does not improve EECR diagnosis, which is hampered by the artifacts generated by dental implants.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Humans , Cone-Beam Computed Tomography/methods , In Vitro Techniques , Dental Implants , Sensitivity and Specificity , Metals , Mandible/diagnostic imaging , Root Resorption/diagnostic imaging , Root Resorption/etiology
19.
Environ Sci Technol ; 58(23): 10388-10397, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38828512

ABSTRACT

Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.


Subject(s)
Zeolites , Zeolites/chemistry , Catalysis , Oxidation-Reduction , Nitrogen Oxides/chemistry , Oxides/chemistry , Ammonia/chemistry , Denitrification , Metals/chemistry
20.
Int J Nanomedicine ; 19: 5245-5267, 2024.
Article in English | MEDLINE | ID: mdl-38855732

ABSTRACT

The development of metallic joint prostheses has been ongoing for more than a century alongside advancements in hip and knee arthroplasty. Among the materials utilized, the Cobalt-Chromium-Molybdenum (Co-Cr-Mo) and Titanium-Aluminum-Vanadium (Ti-Al-V) alloys are predominant in joint prosthesis construction, predominantly due to their commendable biocompatibility, mechanical strength, and corrosion resistance. Nonetheless, over time, the physical wear, electrochemical corrosion, and inflammation induced by these alloys that occur post-implantation can cause the release of various metallic components. The released metals can then flow and metabolize in vivo, subsequently causing potential local or systemic harm. This review first details joint prosthesis development and acknowledges the release of prosthetic metals. Second, we outline the metallic concentration, biodistribution, and elimination pathways of the released prosthetic metals. Lastly, we discuss the possible organ, cellular, critical biomolecules, and significant signaling pathway toxicities and adverse effects that arise from exposure to these metals.


Subject(s)
Metals , Humans , Animals , Metals/chemistry , Metals/pharmacokinetics , Metal-on-Metal Joint Prostheses/adverse effects , Tissue Distribution , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/toxicity , Titanium/adverse effects , Joint Prosthesis/adverse effects , Prosthesis Design , Alloys/pharmacokinetics , Alloys/chemistry , Alloys/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...