Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 654
Filter
1.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38639390

ABSTRACT

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Subject(s)
Cell Division , Cell Polarity , Drosophila melanogaster , Epithelial Cells , Metaphase , Spindle Apparatus , Stress, Mechanical , Animals , Metaphase/physiology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Spindle Apparatus/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/cytology , Cell Polarity/physiology , Body Patterning , Myosin Type II/metabolism , Embryo, Nonmammalian/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gastrulation/physiology
2.
EMBO J ; 41(4): e109446, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35023198

ABSTRACT

Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane-nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the γ-tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo-like kinase Cdc5 and the meiosis-specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphase-promoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking-activation mechanism ensures that only single-copy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II-specific processes.


Subject(s)
Meiosis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Spores, Fungal/physiology , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cyclin B/metabolism , DNA-Binding Proteins/metabolism , Kinetochores/metabolism , Meiosis/physiology , Metaphase/physiology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Spores, Fungal/cytology , Transcription Factors/metabolism
3.
Nat Commun ; 12(1): 6547, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764261

ABSTRACT

Proper chromosome segregation is essential to avoid aneuploidy, yet this process fails with increasing age in mammalian oocytes. Here we report a role for the scarcely described protein CENP-V in oocyte spindle formation and chromosome segregation. We show that depending on the oocyte maturation state, CENP-V localizes to centromeres, to microtubule organizing centers, and to spindle microtubules. We find that Cenp-V-/- oocytes feature severe deficiencies, including metaphase I arrest, strongly reduced polar body extrusion, increased numbers of mis-aligned chromosomes and aneuploidy, multipolar spindles, unfocused spindle poles and loss of kinetochore spindle fibres. We also show that CENP-V protein binds, diffuses along, and bundles microtubules in vitro. The spindle assembly checkpoint arrests about half of metaphase I Cenp-V-/- oocytes from young adults only. This finding suggests checkpoint weakening in ageing oocytes, which mature despite carrying mis-aligned chromosomes. Thus, CENP-V is a microtubule bundling protein crucial to faithful oocyte meiosis, and Cenp-V-/- oocytes reveal age-dependent weakening of the spindle assembly checkpoint.


Subject(s)
Chromosome Segregation/physiology , Microtubules/metabolism , Oocytes/metabolism , Animals , Chromosome Segregation/genetics , Female , M Phase Cell Cycle Checkpoints/physiology , Meiosis/physiology , Metaphase/physiology , Mice , Microtubule-Organizing Center/metabolism
4.
Dev Cell ; 56(22): 3082-3099.e5, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34758290

ABSTRACT

Chromosome mis-segregation during mitosis leads to aneuploidy, which is a hallmark of cancer and linked to cancer genome evolution. Errors can manifest as "lagging chromosomes" in anaphase, although their mechanistic origins and likelihood of correction are incompletely understood. Here, we combine lattice light-sheet microscopy, endogenous protein labeling, and computational analysis to define the life history of >104 kinetochores. By defining the "laziness" of kinetochores in anaphase, we reveal that chromosomes are at a considerable risk of mis-segregation. We show that the majority of lazy kinetochores are corrected rapidly in anaphase by Aurora B; if uncorrected, they result in a higher rate of micronuclei formation. Quantitative analyses of the kinetochore life histories reveal a dynamic signature of metaphase kinetochore oscillations that forecasts their anaphase fate. We propose that in diploid human cells chromosome segregation is fundamentally error prone, with an additional layer of anaphase error correction required for stable karyotype propagation.


Subject(s)
Anaphase/physiology , Aurora Kinase B/metabolism , Kinetochores/metabolism , Chromosome Segregation/physiology , Humans , Metaphase/physiology , Microtubules/metabolism , Mitosis/physiology , Spindle Apparatus/metabolism
5.
Mol Biol Cell ; 32(21): ar22, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34495712

ABSTRACT

The Saccharomyces cerevisiae protein Slk19 has been shown to localize to kinetochores throughout mitosis and to the spindle midzone in anaphase. However, Slk19 clearly also has an important role for spindle formation and stabilization in prometaphase and metaphase, albeit this role is unresolved. Here we show that Slk19's localization to metaphase spindles in vivo and to microtubules (MTs) in vitro depends on the MT cross-linking protein Ase1 and the MT cross-linking and stabilizing protein Stu1. By analyzing a slk19 mutant that specifically fails to localize to spindles and MTs, we surprisingly found that the presence of Slk19 amplified the amount of Ase1 strongly and that of Stu1 moderately at the metaphase spindle in vivo and at MTs in vitro. Furthermore, Slk19 markedly enhanced the cross-linking of MTs in vitro when added together with Ase1 or Stu1. We therefore suggest that Slk19 recruits additional Ase1 and Stu1 to the interpolar MTs (ipMTs) of metaphase spindles and thus increases their cross-linking and stabilization. This is in agreement with our observation that cells with defective Slk19 localization exhibit shorter metaphase spindles, an increased number of unaligned nuclear MTs, and most likely reduced ipMT overlaps.


Subject(s)
Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle/physiology , Cell Nucleus/metabolism , Kinetochores/metabolism , Metaphase/physiology , Microtubule-Associated Proteins/physiology , Microtubules/metabolism , Mitosis/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Spindle Apparatus/metabolism
6.
Aging (Albany NY) ; 13(14): 18018-18032, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34310342

ABSTRACT

Previously, we reported that the silencing of growth arrest-specific gene 6 (Gas6) expression in oocytes impairs cytoplasmic maturation by suppressing mitophagy and inducing mitochondrial dysfunction, resulting in fertilization failure. Here, we show that oocyte aging is accompanied by an increase in meiotic defects associated with chromosome misalignment and abnormal spindle organization. Intriguingly, decreased Gas6 mRNA and protein expression were observed in aged oocytes from older females. We further explored the effect of GAS6 on the quality and fertility of aged mouse oocytes using a GAS6 rescue analysis. After treatment with the GAS6 protein, aged oocytes matured normally to the meiosis II (MII) stage. Additionally, maternal age-related meiotic defects were reduced by GAS6 protein microinjection. Restoring GAS6 ameliorated the mitochondrial dysfunction induced by maternal aging. Ultimately, GAS6-rescued MII oocytes exhibited increased ATP levels, reduced ROS levels and elevated glutathione (GSH) levels, collectively indicating improved mitochondrial function in aged oocytes. Thus, the age-associated decrease in oocyte quality was prevented by restoring GAS6. Importantly, GAS6 protein microinjection in aged oocytes also rescued fertility. We conclude that GAS6 improves mitochondrial function to achieve sufficient cytoplasmic maturation and attenuates maternal age-related meiotic errors, thereby efficiently safeguarding oocyte quality and fertility.


Subject(s)
Intercellular Signaling Peptides and Proteins/physiology , Mitochondria/physiology , Mitophagy/physiology , Oocytes/cytology , Oocytes/physiology , Animals , Chromosomes/metabolism , Female , In Vitro Oocyte Maturation Techniques , Intercellular Signaling Peptides and Proteins/genetics , Metaphase/genetics , Metaphase/physiology , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Mitophagy/genetics , Oocytes/growth & development , RNA, Messenger/genetics
7.
Exp Cell Res ; 405(2): 112657, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34081985

ABSTRACT

Checkpoint kinases (Chk) 1/2 are known for DNA damage checkpoint and cell cycle control in somatic cells. According to recent findings, the involvement of Chk1 in oocyte meiotic resumption and Chk2 is regarded as an essential regulator for progression at the post metaphase I stage (MI). In this study, AZD7762 (Chk1/2 inhibitor) and SB218078 (Chk1 inhibitor) were used to uncover the joint roles of Chk1/2 and differentiate the importance of Chk1 and Chk2 during oocyte meiotic maturation. Inhibition of Chk1/2 or Chk1 alone had no significant effect on germinal vesicle breakdown (GVBD) but significantly inhibited the first polar body (PB1). Interestingly, inhibition of Chk1 alone could not increase or completely block the extrusion of PB1 like Chk1/2 inhibition. Also, Chk1/2 inhibition resulted in defective meiotic spindle organization and chromosome condensation both in MI and metaphase II (MII) stages of oocytes. The location of γ-tubulin and Securin were abnormal or missing, while P38 MAPK was activated by Chk1/2 inhibition. Meanwhile, Chk1/2 inhibition reduced the percentage of the second polar body extrusion and pronuclear formation. In conclusion, our results further understand the functions and regulatory mechanism of Chk1/2 during oocyte meiotic maturation.


Subject(s)
Chromosomes/metabolism , Meiosis/physiology , Metaphase/physiology , Oocytes/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Mice , Securin/metabolism , Tubulin/metabolism
8.
Semin Cell Dev Biol ; 117: 99-117, 2021 09.
Article in English | MEDLINE | ID: mdl-34053864

ABSTRACT

The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.


Subject(s)
Metaphase/physiology , Microtubules/metabolism , Spindle Apparatus/metabolism , Humans
9.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119044, 2021 06.
Article in English | MEDLINE | ID: mdl-33865884

ABSTRACT

Cyclin D-CDK4/6 complex mediates the transition from the G1 to S phase in mammalian somatic cells. Meiotic oocytes pass through the G2/M transition and complete the first meiosis to reach maturation at the metaphase of meiosis II without intervening S phase, while Cyclin D-CDK4/6 complex is found to express during meiotic progression. Whether Cyclin D-CDK4/6 complex regulates meiotic cell cycle progression is not known. Here, we found its different role in oocyte meiosis: Cyclin D-CDK4/6 complex served as a regulator of spindle assembly checkpoint (SAC) to prevent aneuploidy in meiosis I. Inhibition of CDK4/6 kinases disrupted spindle assembly, chromosome alignment and kinetochore-microtubule attachments, but unexpectedly accelerated meiotic progression by inactivating SAC, consequently resulting in production of aneuploid oocytes. Further studies showed that the MPF activity decrease before first polar body extrusion was accelerated probably by inactivation of the SAC to promote ubiquitin-mediated cyclin B1 degradation. Taken together, these data reveal a novel role of Cyclin D-CDK4/6 complex in mediating control of the SAC in female meiosis I.


Subject(s)
Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , M Phase Cell Cycle Checkpoints/physiology , Aneuploidy , Animals , Cell Cycle Proteins/metabolism , Chromosome Segregation/physiology , Cyclin B1/metabolism , Female , Meiosis/physiology , Mesothelin , Metaphase/physiology , Mice , Mice, Inbred ICR , Oocytes/metabolism , Polar Bodies/metabolism , Spindle Apparatus/metabolism
10.
Plant Cell ; 33(1): 27-43, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33751090

ABSTRACT

The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly. In plants, the relevant molecular mechanisms for spindle formation are poorly defined. While an Arabidopsis thaliana kinesin-5 ortholog has been identified, the kinesin-12 ortholog in plants remains elusive. In this study, we provide experimental evidence for the function of Arabidopsis KINESIN-12E in spindle assembly. In kinesin-12e mutants, a delay in spindle assembly is accompanied by the reduction of spindle size, demonstrating that KINESIN-12E contributes to mitotic spindle architecture. Kinesin-12E localization is mitosis-stage specific, beginning with its perinuclear accumulation during prophase. Upon nuclear envelope breakdown, KINESIN-12E decorates subpopulations of microtubules in the spindle and becomes progressively enriched in the spindle midzone. Furthermore, during cytokinesis, KINESIN-12E shares its localization at the phragmoplast midzone with several functionally diversified Arabidopsis KINESIN-12 members. Changes in the kinetochore and in prophase and metaphase spindle dynamics occur in the absence of KINESIN-12E, suggest it might play an evolutionarily conserved role during spindle formation similar to its spindle-localized animal kinesin-12 orthologs.


Subject(s)
Arabidopsis/metabolism , Microtubules/metabolism , Kinesins/metabolism , Kinetochores/metabolism , Metaphase/physiology , Prophase/physiology
11.
Fertil Steril ; 115(5): 1318-1326, 2021 05.
Article in English | MEDLINE | ID: mdl-33622565

ABSTRACT

OBJECTIVE: To depict the PIWI-interacting RNA (piRNA) profile in oocytes from patients with recurrent oocyte maturation arrest (ROMA) and explore the piRNA candidates associated with the disease. DESIGN: An observational study. SETTING: Academic research unit. PATIENT(S): Sixteen ROMA patients who provided 140 immature oocytes that arrested at metaphase I, and 146 control patients who provided 420 oocytes for in vitro culture that were collected at the stages of germinal vesicle (GV), metaphase I (MI), and MII. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Expression profiles of piRNA and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) validating data of piR-hsa-17139 and its target genes. RESULT(S): After the piRNA profile was established using piRNA sequencing and hierarchical clustering, the target genes of the piRNA were predicted by bioinformatics databases and matched with mRNA sequencing data. The piRNA expression profiles showed a greater quantity of differentially expressed piRNAs in the older-stage oocytes compared with the early-stage oocytes. The piRNA and mRNA sequencing data indicated that the most affected genes were mainly concentrated in the extracellular matrix (ECM) pathway. Based on the comparison of the piRNA and mRNA sequencing data, four differentially expressed piRNAs were associated with modulation of those ECM pathway genes. The qRT-PCR validation confirmed that piR-hsa-17139 was the only up-regulated piRNA, and its target ECM genes were suppressed in ROMA oocytes. The expression level of piR-hsa-17139 declined slightly while the expression of its target ECM genes plunged dramatically during the development of normal oocytes. CONCLUSION(S): As the important genome monitors in gametogenesis, abnormally expressed piRNAs may affect the expression of ECM modulating genes, which subsequently contributes to ROMA.


Subject(s)
Extracellular Matrix/pathology , Oocytes , Ovarian Diseases/pathology , RNA, Small Interfering/genetics , Adult , Case-Control Studies , Cell Cycle Checkpoints/physiology , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Metaphase/physiology , Oocytes/metabolism , Oocytes/pathology , Oocytes/ultrastructure , Oogenesis/physiology , Ovarian Diseases/genetics , Ovarian Diseases/metabolism , RNA, Small Interfering/metabolism , Transcriptome
12.
Int J Mol Sci ; 22(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498768

ABSTRACT

The combination of in vitro maturation (IVM) techniques and oocyte vitrification (OV) could increase the number of useful oocytes in different types of patients. IVM and subsequent OV is the most widely used clinical strategy. Would the results improve if we reverse the order of the techniques? Here, we evaluated survival, in vitro maturation, time to extrude the first polar body (PB), and the metaphase plate configuration of human prophase I (GV) oocytes before or after their vitrification. Specific, 195 GV oocytes from 104 patients subjected to controlled ovarian stimulation cycles were included. We stablished three experimental groups: GV oocytes vitrified and IVM (Group GV-Vit), GV oocytes IVM and vitrified at MII stage (Group MII-Vit), and GV oocytes IVM (Group not-Vit). All of them were in vitro matured for a maximum of 48 h and fixed to study the metaphase plate by confocal microscopy. According to our results, the vitrification of immature oocytes and their subsequent maturation presented similar survival, maturation, and metaphase plate conformation rates, but a significantly higher percentage of normal spindle than the standard strategy. Additionally, the extension of IVM time to 48 h did not seem to negatively affect the oocyte metaphase plate configuration.


Subject(s)
Cryopreservation/methods , In Vitro Oocyte Maturation Techniques/methods , Metaphase , Oocytes/physiology , Vitrification , Cell Survival , Chromosomes, Human , Female , Humans , Metaphase/physiology , Spindle Apparatus/physiology , Time Factors
13.
Cell Cycle ; 20(4): 345-352, 2021 02.
Article in English | MEDLINE | ID: mdl-33459116

ABSTRACT

DNA Topoisomerase II (TopoII) uses ATP hydrolysis to decatenate chromosomes so that sister chromatids can faithfully segregate in mitosis. When the TopoII enzyme cycle stalls due to failed ATP hydrolysis, the onset of anaphase is delayed, presumably to allow extra time for decatenation to be completed. Recent evidence revealed that, unlike the spindle assembly checkpoint, this TopoII checkpoint response requires Aurora B and Haspin kinases and is triggered by SUMOylation of the C-terminal domain of TopoII.


Subject(s)
Aurora Kinase B/physiology , DNA Topoisomerases, Type II/physiology , Intracellular Signaling Peptides and Proteins/physiology , M Phase Cell Cycle Checkpoints/physiology , Metaphase/physiology , Protein Serine-Threonine Kinases/physiology , Animals , Cell Cycle Proteins/physiology , Genes, cdc/physiology , Humans , Mitosis/physiology
14.
Mol Biol Cell ; 32(9): 880-891, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33085580

ABSTRACT

Accurate chromosome alignment at metaphase facilitates the equal segregation of sister chromatids to each of the nascent daughter cells. Lack of proper metaphase alignment is an indicator of defective chromosome congression and aberrant kinetochore-microtubule attachments which in turn promotes chromosome missegregation and aneuploidy, hallmarks of cancer. Tools to sensitively, accurately, and quantitatively measure chromosome alignment at metaphase will facilitate understanding of the contribution of chromosome segregation errors to the development of aneuploidy. In this work, we have developed and validated a method based on analytical geometry to measure several indicators of chromosome misalignment. We generated semiautomated and flexible ImageJ2/Fiji pipelines to quantify kinetochore misalignment at metaphase plates as well as lagging chromosomes at anaphase. These tools will ultimately allow sensitive and systematic quantitation of these chromosome segregation defects in cells undergoing mitosis.


Subject(s)
Chromosome Segregation/physiology , Image Processing, Computer-Assisted/methods , Metaphase/physiology , Chromatids , HeLa Cells , Humans , Kinetochores/physiology , Microscopy, Fluorescence/methods , Microtubules/physiology , Mitosis/physiology , Models, Theoretical , Spindle Apparatus
15.
PLoS Genet ; 16(11): e1009184, 2020 11.
Article in English | MEDLINE | ID: mdl-33137813

ABSTRACT

In mitosis and meiosis, chromosome segregation is triggered by the Anaphase-Promoting Complex/Cyclosome (APC/C), a multi-subunit ubiquitin ligase that targets proteins for degradation, leading to the separation of chromatids. APC/C activation requires phosphorylation of its APC3 and APC1 subunits, which allows the APC/C to bind its co-activator Cdc20. The identity of the kinase(s) responsible for APC/C activation in vivo is unclear. Cyclin B3 (CycB3) is an activator of the Cyclin-Dependent Kinase 1 (Cdk1) that is required for meiotic anaphase in flies, worms and vertebrates. It has been hypothesized that CycB3-Cdk1 may be responsible for APC/C activation in meiosis but this remains to be determined. Using Drosophila, we found that mutations in CycB3 genetically enhance mutations in tws, which encodes the B55 regulatory subunit of Protein Phosphatase 2A (PP2A) known to promote mitotic exit. Females heterozygous for CycB3 and tws loss-of-function alleles lay embryos that arrest in mitotic metaphase in a maternal effect, indicating that CycB3 promotes anaphase in mitosis in addition to meiosis. This metaphase arrest is not due to the Spindle Assembly Checkpoint (SAC) because mutation of mad2 that inactivates the SAC does not rescue the development of embryos from CycB3-/+, tws-/+ females. Moreover, we found that CycB3 promotes APC/C activity and anaphase in cells in culture. We show that CycB3 physically associates with the APC/C, is required for phosphorylation of APC3, and promotes APC/C association with its Cdc20 co-activators Fizzy and Cortex. Our results strongly suggest that CycB3-Cdk1 directly activates the APC/C to promote anaphase in both meiosis and mitosis.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase/physiology , CDC2 Protein Kinase/metabolism , Cyclin B/metabolism , Drosophila Proteins/metabolism , Animals , Animals, Genetically Modified , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/metabolism , Cell Line , Chromosome Segregation/physiology , Cyclin B/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Loss of Function Mutation , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Male , Metaphase/physiology , Models, Animal , Mutagenesis , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphorylation
16.
EMBO J ; 39(23): e105432, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33073400

ABSTRACT

Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.


Subject(s)
Kinesins/genetics , Kinesins/metabolism , Microtubules/metabolism , Cell Cycle Proteins/metabolism , Chromosomes , Humans , Metaphase/physiology , Mitosis , Spindle Apparatus/physiology
17.
Dev Cell ; 54(5): 574-582.e4, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32818469

ABSTRACT

Mesoscale macromolecular complexes and organelles, tens to hundreds of nanometers in size, crowd the eukaryotic cytoplasm. It is therefore unclear how mesoscale particles remain sufficiently mobile to regulate dynamic processes such as cell division. Here, we study mobility across dividing cells that contain densely packed, dynamic microtubules, comprising the metaphase spindle. In dividing human cells, we tracked 40 nm genetically encoded multimeric nanoparticles (GEMs), whose sizes are commensurate with the inter-filament spacing in metaphase spindles. Unexpectedly, the effective diffusivity of GEMs was similar inside the dense metaphase spindle and the surrounding cytoplasm. Eliminating microtubules or perturbing their polymerization dynamics decreased diffusivity by ~30%, suggesting that microtubule polymerization enhances random displacements to amplify diffusive-like motion. Our results suggest that microtubules effectively fluidize the mitotic cytoplasm to equalize mesoscale mobility across a densely packed, dynamic, non-uniform environment, thus spatially maintaining a key biophysical parameter that impacts biochemistry, ranging from metabolism to the nucleation of cytoskeletal filaments.


Subject(s)
Cell Division/physiology , Cytoplasm/metabolism , Metaphase/physiology , Microtubules/metabolism , Humans , Nanoparticles/metabolism , Organelles/metabolism , Spindle Apparatus/physiology
18.
Proc Natl Acad Sci U S A ; 117(28): 16154-16159, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601228

ABSTRACT

The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials.


Subject(s)
Metaphase/physiology , Spindle Apparatus/physiology , Animals , Biomechanical Phenomena , Dyneins/antagonists & inhibitors , Dyneins/metabolism , Elasticity , Liquid Crystals , Metaphase/drug effects , Microtubules/drug effects , Microtubules/physiology , Mitosis , Spindle Apparatus/chemistry , Spindle Apparatus/drug effects , Surface Tension , Xenopus Proteins/antagonists & inhibitors , Xenopus Proteins/metabolism , Xenopus laevis
19.
FASEB J ; 34(8): 11292-11306, 2020 08.
Article in English | MEDLINE | ID: mdl-32602619

ABSTRACT

Actin-interacting protein 1 (AIP1), also known as WD repeat-containing protein 1 (WDR1), is ubiquitous in eukaryotic organisms, and it plays critical roles in the dynamic reorganization of the actin cytoskeleton. However, the biological function and mechanism of AIP1 in mammalian oocyte maturation is still largely unclear. In this study, we demonstrated that AIP1 boosts ADF/Cofilin activity in mouse oocytes. AIP1 is primarily distributed around the spindle region during oocyte maturation, and its depletion impairs meiotic spindle migration and asymmetric division. The knockdown of AIP1 resulted in the gathering of a large number of actin-positive patches around the spindle region. This effect was reduced by human AIP1 (hAIP1) or Cofilin (S3A) expression. AIP1 knockdown also reduced the phosphorylation of Cofilin near the spindle, indicating that AIP1 interacts with ADF/Cofilin-decorated actin filaments and enhances filament disassembly. Moreover, the deletion of AIP1 disrupts Cofilin localization in metaphase I (MI) and induces cytokinesis defects in metaphase II (MII). Taken together, our results provide evidence that AIP1 promotes actin dynamics and cytokinesis via Cofilin in the gametes of female mice.


Subject(s)
Actin Depolymerizing Factors/metabolism , Cytokinesis/physiology , Metaphase/physiology , Oocytes/metabolism , ras GTPase-Activating Proteins/metabolism , Actins/metabolism , Animals , Cells, Cultured , Female , Humans , Mice , Mice, Inbred ICR , Phosphorylation/physiology , Spindle Apparatus/metabolism
20.
Sci Rep ; 10(1): 8948, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488088

ABSTRACT

During cell division, mitotic chromosomes assemble and are equally distributed into two new daughter cells. The chromosome organisation of the two chromatids is essential for even distribution of genetic materials. Although the 11-nm fibre or nucleosome structure is well-understood as a fundamental fibrous structure of chromosomes, the reports on organisation of 30-nm basic chromatin fibres have been controversial, with debates on the contribution of 30-nm or thicker fibres to the higher order inner structure of chromosomes. Here, we used focused ion beam/scanning electron microscopy (FIB/SEM) to show that both 11-nm and 30-nm fibres are present in the human metaphase chromosome, although the higher-order periodical structure could not be detected under the conditions employed. We directly dissected the chromosome every 10-nm and observed 224 cross-section SEM images. We demonstrated that the chromosome consisted of chromatin fibres of an average diameter of 16.9-nm. The majority of the chromatin fibres had diameters between 5 and 25-nm, while those with 30-nm were in the minority. The reduced packaging ratio of the chromatin fibres was detected at axial regions of each chromatid. Our results provide a strong basis for further discussions on the chromosome higher-order structure.


Subject(s)
Chromatin/physiology , Chromosomes/metabolism , Metaphase/physiology , Chromatids/metabolism , Chromatids/physiology , Chromatin/metabolism , Chromosomes/genetics , Chromosomes, Human , HeLa Cells , Humans , Microscopy, Electron, Scanning , Nucleosomes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL