Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.255
Filter
1.
Nat Commun ; 15(1): 5526, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951499

ABSTRACT

An international collection of Staphylococcus aureus of clonal complex (CC) 398 from diverse hosts spanning all continents and a 30 year-period is studied based on whole-genome sequencing (WGS) data. The collection consists of publicly available genomic data from 2994 strains and 134 recently sequenced Swiss methicillin-resistant S. aureus (MRSA) CC398 strains. A time-calibrated phylogeny reveals the presence of distinct phylogroups present in Asia, North and South America and Europe. European MRSA diverged from methicillin-susceptible S. aureus (MSSA) at the beginning of the 1950s. Two major European phylogroups (EP4 and EP5), which diverged approximately 1974, are the main drivers of MRSA CC398 spread in Europe. Within EP5, an emergent MRSA lineage spreading among the European horse population (EP5-Leq) diverged approximately 1996 from the pig lineage (EP5-Lpg), and also contains human-related strains. EP5-Leq is characterized by staphylococcal cassette chromosome mec (SCCmec) IVa and spa type t011 (CC398-IVa-t011), and EP5-Lpg by CC398-SCCmecVc-t011. The lineage-specific antibiotic resistance and virulence gene patterns are mostly mediated by the acquisition of mobile genetic elements like SCCmec, S. aureus Genomic Islands (SaGIs), prophages and transposons. Different combinations of virulence factors are present on S. aureus pathogenicity islands (SaPIs), and novel antimicrobial resistance gene containing elements are associated with certain lineages expanding in Europe. This WGS-based analysis reveals the actual evolutionary trajectory and epidemiological trend of the international MRSA CC398 population considering host, temporal, geographical and molecular factors. It provides a baseline for global WGS-based One-Health studies of adaptive evolution of MRSA CC398 as well as for local outbreak investigations.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Phylogeny , Staphylococcal Infections , Whole Genome Sequencing , Animals , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Humans , Europe/epidemiology , Horses/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/pathogenicity , Genome, Bacterial , Virulence Factors/genetics , Chromosomes, Bacterial/genetics , Evolution, Molecular , Swine
2.
Sci Rep ; 14(1): 13235, 2024 06 09.
Article in English | MEDLINE | ID: mdl-38853154

ABSTRACT

The study investigated the economic concerns associated with livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in livestock (cow), examining its connection to severe infections, antimicrobial resistance (AMR), and virulence factors. The research, conducted in Edo State, Nigeria, analyzed 400 samples (200 rectal and 200 nasal swabs) collected between March 2018 and February 2019. MRSA prevalence was identified using conventional culture-based methods and polymerase chain reaction (PCR) techniques, revealing 63.5% (n = 254) for Staphylococcus aureus and 55% (n = 220) for MRSA. Of the 76 mecA-positive MRSA isolates, 64.5% (n = 49) exhibited multidrug resistance (MDR) while the remaining were sensitive to specific antimicrobials. Key virulence genes, such as PVL (81.6%; n = 62) and tsst-1 (44.7%; n = 34), were prevalent, along with AMR genes like mecC, tetM, ermA, ermC, vanA, and vanC. Staphylococcal chromosomal cassette mec (SCCmec) typing identified different types, notably II, IVa, and IVb. Biofilm formation, a crucial virulence factor varied in strength, is associated with icaA and icaB genes (p < 0.01). The findings highlighted substantial AMR and biofilm-forming capacity within LA-MRSA isolates, emphasizing the importance of ongoing surveillance for informed treatment strategies, AMR policies, and control measures against MDR staphylococcal infections.


Subject(s)
Biofilms , Livestock , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Virulence Factors , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Animals , Virulence Factors/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Livestock/microbiology , Cattle , Biofilms/drug effects , Biofilms/growth & development , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Nigeria/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
BMC Res Notes ; 17(1): 151, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831376

