Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.988
Filter
1.
Mikrochim Acta ; 191(9): 533, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39134753

ABSTRACT

A novel functional nucleic acid (FNA) nanomaterial based on hybrid chain reaction (HCR) nanoscaffolds is proposed to solve the problem of time superposition and repeated primer design in sensitive miRND detection using cascade amplification technique. Rolling circle amplification (RCA) was cascaded with the prepared FNA nanomaterials for miRNA let-7a (as a model target) sensitive detection by lateral flow assay (LFA). Under the optimal conditions, the proposed RCA-FNA-LFA assay demonstrated the specificity and accuracy for miRNA let-7a detection with a detection limit of 1.07 pM, which increased sensitivity by nearly 20 times compared with that of RCA -LFA assay. It is worth noting that the non-target-dependent self-assembly process of HCR nanoscaffolds does not take up the whole detection time, thus, less time is taken than that of the conventional cascaded method. Moreover, the proposed assay does not need to consider the system compatibility between two kinds of isothermal amplification techniques. As for detection of different miRNAs, only the homologous arm of the padlock probe of RCA needs to be changed, while the FNA nanomaterial does not need any change, which greatly simplifies the primer design of the cascaded amplification techniques. With further development, the proposed RCA-FNA-LFA assay might achieve more sensitive and faster results to better satisfy the requirements of clinical diagnosis combing with more sensitive labels or small strip reader.


Subject(s)
Limit of Detection , MicroRNAs , Nanostructures , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , MicroRNAs/analysis , Humans , Nanostructures/chemistry , Biosensing Techniques/methods
2.
Anal Chim Acta ; 1320: 342968, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142796

ABSTRACT

BACKGROUND: Cancer is known as one of the main non-communicable diseases and the leading cause of death in the new era. Early diagnosis of cancer requires the identification of special biomarkers. Currently, microRNAs (miRNAs) have attracted the attention of researchers as useful biomarkers for cancer early detection. Hence, various methods have been recently developed for detecting and monitoring miRNAs. Among all miRNAs, detection of miRNA-21 (miR-21) is important because it is abnormally overexpressed in most cancers. Here, a new biosensor based on silver nanoclusters (AgNCs) is introduced for detecting miR-21. RESULTS: As a fluorescent probe, a rationally designed hairpin sequence containing a poly-cytosine motif was used to facilitate the formation of AgNCs. A guanine-rich sequence was also employed to enhance the sensing signal. It was found that in the absence of miR-21, adding a guanine-rich sequence to the detecting probe caused only a slight change in the fluorescence emission intensity of AgNCs. While in the presence of miR-21, the emission signal enhanced. A direct correlation was observed between the increase in the fluorescence of AgNCs and the concentration of miR-21. The performance of the proposed biosensor was characterized thoroughly and confirmed. The biosensor detected miR-21 in an applicable linear range from 9 pM to 1.55 nM (LOD: 2 pM). SIGNIFICANCE: The designed biosensor was successfully applied for detecting miR-21 in human plasma samples and also in human normal and lung and ovarian cancer cells. This biosensing strategy can be used as a model for detecting other miRNAs. The designed nanobiosensor can measure miR-21 without using any enzymes, with fewer experimental steps, and at a low cost compared to the reported biosensors in this field.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Ovarian Neoplasms , Silver , Humans , Silver/chemistry , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Ovarian Neoplasms/diagnosis , Metal Nanoparticles/chemistry , Female , Fluorescent Dyes/chemistry , DNA/chemistry , Spectrometry, Fluorescence , Limit of Detection , Cell Line, Tumor
3.
Mikrochim Acta ; 191(8): 501, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39093424

ABSTRACT

As the role of exosomes in physiological and pathological processes has been properly perceived, harvesting them and their internal components is critical for subsequent applications. This study is a debut of intermittent lysis, which has been integrated into a simple and easy-to-operate procedure on a single paper-based device to extract exosomal nucleic acid biomarkers for downstream analysis. Exosomes from biological samples were captured by anti-CD63-modified papers before being intermittently lysed by high-temperature, short-time treatment with double-distilled water to release their internal components. Exosomal nucleic acids were finally adsorbed by sol-gel silica for downstream analysis. Empirical trials not only revealed that sporadically dropping 95 °C ddH2O onto the anti-CD63-modified papers every 5 min for 6 times optimized the exosomal nucleic acids extracted by the anti-CD63 paper but also verified that the whole deployed procedure is applicable for point-of-care testing (POCT) in low-resource areas and for both in vitro (culture media) and in vivo (plasma and chronic lesion) samples. Importantly, downstream analysis of exosomal miR-21 extracted by the paper-based procedure integrated with this novel technique discovered that the content of exosomal miR-21 in chronic lesions related to their stages and the levels of exosomal carcinoembryonic antigen originated from colorectal cancer cells correlated to their exosomal miR-21.


Subject(s)
Exosomes , MicroRNAs , Paper , Tetraspanin 30 , Exosomes/chemistry , Humans , Tetraspanin 30/metabolism , MicroRNAs/analysis , MicroRNAs/blood , Biomarkers, Tumor/blood , Point-of-Care Testing
4.
Mikrochim Acta ; 191(8): 502, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39093358

ABSTRACT

An electrochemical sensor assisted by primer exchange reaction (PER) and CRISPR/Cas9 system (PER-CRISPR/Cas9-E) was established for the sensitive detection of dual microRNAs (miRNAs). Two PER hairpin (HP) were designed to produce a lot of extended PER products, which could hybridize with two kinds of hairpin probes modified on the electrode and initiate the cleavage of two CRISPR/Cas9 systems guided by single guide RNAs (sgRNAs) with different recognition sequences. The decrease of the two electrochemical redox signals indicated the presence of dual-target miRNAs. With the robustness and high specificity of PER amplification and CRISPR/Cas9 cleavage system, simultaneous detection of two targets was achieved and the detection limits for miRNA-21 and miRNA-155 were 0.43 fM and 0.12 fM, respectively. The developed biosensor has the advantages of low cost, easy operation, and in-situ detection, providing a promising platform for point-of-care detection of multiple miRNAs.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Limit of Detection , MicroRNAs , MicroRNAs/analysis , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Electrochemical Techniques/methods , Biosensing Techniques/methods , Humans , RNA, Guide, CRISPR-Cas Systems/genetics
5.
Biosens Bioelectron ; 263: 116619, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094291

ABSTRACT

Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.


Subject(s)
Biosensing Techniques , DNA , Gold , Metal Nanoparticles , MicroRNAs , Spectrum Analysis, Raman , Humans , Biosensing Techniques/methods , MicroRNAs/analysis , Gold/chemistry , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , DNA/chemistry , Neoplasms , Cell Line, Tumor , Limit of Detection , Nucleic Acid Hybridization , Nanostructures/chemistry
6.
Anal Chim Acta ; 1319: 342962, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39122275

ABSTRACT

MicroRNAs (miRNAs) are crucial regulators in various pathological and physiological processes, and their misregulation is a hallmark of many diseases. In this study, we introduce an advanced DNA nanomachine using split-type molecular beacons (STMBs) for sensitive detection of miR-21, a key biomarker in cancer diagnostics. Utilizing an innovative STMB-mediated cascade strand displacement amplification (STMB-CSDA) technique, our approach offers a powerful means for the precise quantification of miRNAs, using miR-21 as a primary example. The system operates through target-induced linkage of STMBs, initiating a series of strand displacement amplifications resulting in exponential signal amplification. Coupled with the precision of T4 DNA ligase, this mechanism translates minimal miRNA presence into significant fluorescence signals, offering detection sensitivity as low as 5.96 pM and a dynamic range spanning five orders of magnitude. Characterized by its high specificity, which includes the ability to identify single-base mismatches, along with its user-friendly design, our method represents a significant leap forward in miRNA analysis and molecular diagnostics. Its successful application in examining total RNA from cancer cells and clinical serum samples demonstrates its immense potential as a groundbreaking tool for early cancer detection and gene expression studies, paving the way for the next generation of non-invasive diagnostics in personalized healthcare.


Subject(s)
MicroRNAs , Neoplasms , Nucleic Acid Amplification Techniques , Humans , MicroRNAs/analysis , MicroRNAs/blood , Neoplasms/diagnosis , Neoplasms/genetics , DNA/chemistry , DNA/genetics , Limit of Detection , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics
7.
Anal Methods ; 16(29): 5032-5037, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38980034

ABSTRACT

In this work, a sensitive ratiometric electrochemical biosensor for microRNA-155 (miRNA-155) detection is reported based on a hybridization chain reaction amplifying the electrochemical signal. The biosensor was fabricated using Au NPs as a modified material to assemble capture DNA labeled with ferrocene (Fc) molecules, and a DNA probe labeled with methylene blue (MB) was employed for the signal probe. In the presence of target miRNA-155, it can be dual hybridized with capture and signal probe, especially with signal probe to continuously produce long concatemers containing lots of MB molecules. The electrochemical signal of Fc was used for the internal signal, and the signal from MB was used as an indicator signal. As the concentration of miRNA-155 was altered, the internal reference signal of Fc remained constant, and only the indicator signal changed in a sensitive way. The change in the ratio (IMB/IFc) between the indicator signal of MB and internal reference signal of Fc can be used to monitor the concentration of miRNA-155. Under optimal conditions, the prepared ratiometric biosensor could detect miRNA-155 within a wide linear range from 100 fM to 100 nM with low detection limit of 33 fM (at S/N = 3). Moreover, the biosensor was evaluated with human serum samples, and satisfactory recoveries were obtained, indicating that the ratiometric biosensor can be applied to clinical sample analysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , MicroRNAs , Nucleic Acid Hybridization , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Humans , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Methylene Blue/chemistry
8.
Chem Commun (Camb) ; 60(58): 7491-7494, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946429

ABSTRACT

By employing an aptamer as the bridge and combining catalytic hairpin assembly with the Au aggregation amplification effect, a lateral flow assay (LFA) is designed for simultaneous detection of liver cancer-associated miRNA and exosomes. The LFA can differentiate between liver cancer patients and healthy individuals with simple operation and high accuracy.


Subject(s)
Aptamers, Nucleotide , Exosomes , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/analysis , MicroRNAs/metabolism , Exosomes/chemistry , Exosomes/metabolism , Aptamers, Nucleotide/chemistry , Gold/chemistry , Biosensing Techniques
9.
Analyst ; 149(15): 3891-3899, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38994789

ABSTRACT

Over the past two decades, numerous techniques have been developed for analysing microRNAs in body fluids and tissues. However, these techniques still face technical challenges, particularly when compared to well-established techniques for proteins and metabolites. Recently, the ODG platform was introduced, which is an innovative technology that allows for the direct detection and quantification of microRNAs in liquid biopsies without requiring extraction or amplification. This study presents the implementation of the ODG platform within a semi-automated protocol to create the "SA-ODG" platform, enhancing the efficiency and precision of microRNA testing while reducing hands-on time required by laboratory staff. For the first time, the SA-ODG platform has been used to directly quantify microRNAs in solid tissues. The results demonstrate precise analysis of miR-122-5p in mouse liver tissues using SA-ODG. These developments represent a crucial step forward in advancing the field of extraction and amplification-free microRNA detection and quantification.


Subject(s)
Liver , MicroRNAs , MicroRNAs/analysis , MicroRNAs/genetics , Animals , Mice , Liver/chemistry , Liver/metabolism , Automation
10.
J Sep Sci ; 47(14): e2400166, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034496

ABSTRACT

To determine multiple microRNAs (miRNAs) from cells simultaneously is essential for understanding biological functions. Capillary electrophoresis (CE) can simultaneously determine multiple miRNAs by separation. Nevertheless, similar lengths and low concentrations in cells make miRNAs hard to separate and detect. In this study, CE with laser-induced fluorescence detection was combined with catalytic hairpin assembly (CHA) to determine three miRNAs, miR-21, miR-31, and miR-122. The amplification products of CHA, which were DNA duplexes, were designed to have different lengths for different miRNAs. This allowed for easy separation of the duplexes of different miRNAs by CE. The indirect determination of miRNAs was then achieved by separating and detecting these duplexes. A magnetic field was first applied on the capillary sieving electrophoresis to assist in the separation of the duplexes. Under the optimal conditions, the three duplexes could be completely separated within 2.5 min with the detection limits of miRNAs in the range 1.12-4.05 × 10-15 M. MiR-21 and miR-31 were successfully determined from Hela cells, while miR-122 was determined from chicken livers by this method. The recoveries ranged from 97.5% to 118%. The developed method was sensitive and reliable for miRNA determination.


Subject(s)
Electrophoresis, Capillary , MicroRNAs , MicroRNAs/analysis , Humans , HeLa Cells , Animals , Catalysis , Magnetic Fields , Chickens , Liver/chemistry , Limit of Detection
11.
Biosens Bioelectron ; 262: 116551, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38971039

ABSTRACT

Controllable assembly of DNA nanostructure provides a powerful way for quantitative analysis of various targets including nucleic acid molecules. In this study, we have designed detachable DNA nanostructures at electrochemical sensing interface and constructed a ligation chain reaction (LCR) strategy for amplified detection of miRNA. A three-dimensional DNA triangular prism nanostructure is fabricated to provide suitable molecule recognition environment, which can be further regenerated for additional tests via convenient pH adjustment. Target triggered LCR is highly efficient and specific towards target miRNA. Under optimal experimental conditions, this approach enables ultrasensitive exploration in a wide linear range with a single-base resolution. Moreover, it shows excellent performances for the analysis of cell samples and clinical serum samples.


Subject(s)
Biosensing Techniques , DNA , MicroRNAs , Nanostructures , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Humans , DNA/chemistry , Nanostructures/chemistry , Electrochemical Techniques/methods , Ligase Chain Reaction/methods , Limit of Detection
12.
ACS Appl Mater Interfaces ; 16(28): 36194-36203, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952261

ABSTRACT

The occurrence of cancer is often closely related to multiple tumor markers, so it is important to develop multitarget detection methods. By the proper design of the input signals and logical operations of DNA logic gates, detection and diagnosis of cancer at different stages can be achieved. For example, in the early stages, specific input signals can be designed to correspond to early specific tumor markers, thereby achieving early cancer detection. In the late stage, logic gates for multitarget detection can be designed to simultaneously detect multiple biomarkers to improve diagnostic accuracy and comprehensiveness. In this work, we constructed a dual-target-triggered DNA logic gate for anchoring DNA tetrahedra, where methylene blue was embedded in the DNA tetrahedra to sensitize ZnO@CdS@Au, achieving ultrasensitive detection of the target substance. We tested the response of AND and OR logic gates to the platform. For AND logic gates, the sensing platform only responds when both miRNAs are present. In the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. Subsequently, we used OR logic gates for miRNA detection. Even if only one target exists, the sensing platform exhibits excellent performance. Similarly, within the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. The minimum detection limit is 1.10 aM. Whether it is the need to detect multiple targets simultaneously or only one of them, we can achieve it by selecting the appropriate logic gate. This strategy holds promising application prospects in fields such as biosensing, medical diagnosis, and environmental monitoring.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Electrochemical Techniques , Gold , Methylene Blue , MicroRNAs , Nanotubes , Sulfides , Zinc Oxide , Methylene Blue/chemistry , Zinc Oxide/chemistry , Biosensing Techniques/methods , Gold/chemistry , Nanotubes/chemistry , Cadmium Compounds/chemistry , Electrochemical Techniques/methods , MicroRNAs/analysis , Sulfides/chemistry , Humans , Limit of Detection , Logic
13.
Anal Chim Acta ; 1316: 342843, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969407

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important non-coding RNA entities that affect gene expression and function by binding to target mRNAs, leading to degradation of the mRNAs or inhibiting their translation. MiRNAs are widely involved in a variety of biological processes, such as cell differentiation, development, metabolism, and apoptosis. In addition, miRNAs are associated with many diseases, including cancer. However, conventional detection techniques often suffer from shortcomings such as low sensitivity, so we need to develop a rapid and efficient detection strategy for accurate detection of miRNAs. RESULTS: We have developed an innovative homogeneous electrochemiluminescence (ECL) biosensor. This biosensor employs CRISPR/Cas12a gene editing technology for accurate and efficient detection of microRNA (miRNA). Compared to conventional technologies, this biosensor employs a unique homogeneous detection format that eliminates laborious probe fixation steps and greatly simplifies the detection process. By using two amplification techniques - isothermal amplification and T7 RNA polymerase amplification - the biosensor improves the sensitivity and specificity of the assay, providing excellent detection performance in the assay. This makes it possible to evaluate miRNA directly from a variety of biological samples such as cell lysates and diluted human serum. Experimental results convincingly demonstrate the extraordinary performance of this biosensor, including its extremely low detection limit of 1.27 aM, high sensitivity, reproducibility and stability. SIGNIFICANCE: The application of our constructed sensor in distinguishing between cancerous and non-cancerous cell lines highlights its potential for early cancer detection and monitoring. This innovative approach represents a major advancement in the field of miRNA detection, providing a user-friendly, cost-effective, and sensitive solution with broad implications for clinical diagnosis and patient care, especially in point-of-care settings.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Luminescent Measurements , MicroRNAs , Humans , Biosensing Techniques/methods , MicroRNAs/analysis , MicroRNAs/blood , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Electrochemical Techniques/methods , Limit of Detection , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
14.
J Colloid Interface Sci ; 674: 745-752, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955006

ABSTRACT

The exploration of novel electrochemiluminescence (ECL) luminophores with excellent ECL properties is a current research hotspot in the ECL field. Herein, a novel high-efficiency Ru-complex-free ECL emitter PyTS-Zr-BTB-MOL has been prepared by using porous ultrathin Zr-BTB metal-organic layer (MOL) as carrier to coordinatively graft the cheap and easily available polycyclic aromatic hydrocarbon (PAH) derivative luminophore PyTS whose ECL performance has never been investigated. Gratifyingly, the ECL intensity and efficiency of PyTS-Zr-BTB-MOL were markedly enhanced compared to both PyTS monomers and PyTS aggregates. The main reason was that the distance between pyrene rings was greatly expanded after the PyTS grafting on the Zr6 clusters of Zr-BTB-MOL, which overcame the aggregation-caused quenching (ACQ) effect of PyTS and thus enhanced the ECL emission. Meanwhile, the porous nanosheet structure of PyTS-Zr-BTB-MOL could distinctly increase the exposure of PyTS luminophores and shorten the diffusion paths of coreactants and electrons/ions, which effectively promoted the electrochemical excitation of more PyTS luminophores and thus achieved a further ECL enhancement. In light of the remarkable ECL property of PyTS-Zr-BTB-MOL, it was employed as an ECL indicator to build a novel high-sensitivity ECL biosensor for microRNA-21 determination, possessing a satisfactory response range (100 aM to 100 pM) and an ultralow detection limit (10.4 aM). Overall, this work demonstrated that using MOLs to coordinatively graft the PAH derivative luminophores to eliminate the ACQ effect and increase the utilization rate of the luminophores is a promising and efficient strategy to develop high-performance Ru-complex-free ECL materials for assembling ultrasensitive ECL biosensing platforms.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , MicroRNAs , Pyrenes , Zirconium , MicroRNAs/analysis , Electrochemical Techniques/methods , Luminescent Measurements/methods , Zirconium/chemistry , Pyrenes/chemistry , Humans , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Limit of Detection , Particle Size , Surface Properties , Luminescent Agents/chemistry , Porosity
15.
J Colloid Interface Sci ; 674: 841-851, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955015

ABSTRACT

Due to the complexity of regulatory networks of disease-related biomarkers, developing simple, sensitive, and accurate methods has remained challenging for precise diagnosis. Herein, an "AND" logic gates DNA molecular machine (LGDM) was constructed, which was powered by the catalytic hairpin assembly (CHA). It was coupled with dual-emission CdTe quantum dots (QDs)-based cation exchange reaction (CER) for label-free, sensitive, and ratiometric fluorescence detection of APE1 and miRNA biomarkers. Benefiting from synergistic signal amplification strategies and a ratiometric fluorometric output mode, this LGDM enables accurate logic computing with robust and significant output signals from weak inputs. It offers improved sensitivity and selectivity even in cell extracts. Using dual-emission spectra CdTe QDs, with a ratiometric signal output mode, ensured good stability and effectively prevented false-positive signals from intrinsic biological interferences compared to the approach relying on a single signal output mode, which enabled the LGDM to achieve rapid, efficient, and accurate natural drug screening against APE1 inhibitors in vitro and cells. The developed method provides impetus to streamline research related to miRNA and APE1, offering significant promise for widespread application in drug development and clinical analysis.


Subject(s)
Cadmium Compounds , DNA-(Apurinic or Apyrimidinic Site) Lyase , MicroRNAs , Quantum Dots , Tellurium , Humans , MicroRNAs/analysis , MicroRNAs/antagonists & inhibitors , Tellurium/chemistry , Quantum Dots/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Cadmium Compounds/chemistry , Spectrometry, Fluorescence , DNA/chemistry , Fluorescence , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Fluorescent Dyes/chemistry , Drug Evaluation, Preclinical , Computers, Molecular
16.
Anal Chem ; 96(31): 12916-12926, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39038243

ABSTRACT

Multimodal measurement of single cells provides deep insights into the intricate relationships between individual molecular layers and the regulatory mechanisms underlying intercellular variations. Here, we reported DMF-DM-seq, a highly integrated, sensitive, and automated platform for single-cell mRNA and microRNA (miRNA) co-sequencing based on digital microfluidics. This platform first integrates the processes of single-cell isolation, lysis, component separation, and simultaneous sequencing library preparation of mRNA and miRNA within a single DMF device. Compared with the current half-cell measuring strategy, DMF-DM-seq enables complete separation of single-cell mRNA and miRNA via a magnetic field application, resulting in a higher miRNA detection ability. DMF-DM-seq revealed differential expression patterns of single cells of noncancerous breast cells and noninvasive and aggressive breast cancer cells at both mRNA and miRNA levels. The results demonstrated the anticorrelated relationship between miRNA and their mRNA targets. Further, we unravel the tumor growth and metastasis-associated biological processes enriched by miRNA-targeted genes, along with important miRNA-interaction networks involved in significant signaling pathways. We also deconstruct the miRNA regulatory mechanisms underlying different signaling pathways across different breast cell types. In summary, DMF-DM-seq offers a powerful tool for a comprehensive study of the expression heterogeneity of single-cell mRNA and miRNA, which will be widely applied in basic and clinical research.


Subject(s)
MicroRNAs , RNA, Messenger , Single-Cell Analysis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/analysis , RNA, Messenger/genetics , Automation , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Sequence Analysis, RNA , Cell Line, Tumor , Microfluidics/methods
17.
Anal Chem ; 96(31): 12854-12861, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39042763

ABSTRACT

Sensitive and reliable microRNA imaging in living cells has significant implications for clinical diagnosis and monitoring. Catalytic DNA circuits have emerged as potent tools for tracking these intracellular biomarkers and probing the corresponding biochemical processes. However, their utility is hindered by the low resistance to external interference, leading to undesired off-site activation and consequent signal leakage. Therefore, achieving the endogenous control of the DNA circuit's activation is preferable to the reliable target analysis in living cells. In this study, we attempted to address this challenge by engineering a simple yet effective endogenous glutathione (GSH)-regulated hybridization chain reaction (HCR) circuit for acquiring high-contrast miRNA imaging. Initially, the HCR hairpin reactants were blocked by the engineered disulfide-integrated DNA duplex, thus effectively passivating their sensing function. And the precaged HCR hairpin was liberated by the cell-specific GSH molecule, thus initiating the HCR system for selectively amplified detection of microRNA-21 (miR-21). This approach prevented unwanted signal leakage before exposure into target cells, thus ensuring robust miR-21 imaging with high accuracy and reliability in specific tumor cells. Moreover, the endogenously responsive HCR circuit established a link between the small regulatory factors and miRNA, thereby enhancing the signal gain. In summary, the endogenously activatable DNA circuit represents a versatile toolbox for robust bioanalysis and exploration of potential signaling pathways in living cells.


Subject(s)
Glutathione , MicroRNAs , MicroRNAs/analysis , MicroRNAs/metabolism , Glutathione/metabolism , Glutathione/analysis , Humans , Nucleic Acid Hybridization
18.
Anal Chem ; 96(31): 12838-12845, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39052979

ABSTRACT

MicroRNA (miRNA) detection is a critical aspect of disease diagnosis, and recent studies indicate that miRNA-622 could be a potential target for lung cancer. Herein, Cu single atoms were anchored on graphitic carbon nitride (Cu SAs@CN) as a coreaction accelerator applied in luminol-H2O2 system, thereby establishing an efficient and sensitive electrochemiluminescence (ECL) biosensor for miRNA-622 detection. Cu SAs@CN was explored to possess excellent enzyme-like activities that promote the generation of abundant reactive oxygen species, which amplified ECL emission. Meanwhile, in order to improve the accuracy and sensitivity for miRNA-622 detection, the highly specific trans-cleavage ability of CRISPR/Cas12a was combined with a catalytic hairpin assembly strategy. Therefore, an ECL biosensor for miRNA-622 detection was systematically constructed as a proof of concept, achieving an ultralow limit of detection of 1.09 fM, and the feasibility was demonstrated in human serum samples. The findings of this research provide a promising strategy to enhance the ECL response using versatile single-atom catalysts, thus advancing the development of ECL biosensing applications.


Subject(s)
Biosensing Techniques , Copper , Electrochemical Techniques , Graphite , Luminescent Measurements , Luminol , MicroRNAs , Biosensing Techniques/methods , Humans , MicroRNAs/analysis , MicroRNAs/blood , Copper/chemistry , Graphite/chemistry , Luminol/chemistry , Limit of Detection , Hydrogen Peroxide/chemistry , Nitrogen Compounds/chemistry , Catalysis , CRISPR-Associated Proteins , CRISPR-Cas Systems , Bacterial Proteins , Endodeoxyribonucleases
19.
Talanta ; 278: 126501, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38963978

ABSTRACT

In recent years, the development of spatial transcriptomic technologies has enabled us to gain an in-depth understanding of the spatial heterogeneity of gene expression in biological tissues. However, a simple and efficient tool is required to analyze multiple spatial targets, such as mRNAs, miRNAs, or genetic mutations, at high resolution in formalin-fixed paraffin-embedded (FFPE) tissue sections. In this study, we developed hydrogel pathological sectioning coupled with the previously reported Sampling Junior instrument (HPSJ) to assess the spatial heterogeneity of multiple targets in FFPE sections at a scale of 180 µm. The HPSJ platform was used to demonstrate the spatial heterogeneity of 9 ferroptosis-related genes (TFRC, NCOA4, FTH1, ACSL4, LPCAT3, ALOX12, SLC7A11, GLS2, and GPX4) and 2 miRNAs (miR-185-5p and miR522) in FFPE tissue samples from patients with triple-negative breast cancer (TNBC). The results validated the significant heterogeneity of ferroptosis-related mRNAs and miRNAs. In addition, HPSJ confirmed the spatial heterogeneity of the L858R mutation in 7 operation-sourced and 4 needle-biopsy-sourced FFPE samples from patients with lung adenocarcinoma (LUAD). The successful detection of clinical FFPE samples indicates that HPSJ is a precise, high-throughput, cost-effective, and universal platform for analyzing spatial heterogeneity, which is beneficial for elucidating the mechanisms underlying drug resistance and guiding the prescription of mutant-targeted drugs in patients with tumors.


Subject(s)
Formaldehyde , MicroRNAs , Paraffin Embedding , Humans , Formaldehyde/chemistry , MicroRNAs/genetics , MicroRNAs/analysis , Tissue Fixation/methods , Microdissection/methods , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , RNA, Messenger/genetics , Female , Ferroptosis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology
20.
Talanta ; 278: 126481, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38968655

ABSTRACT

Quantitative microRNA (miRNA) detection is crucial for early breast cancer diagnosis and prognosis. However, quick and stable fluorescence sensing for miRNA identification is still challenging. This work developed a novel label-free detection method based on AuNPs etching for quantitatively detecting miRNA-155. A layer of AuNPs was grown on the surface of mesoporous silica nanoparticles (MSN) loaded with Rhodamine 6G (R6G) using seed-mediated growth, followed by probe attachment. In the presence of miRNA-155, the MSN@R6G@AuNP surface loses the protection of the attached probe, rendering AuNPs susceptible to etching by hydrochloric acid. This results in a significant fluorescent signal being released in the free space. The encapsulation with AuNPs effectively reduces signal leakage, while the rapid etching process shortens detection time. This strategy enables sensitive and fast detection with a detection range of 100 fM to 100 nM, a detection limit of 2.18 fM, and a detection time of 30 min. The recovery rate in normal human serum ranges from 99.02 % to 106.34 %. This work presents a simple biosensing strategy with significant potential for application in tumor diagnosis.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , MicroRNAs , Silicon Dioxide , Gold/chemistry , MicroRNAs/analysis , MicroRNAs/blood , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Humans , Silicon Dioxide/chemistry , Rhodamines/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL