Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.691
Filter
1.
Molecules ; 29(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275023

ABSTRACT

The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported. The formed Mannich base 10 was subjected to give bioconjugates with indole and 7-azaindole. The effect of the aldehyde component and the amine part of the Mannich base on the synthetic pathway was also investigated. In favor of having a preliminary overview of the structure-activity relationships, the derivatives have been tested on cancer and normal cell lines. In the case of bioconjugate 16, as the most powerful scaffold in the series bearing indole and a 5-chloro-8-hydroxyquinoline skeleton, a potent toxic activity against the resistant Colo320 colon adenocarcinoma cell line was observed. Furthermore, this derivative was selective towards cancer cell lines showing no toxicity on non-tumor fibroblast cells.


Subject(s)
Antineoplastic Agents , Indoles , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Methane/chemistry , Methane/analogs & derivatives , Molecular Structure , Drug Screening Assays, Antitumor
2.
Medicina (Kaunas) ; 60(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39336420

ABSTRACT

Background and Objectives: Colorectal cancer (CRC) remains a major global health issue. Although chemotherapy is the first-line treatment, its effectiveness is limited due to drug resistance developed in CRC. To overcome resistance and improve the prognosis of CRC patients, investigating new therapeutic approaches is necessary. Materials and Methods: Using human colorectal adenocarcinoma (HT29) and metastatic CRC (SW620) cell lines, the potential anticancer properties of a newly synthesized compound 1-(Isobutyl)-3-(4-methylbenzyl) benzimidazolium chloride (IMBZC) were evaluated by performing MTT cytotoxicity, cell migration, and colony formation assays, as well as by monitoring apoptosis-related protein and gene expression using Western blot and reverse transcription-quantitative polymerase chain reaction technologies. Results: Tested at various concentrations, the half-maximal inhibitory concentrations (IC50) of IMBZC on HT29 and SW620 cell growth were determined to be 22.13 µM (6.97 µg/mL) and 15.53 µM (4.89 µg/mL), respectively. IMBZC did not alter the cell growth of normal HEK293 cell lines. In addition, IMBZC inhibited cell migration and significantly decreased colony formation, suggesting its promising role in suppressing cancer metastasis. Mechanistic analyses revealed that IMBZC treatment increased the expression of pro-apoptotic proteins p53 and Bax, while decreasing the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL, thus indicating the induction of apoptosis in IMBZC-treated CRC cells, compared to untreated cells. Additionally, the addition of IMBZC to conventional chemotherapeutic drugs (i.e., 5-fluorouracil, irinotecan, and oxaliplatin) resulted in an increase in the cytotoxic potential of the drugs. Conclusions: This study suggests that IMBZC has substantial anticancer effects against CRC cells through its ability to induce apoptosis, inhibit cancer cell migration and colony formation, and enhance the cytotoxic effects of conventional chemotherapeutic drugs. These findings indicate that IMBZC could be a promising chemotherapeutic drug for the treatment of CRC. Further research should be conducted using in vivo models to confirm the anti-CRC activities of IMBZC.


Subject(s)
Antineoplastic Agents , Apoptosis , Benzimidazoles , Cell Proliferation , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Apoptosis/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Movement/drug effects , Methane/pharmacology , Methane/analogs & derivatives , Methane/therapeutic use
3.
Inorg Chem ; 63(37): 16949-16963, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39226133

ABSTRACT

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-ß-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Gold , Heterocyclic Compounds , Methane , Silver , Thioredoxin-Disulfide Reductase , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Silver/chemistry , Silver/pharmacology , Gold/chemistry , Gold/pharmacology , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Cell Proliferation/drug effects , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Superoxide Dismutase/metabolism , Superoxide Dismutase/antagonists & inhibitors
4.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273150

ABSTRACT

A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad range of thioesters and sulfenyl-substituted aldehydes in yields above 86%, in mild and metal-free conditions. In this study, thirty-six sulfur-based derivatives were obtained and characterized by spectroscopic methods.


Subject(s)
Aldehydes , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Aldehydes/chemistry , Catalysis , Methane/chemistry , Methane/analogs & derivatives , Green Chemistry Technology/methods
5.
J Med Chem ; 67(16): 14414-14431, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39119630

ABSTRACT

In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.


Subject(s)
Antineoplastic Agents , Heterocyclic Compounds , Methane , Ovarian Neoplasms , Palladium , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Palladium/chemistry , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Indenes/chemistry , Indenes/pharmacology , Indenes/chemical synthesis , Drug Screening Assays, Antitumor , Structure-Activity Relationship
6.
Eur J Med Chem ; 277: 116757, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39142149

ABSTRACT

N-heterocyclic carbenes (NHCs) represent suitable ligands for rapid and efficient drug design, because they offer the advantage of being easily chemically modified and can bind several substituents, including transition metals as, for instance, gold derivatives. Gold-NHC complexes possess various biological activities and were demonstrated good candidates as anticancer drugs. Besides, carbazole derivatives are characterized by various pharmacological properties, such as anticancer, antibacterial, anti-inflammatory, and anti-psychotropic. Amongst the latter, N-thioalkyl carbazoles were proved to inhibit cancer cells damaging the nuclear DNA, through the inhibition of human topoisomerases. Herein, we report the design, synthesis and biological evaluation of nine new hybrid molecules in which NHC-Au(I) complexes and N-alkylthiolated carbazoles are linked together, in order to obtain novel biological multitarget agents. We demonstrated that the lead hybrid complexes possess anticancer, anti-inflammatory and antioxidant properties, with a high potential as useful tools for treating distinct aspects of several diseases, amongst them cancer.


Subject(s)
Antineoplastic Agents , Carbazoles , Drug Design , Heterocyclic Compounds , Methane , Carbazoles/chemistry , Carbazoles/pharmacology , Carbazoles/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Structure-Activity Relationship , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Molecular Structure , Gold/chemistry , Gold/pharmacology , Drug Screening Assays, Antitumor , Cell Line, Tumor , Cell Proliferation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Animals , Dose-Response Relationship, Drug , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis
7.
Int J Biol Macromol ; 278(Pt 2): 134756, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147340

ABSTRACT

An attractive strategy for efficiently forming CS bonds is through the use of diazo compounds SH insertion. However, achieving good enantioselective control in this reaction within a biocatalytic system has proven to be challenging. This study aimed to enhance the activity and enantioselectivity of to enable asymmetric SH insertion. The researchers conducted site-saturation mutagenesis (SSM) on 5 amino acid residues located around the iron carbenoid intermediate within a distance of 5 Å, followed by iterative saturation mutagenesis (ISM) of beneficial mutants. Through this process, the beneficial variant VHbSH(P54R/V98W) was identified through screening with 4-(methylmercapto) phenol as the substrate. This variant exhibited up to 4-fold higher catalytic efficiency and 6-fold higher enantioselectivity compared to the wild-type VHb. Computational studies were also conducted to elucidate the detailed mechanism of this asymmetric SH insertion, explaining how active-site residues accelerate this transformation and provide stereocontrol.


Subject(s)
Bacterial Proteins , Protein Engineering , Truncated Hemoglobins , Truncated Hemoglobins/genetics , Truncated Hemoglobins/chemistry , Truncated Hemoglobins/metabolism , Protein Engineering/methods , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Stereoisomerism , Substrate Specificity , Methane/chemistry , Methane/analogs & derivatives , Methane/metabolism , Mutagenesis, Site-Directed , Models, Molecular , Catalytic Domain , Biocatalysis
8.
J Inorg Biochem ; 260: 112688, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39111220

ABSTRACT

New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.


Subject(s)
Myoglobin , Myoglobin/chemistry , Myoglobin/genetics , Myoglobin/metabolism , Methane/analogs & derivatives , Methane/chemistry , Methane/metabolism , Biocatalysis , Transferases/metabolism , Transferases/genetics , Transferases/chemistry , Animals , Sperm Whale , Protein Engineering/methods
9.
J Med Chem ; 67(17): 15494-15508, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39196554

ABSTRACT

From previous studies, it is evident that metal-organic gold(I) complexes have antiproliferative activities. The aim of this study is not only to find new anticancer agents but also to overcome existing cytostatic resistance in cancer cells. The synthesis and medicinal evaluation of two cationic 1,3-disubstituted gold(I) bis-tetrazolylidene complexes 1 and 2 are reported. To determine apoptosis-inducing properties of the complexes, DNA fragmentation was measured using propidium iodide staining followed by flow cytometry. Gold(I) complex 1 targets explicitly malignant cells, effectively inhibiting their growth and selectively inducing apoptosis without signs of necrosis. Even in cells resistant to common treatments such as doxorubicin, it overcomes multidrug resistance and sensitizes existing drug-resistant cells to common cytostatic drugs. It is assumed that gold(I) complex 1 involves the mitochondrial pathway in apoptosis and targets members of the BCL-2 family, enhancing its potential as a therapeutic agent in cancer treatment.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Gold , Proto-Oncogene Proteins c-bcl-2 , Humans , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Resistance, Multiple/drug effects , Gold/chemistry , Gold/pharmacology , Cell Line, Tumor , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Methane/analogs & derivatives , Methane/pharmacology , Methane/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation/drug effects
10.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39087548

ABSTRACT

In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.


Subject(s)
Antifreeze Proteins , Methane , Tenebrio , Water , Antifreeze Proteins/chemistry , Kinetics , Methane/chemistry , Methane/analogs & derivatives , Water/chemistry , Tenebrio/chemistry , Animals , Gases/chemistry , Peptides/chemistry , Peptides/pharmacology
11.
Chem Rev ; 124(16): 9580-9608, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38953775

ABSTRACT

Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.


Subject(s)
Amino Acyl-tRNA Synthetases , Genetic Code , Lysine , Humans , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/genetics , Evolution, Molecular , Lysine/metabolism , Lysine/analogs & derivatives , Lysine/chemistry , Methane/analogs & derivatives , Methane/metabolism , Methane/chemistry , Animals
12.
Colloids Surf B Biointerfaces ; 242: 114097, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067190

ABSTRACT

N-Heterocyclic carbenes (NHC) are well-recognized ligands of choice for preparing robust transition metal species. However, their use for fabrication of biomedically relevant nanoparticles has been limited to the synthesis of non-targeted particles showing increased tolerance to different aqueous coagulants. In this work, the first example of carbene-coated metal nanoparticles suitable for in vivo applications is presented. Directed design of a novel biscarbene NHC ligand allowed to prepare the first magnetite/gold (Fe3O4@AuNP@NHC) nanostructures and carbene gold (AuNP@NHC) nanoparticles with significant stability in aqueous solutions and enhanced ability to form bioconjugates. Furthermore, these nanoparticles exhibit an extraordinary property for inorganic nanoparticles: they can endure several additive-free air drying/redispersion cycles without deterioration of their colloidal behavior. Bioconjugated AuNP@NHC and multimodal Fe3O4@AuNP@NHC demonstrated a successful performance in three distinct applications: lateral flow tests, specific cancer cell targeting, and bioimaging. Thus, the results show the notable advantages of the N-heterocyclic carbene coating of inorganic nanoparticles and their utility for complex biomedical applications.


Subject(s)
Gold , Metal Nanoparticles , Methane , Methane/chemistry , Methane/analogs & derivatives , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Particle Size
13.
Dalton Trans ; 53(32): 13503-13514, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39072444

ABSTRACT

Tris(pyrazolyl)methane (tpm), 2,2,2-tris(pyrazolyl)ethanol (tpmOH) and its esterification derivatives with ibuprofen and flurbiprofen (tpmIBU and tpmFLU) were used as ligands to obtain complexes of the type [Fe(tpmX)2]Cl2 (1-4). The tpmIBU and tpmFLU ligands and corresponding complexes 3 and 4 were characterized by IR and multinuclear NMR spectroscopy, and the structure of tpmIBU was elucidated by single crystal X-ray diffraction. Complexes 1-4 were also assessed for their behaviour in aqueous media (solubility in D2O, octanol/water partition coefficient, stability in physiological-like conditions). The antiproliferative activity of ligands and complexes was determined on A2780, A2780cis and A549 cancer cell lines and the non-cancerous HEK 293T and BJ cell lines. The ligands and complexes were investigated for their ability to inhibit COX-2 (cyclooxygenase) and HNE (4-hydroxynonenal) enzymes. Complexes 3 and 4 exhibited cytotoxicity that may be attributed predominantly to their bioactive fragments, while DNA binding and enhancement of ROS production do not appear to play any significant role.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Antineoplastic Agents , Coordination Complexes , Pyrazoles , Humans , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Cell Proliferation/drug effects , Cell Line, Tumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Methane/chemistry , Methane/analogs & derivatives , Methane/pharmacology , Drug Screening Assays, Antitumor , Cyclooxygenase 2/metabolism , Aldehydes/chemistry , Aldehydes/pharmacology , Reactive Oxygen Species/metabolism , Molecular Structure , Ibuprofen/chemistry , Ibuprofen/pharmacology , Models, Molecular
14.
Nat Commun ; 15(1): 6060, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025860

ABSTRACT

While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors.


Subject(s)
Cross-Linking Reagents , Diazomethane , Diazomethane/chemistry , Cross-Linking Reagents/chemistry , Proteins/chemistry , Photolysis , Light , Methane/chemistry , Methane/analogs & derivatives , Protein Conformation
15.
J Biol Inorg Chem ; 29(5): 499-509, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38918208

ABSTRACT

Encephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.


Subject(s)
Encephalitozoon , Leishmania major , Methane , Silver , Humans , Leishmania major/drug effects , Methane/analogs & derivatives , Methane/pharmacology , Methane/chemistry , Silver/chemistry , Silver/pharmacology , Encephalitozoon/drug effects , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , HEK293 Cells , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Cell Survival/drug effects , Dose-Response Relationship, Drug
16.
J Biol Inorg Chem ; 29(5): 511-518, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38926159

ABSTRACT

Antimicrobial resistance (AMR) has been emerging as a major global health threat and calls for the development of novel drug candidates. Metal complexes have been demonstrating high efficiency as antibacterial agents that differ substantially from the established types of antibiotics in their chemical structures and their mechanism of action. One strategy to exploit this potential is the design of metal-based hybrid organometallics that consist of an established antibiotic and a metal-based warhead that contributes an additional mechanism of action different from that of the parent antibiotic. In this communication, we describe the organometallic hybrid antibiotic 2c, in which the drug metronidazole is connected to a gold(I) N-heterocyclic carbene warhead that inhibits bacterial thioredoxin reductase (TrxR). Metronidazole can be used for the treatment with the obligatory anaerobic pathogen Clostridioides difficile (C. difficile), however, resistance to the drug hampers its clinical success. The gold organometallic conjugate 2c was an efficient inhibitor of TrxR and it was inactive or showed only minor effects against eucaryotic cells and bacteria grown under aerobic conditions. In contrast, a strong antibacterial effect was observed against both metronidazole-sensitive and -resistant strains of C. difficile. This report presents a proof-of-concept that the design of metal-based hybrid antibiotics can be a viable approach to efficiently tackle AMR.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Drug Resistance, Bacterial , Gold , Methane , Metronidazole , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Clostridioides difficile/drug effects , Metronidazole/pharmacology , Metronidazole/chemistry , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Gold/chemistry , Drug Resistance, Bacterial/drug effects , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/metabolism , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Molecular Structure , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
17.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928428

ABSTRACT

A family of bifunctional dihetarylmethanes and dibenzoxanthenes is assembled via a reaction of acetals containing a 2-chloroacetamide moiety with phenols and related oxygen-containing heterocycles. These compounds demonstrated selective antitumor activity associated with the induction of cell apoptosis and inhibition of the process of glycolysis. In particular, bis(heteroaryl)methane containing two 4-hydroxy-6-methyl-2H-pyran-2-one moieties combine excellent in vitro antitumor efficacy with an IC50 of 1.7 µM in HuTu-80 human duodenal adenocarcinoma models with a high selectivity index of 73. Overall, this work highlights the therapeutic potential of dimeric compounds assembled from functionalized acetals and builds a starting point for the development of a new family of anticancer agents.


Subject(s)
Antineoplastic Agents , Apoptosis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Cell Proliferation/drug effects , Xanthenes/pharmacology , Xanthenes/chemistry
18.
Biomacromolecules ; 25(7): 4523-4534, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38916862

ABSTRACT

A backbone-substituted N-heterocyclic carbene (NHC) zinc complex, in combination with alcohol initiators, has been shown to be an effective catalyst for the ring-opening polymerization (ROP) of trimethylene carbonate (TMC) to poly(trimethylene carbonate) (PTMC) devoid of oxetane linkages. The ROP of TMC proceeded in solution to give PTMC, possessing controlled molecular mass (2500 < Mn < 10000) and low dispersity (D ∼ 1.2). Changing the alcohol initiators, PTMCs with different end-groups were obtained, included a telechelic polymer. The results of MALDI-ToF and NMR analysis confirmed the controlled/living nature of the present ROP catalytic system, where side reactions, such as inter- and intramolecular transesterifications, were minimized during the polymerization. Solution studies in different solvents demonstrated the polymerization reaction to proceed via a mechanism first order in monomer and in catalyst. The zinc complex was also able to convert substituted cyclic carbonates, which were purposely synthesized from renewable feedstocks such as CO2 and 1,3-diols. For the asymmetric 2-Me TMC monomer, good regioselectivity was observed (Xreg up to 0.92). The excellent control of the polymerization process was finally brought to light through the preparation of polycarbonate/polyether triblock copolymers by using polyethylene glycol (PEG) as a macroinitiator and of well-defined di- and triblock polycarbonate/polylactide copolymers by sequential ROP of TMC and L-LA.


Subject(s)
Polycarboxylate Cement , Polymerization , Zinc , Polycarboxylate Cement/chemistry , Zinc/chemistry , Catalysis , Carbon Dioxide/chemistry , Methane/chemistry , Methane/analogs & derivatives , Polymers/chemistry , Carbonates/chemistry , Coordination Complexes/chemistry , Heterocyclic Compounds/chemistry , Dioxanes/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis
19.
Proc Natl Acad Sci U S A ; 121(25): e2316615121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861602

ABSTRACT

Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 µM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.


Subject(s)
Antineoplastic Agents , Iridium , Methane , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Iridium/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Microfilament Proteins/metabolism , Neoplasm Metastasis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays , Male
20.
Nature ; 631(8022): 789-795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843825

ABSTRACT

The ability to tame high-energy intermediates is important for synthetic chemistry, enabling the construction of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and carbenoid intermediates are particularly attractive, but often unknown, high-energy intermediates1,2. Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the carbon-metal bond. However, these methods are usually prohibitive because of reagent safety concerns, limiting their broad implementation in synthesis3-6. Mechanistically, an alternative approach to carbene intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition to metal to forge the initial carbon-metal bond followed by redox-promoted α-elimination to yield the desired metal carbene intermediate. Here we realize this strategy through a metallaphotoredox platform that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-elimination from six classes of previously underexploited leaving groups. These discoveries permit cyclopropanation and σ-bond insertion into N-H, S-H and P-H bonds from abundant and bench-stable carboxylic acids, amino acids and alcohols, thereby providing a general solution to the challenge of carbene-mediated chemical diversification.


Subject(s)
Alcohols , Amino Acids , Carboxylic Acids , Chemistry Techniques, Synthetic , Iron , Methane , Photochemistry , Alcohols/chemistry , Amino Acids/chemistry , Carbon/chemistry , Carboxylic Acids/chemistry , Catalysis , Cyclopropanes/chemistry , Cyclopropanes/chemical synthesis , Iron/chemistry , Methane/analogs & derivatives , Methane/chemistry , Oxidation-Reduction , Photochemistry/methods , Chemistry Techniques, Synthetic/methods , Electrons
SELECTION OF CITATIONS
SEARCH DETAIL