ABSTRACT

Staphylococcus aureus is a pathogen with high epidemic potential frequently involved in nosocomials and communities infections. The pathogenicity of Staphylococcus aureus is due to both its ability to resist antibiotics and to Produce toxins. This work aims at studying the resistance and Molecular Epidemiology of Staphylococcus aureus. Antibiotic susceptibility of the 70 strains isolates of Staphylococcus aureus was determined by agar diffusion while Multiplex PCR and MLST were used to search toxin-coding genes and MRSA typing, respectively. 14.28% of isolates were multidrug resistant. Staphylococcus aureus showed high susceptibility to aminoglycoside and Macrolides familly. lukS-PV/lukF-PV and sea genes were detected in 45% and 3% of Staphylococcus aureus respectively. Ten (10) sequence types including ST5710, ST2430, ST5289, ST5786, ST6942, ST6943, ST6944, ST6945, ST6946, ST6947 have been reported. The study showed a diversity of antibiotic resistance phenotypes and a great diversity of MRSA clones causing infections.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Burkina Faso/epidemiology , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Multilocus Sequence Typing , Drug Resistance, Multiple, Bacterial/genetics
4.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836914

ABSTRACT

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Adhesion , Bacterial Proteins , Biofilms , Cysteine Endopeptidases , Glucosides , Methicillin-Resistant Staphylococcus aureus , Molecular Docking Simulation , Phenols , Staphylococcal Infections , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Glucosides/pharmacology , Animals , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Phenols/pharmacology , Bacterial Adhesion/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Moths/microbiology , Virulence/drug effects , Disease Models, Animal , Virulence Factors/metabolism , Enzyme Inhibitors/pharmacology , Polyphenols
5.
J Clin Microbiol ; 62(7): e0020324, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38934681

ABSTRACT

In this study, we investigated the genomic changes in a major methicillin-resistant Staphylococcus aureus (MRSA) clone following a significant outbreak at a hospital. Whole-genome sequencing of MRSA isolates was utilized to explore the genomic evolution of post-outbreak MRSA strains. The epidemicity of the clone declined over time, coinciding with the introduction of multimodal infection control measures. A genome-wide association study (GWAS) identified multiple genes significantly associated with either high or low epidemic success, indicating alterations in mobilome, virulence, and defense mechanisms. Random Forest models pinpointed a gene related to fibrinogen binding as the most influential predictor of epidemicity. The decline of the MRSA clone may be attributed to various factors, including the implementation of new infection control measures, single nucleotide polymorphisms accumulation, and the genetic drift of a given clone. This research underscores the complex dynamics of MRSA clones, emphasizing the multifactorial nature of their evolution. The decline in epidemicity seems linked to alterations in the clone's genetic profile, with a probable shift towards decreased virulence and adaptation to long-term carriage. Understanding the genomic basis for the decline of epidemic clones is crucial to develop effective strategies for their surveillance and management, as well as to gain insights into the evolutionary dynamics of pathogen genomes.


Subject(s)
Cross Infection , Disease Outbreaks , Evolution, Molecular , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Whole Genome Sequencing , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/classification , Genome, Bacterial/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Molecular Epidemiology
6.
Sci Rep ; 14(1): 14569, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914650

ABSTRACT

Mastitis is considered one of the most widespread infectious disease of cattle and buffaloes, affecting dairy herds. The current study aimed to characterize the Staphylococcus aureus isolates recovered from subclinical mastitis animals in Pothohar region of the country. A total of 278 milk samples from 17 different dairy farms around two districts of the Pothohar region, Islamabad and Rawalpindi, were collected and screened for sub clinical mastitis using California Mastitis Test. Positive milk samples were processed for isolation of Staphylococcus aureus using mannitol salt agar. The recovered isolates were analyzed for their antimicrobial susceptibility and virulence genes using disc diffusion and PCR respectively. 62.2% samples were positive for subclinical mastitis and in total 70 Staphylococcus aureus isolates were recovered. 21% of these isolates were determined to be methicillin resistant, carrying the mecA gene. S. aureus isolates recovered during the study were resistant to all first line therapeutic antibiotics and in total 52% isolates were multidrug resistant. SCCmec typing revealed MRSA SCCmec types IV and V, indicating potential community-acquired MRSA (CA-MRSA) transmission. Virulence profiling revealed high prevalence of key genes associated with adhesion, toxin production, and immune evasion, such as hla, hlb, clfA, clfB and cap5. Furthermore, the Panton-Valentine leukocidin (PVL) toxin, that is often associated with recurrent skin and soft tissue infections, was present in 5.7% of isolates. In conclusion, the increased prevalence of MRSA in bovine mastitis is highlighted by this study, which also reveals a variety of virulence factors in S. aureus and emphasizes the significance of appropriate antibiotic therapy in combating this economically burdensome disease.


Subject(s)
Anti-Bacterial Agents , Mastitis, Bovine , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Female , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Pakistan , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Virulence Factors/genetics , Microbial Sensitivity Tests , Milk/microbiology , Bacterial Proteins/genetics
7.
Mol Biol Rep ; 51(1): 686, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796602

ABSTRACT

OBJECTIVE: This research study was undertaken to investigate antimicrobial resistance patterns and the prevalence of hospital-acquired infections (HAIs). The study focuses on common microorganisms responsible for HAIs and explores emerging challenges posed by antimicrobial drug-resistant isolates. METHODS: A comprehensive analysis of 123 patients with HAIs, hospitalized in surgical department and intensive care unit (ICU) at Imam Khomeini Hospital, Ilam, Iran, was conducted over a six-month period. Pathogenic bacterial isolates, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA), were isolated and subjected to antibiotic susceptibility testing. RESULTS: The study findings revealed a significant prevalence of multidrug-resistant (MDR) isolates, of which 73.3% were MRSA. Notably, 6.7% of S. aureus isolates exhibited resistance to vancomycin, indicating the emergence of VRSA. Respiratory infections were identified as the most prevalent HAI, constituting 34.67% of cases, often arising from extended ICU stays and invasive surgical procedures. Furthermore, patients aged 60 and above, particularly those associated with MDR, exhibited higher vulnerability to HAI. CONCLUSIONS: This research sheds light on the intricate interplay between drug resistance and HAI, highlighting the imperative role of rational antibiotic use and infection control in addressing this critical healthcare challenge.


Subject(s)
Anti-Bacterial Agents , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Staphylococcal Infections , Humans , Iran/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Male , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Female , Middle Aged , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Adult , Anti-Bacterial Agents/pharmacology , Aged , Drug Resistance, Multiple, Bacterial/genetics , Intensive Care Units , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Vancomycin-Resistant Staphylococcus aureus/genetics , Adolescent , Prevalence
8.
Mol Biol Rep ; 51(1): 665, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777940

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) associated with COVID-19 has not been well documented. This cross-sectional study evaluated the association between nasal S. aureus carriage and COVID-19. METHODS AND RESULTS: Nasopharyngeal samples were collected from 391 participants presenting for COVID-19 test in Lagos, Nigeria, and S. aureus was isolated from the samples. Antimicrobial susceptibility test was done by disc diffusion method. All S. aureus isolates were screened for the presence of mecA, panton-valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST) virulence genes by polymerase chain reaction. Staphylococcal protein A (spa) typing was conducted for all the isolates. Participants with COVID-19 had double the prevalence of S. aureus (42.86%) compared to those who tested negative (20.54%). A significant association was seen between S. aureus nasal carriage and COVID-19 (p = 0.004). Antimicrobial sensitivity results showed resistance to oxacillin (100%), cefoxitin (53%), and vancomycin (98.7%). However, only 41% of the isolates harbored the mecA gene, with SCCmecV being the most common SCCmec type. There was no association between the carriage of virulence genes and COVID-19. A total of 23 Spa types were detected, with t13249 and t095 being the two most common spa types. CONCLUSION: This study examined the association between nasal S. aureus carriage and SARS-COV-2 infection. Further research is required to fully explore the implications of S. aureus co-infection with COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Staphylococcal Infections , Staphylococcus aureus , Humans , COVID-19/microbiology , COVID-19/epidemiology , COVID-19/virology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Cross-Sectional Studies , Male , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Bacterial Toxins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Comorbidity , Bacterial Proteins/genetics , Virulence/genetics , Nigeria/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Carrier State/epidemiology , Carrier State/microbiology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Leukocidins/genetics , Exotoxins/genetics , Virulence Factors/genetics , Young Adult
9.
PLoS Genet ; 20(5): e1011229, 2024 May.
Article in English | MEDLINE | ID: mdl-38696518

ABSTRACT

Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.


Subject(s)
Collaborative Cross Mice , Methicillin-Resistant Staphylococcus aureus , Phenotype , Staphylococcal Infections , Animals , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Mice , Female , Male , Collaborative Cross Mice/genetics , Host-Pathogen Interactions/genetics , Quantitative Trait Loci , Disease Models, Animal
10.
Phytomedicine ; 130: 155590, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810547

ABSTRACT

BACKGROUND: Staphylococcus aureus is a versatile pathogen that can cause a wide range of infections in humans. Biofilms play a crucial role in the pathogenicity of S. aureus and contribute to its ability to cause persistent and chronic infections. Baohuoside I has garnered increasing recognition as a natural flavonol glycoside with a wide spectrum of health-related activities. PURPOSE: The antibacterial and anti-biofilm properties of Baohuoside I have not been extensively investigated. Our study aimed to assess its inhibitory effects and the underlying mechanisms on biofilm formation and hemolytic capacity in S. aureus. STUDY DESIGN/METHODS: The impact of Baohuoside I on the biofilm and virulence of S. aureus was evaluated through in vitro experiments and Galleria mellonella as an in vivo infection model. The mechanisms were explored by Drug affinity responsive target stability (DARTS) and validated in genetic knockout strain and through molecular biological experiments using DARTS, molecular docking, electrophoretic mobility shift assay (EMSA), and bio-layer interferometry (BLI). RESULTS: Baohuoside I significantly inhibits the formation of S. aureus biofilms and hemolytic activity at 6.25 µM. Proteomics analysis revealed that treatment with Baohuoside I led to a reduction in the expression of quorum-sensing system agr-regulated genes. DARTS analysis identified Staphylococcus accessory regulator factor (SarZ), a key regulator involved in the expression of virulence factors in S. aureus by acting as activator of the agr quorum-sensing system, was the direct target of Baohuoside I. Molecular docking, DARTS, BLI and EMSA assays collectively confirmed the direct binding of Baohuoside I to SarZ, inhibiting its binding to downstream promoters. Furthermore, it is found through site-directed protein mutagenesis that the Tyr27 and Phe117 residues are key for Baohuoside I binding to SarZ. Additionally, the knockout of SarZ significantly diminished the hemolytic ability of S. aureus, underscoring its crucial role as a pivotal regulator of virulence. Lastly, in vivo tests utilizing the G. mellonella infection model demonstrated the efficacy of Baohuoside I. CONCLUSION: This study provides valuable insights into the mechanism by which Baohuoside I inhibits the virulence of S. aureus through its interaction with SarZ. These findings highlight the significance of SarZ as an effective target against the virulence of S. aureus.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Biofilms , Molecular Docking Simulation , Biofilms/drug effects , Animals , Virulence/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Moths/microbiology , Moths/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Hemolysis/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests
11.
Microbiol Spectr ; 12(6): e0295023, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38709078

ABSTRACT

We conducted a molecular epidemiological study of Staphylococcus aureus using whole-genome sequence data and clinical data of isolates from nasal swabs of patients admitted to the intensive care unit (ICU) of Hiroshima University hospital. The relationship between isolate genotypes and virulence factors, particularly for isolates that caused infectious diseases during ICU admission was compared with those that did not. The nasal carriage rates of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in patients admitted to the ICU were 7.0% and 20.1%, respectively. The carriage rate of community-acquired (CA)-MRSA was 2.3%, accounting for 32.8% of all MRSA isolates. Whole-genome sequencing analysis of the MRSA isolates indicated that most, including CA-MRSA and healthcare-associated (HA)-MRSA, belonged to clonal complex (CC) 8 [sequence type (ST) 8] and SCCmec type IV. Furthermore, results for three disease foci (pneumonia, skin and soft tissue infection, and deep abscess) and the assessment of virulence factor genes associated with disease conditions [bacteremia, acute respiratory distress syndrome (ARDS), disseminated intravascular coagulopathy (DIC), and septic shock] suggested that nasal colonization of S. aureus clones could represent a risk for patients within the ICU. Particularly, MRSA/J and MSSA/J may be more likely to cause deep abscess infection; ST764 may cause ventilation-associated pneumonia, hospital-acquired pneumonia and subsequent bacteremia, and ARDS, and tst-1-positive isolates may cause DIC onset.IMPORTANCENasal colonization of MRSA in patients admitted to the intensive care unit (ICU) may predict the development of MRSA infections. However, no bacteriological data are available to perform risk assessments for Staphylococcus aureus infection onset. In this single-center 2-year genomic surveillance study, we analyzed all S. aureus isolates from nasal swabs of patients admitted to the ICU and those from the blood or lesions of in-patients who developed infectious diseases in the ICU. Furthermore, we identified the virulent clones responsible for causing infectious diseases in the ICU. Herein, we report several virulent clones present in the nares that are predictive of invasive infections. This information may facilitate the design of preemptive strategies to identify and eradicate virulent MRSA strains, reducing nosocomial infections within the ICU.


Subject(s)
Carrier State , Intensive Care Units , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus aureus , Tertiary Care Centers , Virulence Factors , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Virulence Factors/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Carrier State/microbiology , Carrier State/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Cross Infection/microbiology , Cross Infection/epidemiology , Whole Genome Sequencing , Male , Molecular Epidemiology , Nose/microbiology , Female , Virulence/genetics , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Aged , Middle Aged , Genome, Bacterial , Genotype
12.
Genes (Basel) ; 15(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38790161

ABSTRACT

This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Swine Diseases , Animals , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Swine , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/drug therapy , Cross-Sectional Studies , Swine Diseases/microbiology , Swine Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Portugal/epidemiology , Whole Genome Sequencing , Virulence Factors/genetics , Prevalence , Drug Resistance, Multiple, Bacterial/genetics
13.
Front Cell Infect Microbiol ; 14: 1367016, 2024.
Article in English | MEDLINE | ID: mdl-38681224

ABSTRACT

Introduction: Staphylococcus aureus, is a pathogen commonly encountered in both community and hospital settings. Patients receiving hemodialysis treatment face an elevated risk of vascular access infections (VAIs) particularly Staphylococcus aureus, infection. This heightened risk is attributed to the characteristics of Staphylococcus aureus, , enabling it to adhere to suitable surfaces and form biofilms, thereby rendering it resistant to external interventions and complicating treatment efforts. Methods: Therefore this study utilized PCR and microtiter dish biofilm formation assay to determine the difference in the virulence genes and biofilm formation among in our study collected of 103 Staphylococcus aureus, isolates from hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to December 2021. Results: Our findings revealed that both MRSA and MSSA isolates exhibited strong biofilm production capabilities. Additionally, we confirmed the presence of agr types and virulence genes through PCR analysis. The majority of the collected isolates were identified as agr type I. However, agr type II isolates displayed a higher average number of virulence genes, with MRSA isolates exhibiting a variety of virulence genes. Notably, combinations of biofilm-associated genes, such as eno-clfA-clfB-fib-icaA-icaD and eno-clfA-clfB-fib-fnbB-icaA-icaD, were prevalent among Staphylococcus aureus, isolates obtained from vascular access infections. Discussion: These insights contribute to a better understanding of the molecular characteristics associated with Staphylococcus aureus, infections in hemodialysis patients and provided more targeted and effective treatment approaches.


Subject(s)
Bacterial Proteins , Biofilms , Renal Dialysis , Staphylococcal Infections , Staphylococcus aureus , Trans-Activators , Virulence Factors , Female , Humans , Male , Middle Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Catheter-Related Infections/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Renal Dialysis/adverse effects , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Virulence Factors/genetics
14.
Diagn Microbiol Infect Dis ; 109(3): 116294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678689

ABSTRACT

Cystic fibrosis (CF) is a progressive and inherited disease that affects approximately 70000 individuals all over the world annually. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene serves as its defining feature. Bacterial infections have a significant impact on the occurrence and development of CF. In this manuscript, we discuss the role and virulence factors of Staphylococcus aureus as an important human pathogen with the ability to induce respiratory tract infections. Recent studies have reported S. aureus as the first isolated bacteria in CF patients. Methicillin-resistant Staphylococcus aureus (MRSA) pathogens are approximately resistant to all ß-lactams. CF patients are colonized by MRSA expressing various virulence factors including toxins, and Staphylococcal Cassette Chromosome mec (SCCmec) types, and have the potential for biofilm formation. Therefore, variations in clinical outcomes will be manifested. SCCmec type II has been reported in CF patients more than in other SCCmec types from different countries. The small-colony variants (SCVs) as specific morphologic subtypes of S. aureus with slow growth and unusual properties can also contribute to persistent and difficult-to-treat infections in CF patients. The pathophysiology of SCVs is complicated and not fully understood. Patients with cystic fibrosis should be aware of the intrinsic risk factors for complex S. aureus infections, including recurring infections, physiological issues, or coinfection with P. aeruginosa.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Humans , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Respiratory Tract Infections/microbiology , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Interactions , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
15.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583155

ABSTRACT

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


Subject(s)
3' Untranslated Regions , Staphylococcal Infections , Staphylococcus aureus , Animals , 3' Untranslated Regions/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Moths/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Virulence/genetics
16.
Am J Respir Cell Mol Biol ; 71(1): 110-120, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574279

ABSTRACT

Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome. IL-10 plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the present study, we investigated the role of IL-10 in acute lung injury induced by influenza A virus and methicillin-resistant Staphylococcus aureus coinfection. This unique coinfection model resembles patients with acute pneumonia undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor gene-deficient mice, as well as in vivo neutralizing antibodies, we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with Il10ra deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyperproduction and acute mortality. Importantly, this antiinflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and acute respiratory distress syndrome pathogenesis by counteracting the IFN-γ response.


Subject(s)
Acute Lung Injury , Disease Models, Animal , Interferon-gamma , Interleukin-10 , Superinfection , Animals , Interleukin-10/metabolism , Interleukin-10/immunology , Acute Lung Injury/virology , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Acute Lung Injury/microbiology , Interferon-gamma/metabolism , Superinfection/immunology , Superinfection/virology , Mice , Mice, Inbred C57BL , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Coinfection/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/virology , Staphylococcal Infections/immunology , Mice, Knockout , Influenza A virus/immunology , Lung/virology , Lung/pathology , Lung/immunology , Lung/metabolism
17.
Curr Microbiol ; 80(8): 258, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37358668

ABSTRACT

Neobavaisoflavone had antimicrobial activities against Gram-positive multidrug-resistant (MDR) bacteria, but the effect of neobavaisoflavone on the virulence and biofilm formation of S. aureus has not been explored. The present study aimed to investigate the possible inhibitory effect of neobavaisoflavone on the biofilm formation and α-toxin activity of S. aureus. Neobavaisoflavone presented strong inhibitory effect on the biofilm formation and α-toxin activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains at 25 µM, but did not affect the growth of S. aureus planktonic cells. Genetic mutations were identified in four coding genes, including cell wall metabolism sensor histidine kinase walK, RNA polymerase sigma factor rpoD, tetR family transcriptional regulator, and a hypothetical protein. The mutation of WalK (K570E) protein was identified and verified in all the neobavaisoflavone-induced mutant S. aureus isolates. The ASN501, LYS504, ILE544 and GLY565 of WalK protein act as hydrogen acceptors to form four hydrogen bonds with neobavaisoflavone by molecular docking analysis, and TRY505 of WalK protein contact with neobavaisoflavone to form a pi-H bond. In conclusion, neobavaisoflavone had excellent inhibitory effect on the biofilm formation and α-toxin activity of S. aureus. The WalK protein might be a potential target of neobavaisoflavone against S. aureus.


Subject(s)
Bacterial Toxins , Biofilms , Isoflavones , Staphylococcus aureus , Isoflavones/pharmacology , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Bacterial Toxins/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mutation , Protein Structure, Tertiary , Models, Molecular , Molecular Docking Simulation
18.
Braz. j. biol ; 83: 1-7, 2023. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468894

ABSTRACT

Staphylococcus aureus is an important foodborne pathogen associated to food intoxication and other multiple infections in human being. Its presence in salted food is a serious issue due to its salt tolerance potential. A study was conducted to analyze the presence of enterotoxins producing drug resistance S. aureus in salted sea fish from Gwadar. Freshly persevered samples (n=50) of salted fish were subjected to analyze the presence of S. aureus using 16S rRNA and Nuc genes primers. The isolates were then evaluated for drug resistance and enterotoxins producing potential using specific primers for MecA (methicillin resistance gene), (SEA) staphylococcal enterotoxin A and (SEB) staphylococcal enterotoxin B genes. Total 13/50 (26%) of the samples were found positive for the presence of S. aureus, preliminary confirmed with biochemical profiling and finally with the help of target genes presence. The isolates were found showing 100% resistant to methicillin, which were molecularly confirmed by the presence of MecA gene present in genome. The isolates 5/13 (38%) were positive for SEA and 3/13 (23%) for SEB genes, whereas 2/13 (15%) were confirmed having both SEA and SEB genes in its genome. It was also confirmed that all the isolates were capable to form biofilm over the glass surfaces. It was concluded that the study confirmed the presence of enterotoxigenic methicillin resistance Staphylococcus aurous (MRSA) in salted fish product, that poses gross food safety concern. Preventive and control measures are necessary to handle this serious food safety concern.


Staphylococcus aureus é um importante patógeno de origem alimentar associado à intoxicação alimentar e outras infecções múltiplas em seres humanos. Sua presença em alimentos salgados é um problema sério devido ao seu potencial de tolerância ao sal. Um estudo foi realizado para analisar a presença de enterotoxinas produtoras de resistência a drogas S. aureus em peixes salgados do mar de Gwadar. Amostras recém-perseveradas (n = 50) de peixes salgados foram submetidas à análise da presença de S. aureus usando os primers dos genes 16S rRNA e Nuc. Os isolados foram então avaliados quanto à resistência a drogas e potencial de produção de enterotoxinas usando primers específicos para os genes MecA (gene de resistência à meticilina), (SEA) enterotoxina A estafilocócica e (SEB) enterotoxina B estafilocócica genes. Um total de 13/50 (26%) das amostras foi considerado positivas para a presença de S. aureus, confirmadas preliminarmente com perfis bioquímicos e finalmente com a ajuda da presença de genes-alvo. Os isolados foram encontrados com 100% de resistência à meticilina, os quais foram confirmados molecularmente pela presença do gene MecA no genoma. Os isolados 5/13 (38%) foram positivos para SEA e 3/13 (23%) para genes SEB, enquanto 2/13 (15%) foram confirmados tendo os genes SEA e SEB em seu genoma. Também foi verificado que todos os isolados foram capazes de formar biofilme sobre as superfícies de vidro. Concluiu-se que o estudo confirmou a presença de Staphylococcus aurous resistente à meticilina enterotoxigênica (MRSA) em produtos de peixe salgado, o que representa uma grande preocupação para a segurança alimentar. Medidas preventivas e de controle são necessárias para lidar com essa grave preocupação com a segurança alimentar.


Subject(s)
Animals , Foodborne Diseases/prevention & control , Food Safety , Fishes/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity
19.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163197

ABSTRACT

Problems connected with biofilm-related infections and antibiotic resistance necessitate the investigation and development of novel treatment strategies. Given their unique characteristics, one of the most promising alternatives to conventional antibiotics are bacteriophages. In the in vitro and in vivo larva model study, we demonstrate that phages vB_SauM-A, vB_SauM-C, and vB_SauM-D are effective antibiofilm agents. The exposure of biofilm to phages vB_SauM-A and vB_SauM-D led to 2-3 log reductions in the colony-forming unit number in most of the multidrug-resistant S. aureus strains. It was found that phage application reduced the formed biofilms independently of the used titer. Moreover, the study demonstrated that bacteriophages are more efficient in biofilm biomass removal and reduction in staphylococci count when compared to the antibiotics used. The scanning electron microscopy analysis results are in line with colony forming unit (CFU) counting but not entirely consistent with crystal violet (CV) staining. Additionally, phages vB_SauM-A, vB_SauM-C, and vB_SauM-D can significantly increase the survival rate and extend the survival time of Galleria mellonella larvae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/therapy , Staphylococcus aureus/drug effects , Bacteriolysis/drug effects , Bacteriolysis/genetics , Bacteriophages/genetics , Bacteriophages/pathogenicity , Biofilms/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple/genetics , Genome, Viral/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Phage Therapy/methods , Staphylococcal Infections/drug therapy , Staphylococcus aureus/growth & development
20.
ACS Appl Mater Interfaces ; 14(7): 8718-8727, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138100

ABSTRACT

Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by a modified Stöber sol-gel process with vapor-phase water and ammonia. A coating on glass with 2.4 mg of Ag2O per mm2 caused a reduction of 99.3% of SARS-CoV-2 and >99.5% of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared to the uncoated glass after 1 h. We envisage that screen protectors with transparent antimicrobial coatings will find particular application to communal touch-screens, such as in supermarkets and other check-out or check-in facilities where a number of individuals utilize the same touch-screen in a short interval.


Subject(s)
Anti-Infective Agents/chemistry , Bacterial Infections/prevention & control , COVID-19/prevention & control , Oxides/chemistry , Silver Compounds/chemistry , Ammonia/chemistry , Anti-Infective Agents/pharmacology , Bacterial Infections/microbiology , COVID-19/virology , Glass/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Oxides/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Silicates/chemistry , Silver Compounds/pharmacology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL