Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 263
1.
Planta ; 260(1): 10, 2024 May 26.
Article En | MEDLINE | ID: mdl-38796805

MAIN CONCLUSION: Brown-top millet is a lesser-known millet with a high grain nutrient value, early maturation, and drought tolerance that needs basic research to understand and conserve food security. Brown-top millet [Urochloa ramosa (L.)] is currently cultivated in some developing countries (especially in India) for food and fodder, although it is less known among the small millets. Like other millets, it contains macro- and micronutrients, vitamins, minerals, proteins, and fiber, all of which have rich health benefits. The nutritional importance and health benefits of brown-top millet are still unknown to many people due to a lack of awareness, wide cultivation, and research. Hence, this millet is currently overshadowed by other major cereals. This review article aims to present the nutritional, breeding, genetic, and genomic resources of brown-top millet to inform millet and other plant researchers. It is important to note that genetic and genomic resources have not yet been created for this millet. To date, there are no genomic and transcriptomic resources for brown-top millet to develop single nucleotide polymorphisms (SNP) and insertion/Deletions (InDels) for breeding studies. Furthermore, studies regarding nutritional significance and health benefits are required to investigate the exact nutritional contents and health benefits of the brown-top millet. The present review delves into the nutritional value and health advantages of brown-top millet, as supported by the available literature. The limitations of producing brown-top millet have been enumerated. We also cover the status of marker-assisted breeding and functional genomics research on closely related species. Lastly, we draw insights for further research such as developing omics resources and applying genome editing to study and improve brown-top millet. This review will help to start breeding and other molecular studies to increase the growth and development of this cereal.


Millets , Plant Breeding , Millets/genetics , Plant Breeding/methods , Genomics , Crops, Agricultural/genetics , Nutritive Value , Genome, Plant/genetics , Edible Grain/genetics
2.
Planta ; 259(6): 140, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691193

Kodo millet (Paspalum scrobiculatum L.) is an underutilized crop that encompasses nutritional benefits and climate resilience, making it a viable option for future crop development with nutraceutical properties. The cultivation of this crop has ancient roots, where it was revered for its ability to thrive in times of famine and was a vital companion crop to rice. Dishes made with Kodo millet are highly palatable and can be easily integrated into mainstream rice-based dishes. Among all cereals, Kodo millet is distinguished by its gluten-free composition, high phosphorus content, and significant antioxidant potential, which contributes to a diet that may reduce cardiovascular disease risk. Often grown in rainfed zones by marginal farmers, Kodo millet is valued for its grain and fodder. This less demanding crop can tolerate both biotic and abiotic stress, allowing it to thrive in soils with low organic matter and with minimal inputs, making it an ideal dual-purpose crop for rainfed areas. Despite its nutritional and agricultural benefits, Kodo millet's popularity is hindered by challenges such as low yield, market demand, lodging at harvest, and poor dehulling recovery, which necessitate the development of high-yielding varieties through the latest breeding advancements. Systematic investment and concerted breeding efforts are essential to harness the full potential of this nutrient-dense crop. The absence of whole genome sequence for Kodo millet poses a barrier to uncovering novel genetic traits. Consequently, there is an imperative to establish a millet-based value chain that elevates these underutilized crops, shaping smart cropping patterns and enhancing nutritional profiles for sustainable diets. Accordingly, this review highlights the significance of Kodo millet and the impact of breeding to establish it as a smart food choice for the future.


Edible Grain , Nutritive Value , Edible Grain/genetics , Millets/genetics , Plant Breeding , Crops, Agricultural/genetics
3.
Physiol Plant ; 176(3): e14349, 2024.
Article En | MEDLINE | ID: mdl-38783512

Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.


Genomics , Millets , Phenomics , Genomics/methods , Millets/genetics , Phenotype , Genome, Plant/genetics , Plant Breeding/methods , Crops, Agricultural/genetics
4.
BMC Microbiol ; 24(1): 163, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745280

Spontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised. The LAB isolates were further characterised by 16S rRNA Sanger sequencing, typed using (GTG)5 repetitive-PCR, and whole genome sequencing, while 28S rRNA Sanger sequencing was performed for yeast identification. The pH of the millet grains ranged from mean values of 6.02-6.53 to 3.51-3.99 in the final product, depending on the processors. The mean LAB and yeast counts increased during fermentation then fell to final counts of log 2.77-3.95 CFU/g for LAB and log 2.10-2.98 CFU/g for yeast in Hausa koko samples. At the various processing stages, the counts of LAB and yeast revealed significant variations (p < 0.0001). The species of LAB identified in this study were Limosilactobacillus pontis, Pediococcus acidilactici, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pediococcus pentosaceus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Schleiferilactobacillus harbinensis, and Weissella confusa. The yeasts were Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces cerevisiae, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis. The identification and sequencing of these novel isolates and how they change during the fermentation process will pave the way for future controlled fermentation, safer starter cultures, and identifying optimal stages for starter culture addition or nutritional interventions. These LAB and yeast species are linked to many indigenous African fermented foods, potentially acting as probiotics in some cases. This result serves as the basis for further studies into the technological and probiotic potential of these Hausa koko microorganisms.


Fermentation , Fermented Foods , Food Microbiology , Millets , Yeasts , Ghana , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Yeasts/metabolism , Fermented Foods/microbiology , Millets/microbiology , Lactobacillales/classification , Lactobacillales/isolation & purification , Lactobacillales/genetics , Lactobacillales/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny , Hydrogen-Ion Concentration , Edible Grain/microbiology
5.
Planta ; 259(5): 118, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592589

Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.


Millets , Transcription Factors , Transcription Factors/genetics , Plant Breeding , Crops, Agricultural/genetics , Droughts , Edible Grain
6.
Sci Rep ; 14(1): 9758, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684820

Our investigation revealed that alterations in sulphur (S) pools are predominantly governed by soil organic carbon (SOC), soil nitrogen (N), microbial biomass, and soil enzyme activities in sandy clay loam (Vertic Ustropept) soil. We employed ten sets of nutrient management techniques, ranging from suboptimal (50% RDF) to super-optimal doses (150% RDF), including NPK + Zn, NP, N alone, S-free NPK fertilizers, NPK + FYM, and control treatments, to examine the interrelation of S with SOC characteristics. Fourier-transform infrared (FT-IR) spectroscopy was utilized to analyze the functional groups present in SOC characterization across four treatments: 100% NPK, 150% NPK, NPK + FYM, and absolute control plots. Principal component analysis (PCA) was then applied to assess 29 minimal datasets, aiming to pinpoint specific soil characteristics influencing S transformation. In an Inceptisol, the application of fertilizers (100% RDF) in conjunction with 10 t ha-1 of FYM resulted in an increase of S pools from the surface to the subsurface stratum (OS > HSS > SO42--S > WSS), along with an increase in soil N and SOC. FT-IR spectroscopy identified cellulose and thiocyanate functional groups in all four plots, with a pronounced presence of carbohydrate-protein polyphenol, sulfoxide (S=O), and nitrate groups specifically observed in the INM plot. The PCA findings indicated that the primary factors influencing soil quality and crop productivity (r2 of 0.69) are SOC, SMBC, SMBN, SMBS, and the enzyme activity of URE, DHA, and AS. According to the study, the combined application of fertilizer and FYM (10 t ha-1) together exert a positive impact on sulphur transformation, SOC accumulation, and maize yield in sandy clay loam soil.


Carbon , Fertilizers , Nitrogen , Soil , Sulfur , Zea mays , Fertilizers/analysis , Sulfur/metabolism , Sulfur/analysis , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Zea mays/metabolism , Zea mays/growth & development , Nitrogen/metabolism , Nitrogen/analysis , Spectroscopy, Fourier Transform Infrared , Millets/metabolism , Biomass , Agriculture/methods , Soil Microbiology , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism
7.
Nutrients ; 16(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542730

A community-level nutritional intervention was implemented among tribal children (3 to 6 years of age) in Telangana, India. The one-year intervention involved six nutrient-rich formulations of millet-pulse-groundnut-based products suited to local taste preferences. Anthropometric measurements of height, weight, and mid-upper-arm circumference (MUAC) along with haemoglobin (Hb) levels were monitored at baseline and endline. The treatment group showed considerable gains in height (3.2 cm), weight (1.68 kg), and MUAC (0.33 cm) over the control group. The paired t-test indicated significant differences (p < 0.01) between the pre- and post-intervention anthropometric measurements. Positive shifts were observed in terms of wasting (WHZ; -1.2 ± 1.3 to -0.9 ± 1), stunting (HAZ; -1.8 ± 1.6 to -0.3 ± 1.3), and underweight (WAZ; -1.9 ± 1.2 to -0.7 ± 1) in the treatment group. The Hb levels in the treatment group also improved significantly from 9.70 ± 0.14 g/dL (moderately anaemic) to 11.08 ± 0.13 g/dL (non-anaemic). Post-intervention focus group discussions (FGDs) involving mothers and teachers confirmed these positive impacts. Thus, a nutritional intervention formulated using climate-resilient millets, pulses, and groundnuts promotes dietary diversity and improves the nutrition and health statuses of children.


Millets , Nutritional Status , Child , Female , Humans , Child, Preschool , Infant , Diet , Mothers , India
8.
Planta ; 259(4): 89, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467941

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Millets , Sorghum , Humans , Taiwan , Microscopy, Electron, Scanning , Sorghum/metabolism , Waxes/metabolism , Plant Leaves/metabolism , Plant Epidermis/metabolism
10.
Food Res Int ; 179: 113974, 2024 Mar.
Article En | MEDLINE | ID: mdl-38342528

Obesity-related diabetes, cardiovascular disease, and hypertension pose many risks to human health. Thus, mice on a high-fat diet were gavaged with millet bran (unfermented/fermented) soluble dietary fiber (RSDF/FSDF, 500 mg·kg-1) for 10 weeks in current research, and then evaluated the various biological indicators. These findings revealed that RSDF and FSDF supplements could prevent fat synthesis by inhibiting sterol regulatory element-binding protein-1c gene expression. The RSDF supplements can also accelerate fat catabolism through enhanced the mRNA expression levels of adipose triglyceride lipase and peroxisome proliferator-activated receptor α. FSDF supplements can prevent obesity by decreasing 3-hydroxy-3-methyl-glutaryl-CoA reductase expression and increasing cholesterol 7α-hydroxylase expression. Moreover, FSDF also controls obesity development by lowering total cholesterol and low-density lipoprotein cholesterol levels in the blood, triglyceride, total cholesterol, and bile acid levels in the liver. Notably, FSDF supplements can promote Bacteroides and Prevotella propagation; excretive propionic acid binds to free fatty acid receptor 2/3 and then stimulates intestinal epithelial cells to generate glucagon-like-peptide-1 and peptide YY, which can reduce food and energy intake and ultimately prevent obesity. All evidence suggests that FSDF supplements play a crucial role in preventing obesity.


Diet, High-Fat , Millets , Mice , Humans , Animals , Diet, High-Fat/adverse effects , Obesity , Cholesterol , Dietary Fiber
11.
Sci Rep ; 14(1): 4382, 2024 02 22.
Article En | MEDLINE | ID: mdl-38388679

The Bronze Age of Central Europe was a period of major social, economic, political and ideological change. The arrival of millet is often seen as part of wider Bronze Age connectivity, yet understanding of the subsistence regimes underpinning this dynamic period remains poor for this region, in large part due to a dominance of cremation funerary rites, which hinder biomolecular studies. Here, we apply stable isotope analysis, radiocarbon dating and archaeobotanical analysis to two Late Bronze Age (LBA) sites, Esperstedt and Kuckenburg, in central Germany, where human remains were inhumed rather than cremated. We find that people buried at these sites did not consume millet before the Middle Bronze Age (MBA) (ca. 1600 BCE). However, by the early LBA (ca. 1300-1050 BCE) people consumed millet, often in substantial quantities. This consumption appears to have subsequently diminished or ceased around 1050-800 BCE, despite charred millet grains still being found in the archaeological deposits from this period. The arrival of millet in this region, followed by a surge in consumption spanning two centuries, indicates a complex interplay of cultural and economic factors, as well as a potential use of millet to buffer changes in aridity in a region increasingly prone to crop failure in the face of climate change today.


Archaeology , Millets , Humans , Europe , Germany , Carbon Isotopes/analysis
12.
Physiol Plant ; 175(6): e14122, 2023.
Article En | MEDLINE | ID: mdl-38148213

Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.


Seedlings , Setaria Plant , Seedlings/genetics , Seedlings/metabolism , Millets/genetics , Millets/metabolism , Droughts , Plant Proteins/metabolism , Gene Expression Profiling , Metabolic Networks and Pathways , Setaria Plant/genetics , Setaria Plant/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
13.
Sensors (Basel) ; 23(22)2023 Nov 15.
Article En | MEDLINE | ID: mdl-38005575

As the millet ears are dense, small in size, and serious occlusion in the complex grain field scene, the target detection model suitable for this environment requires high computing power, and it is difficult to deploy the real-time detection of millet ears on mobile devices. A lightweight real-time detection method for millet ears is based on YOLOv5. First, the YOLOv5s model is improved by replacing the YOLOv5s backbone feature extraction network with the MobilenetV3 lightweight model to reduce model size. Then, using the multi-feature fusion detection structure, the micro-scale detection layer is augmented to reduce high-level feature maps and low-level feature maps. The Merge-NMS technique is used in post-processing for target information loss to reduce the influence of boundary blur on the detection effect and increase the detection accuracy of small and obstructed targets. Finally, the models reconstructed by different improved methods are trained and tested on the self-built millet ear data set. The AP value of the improved model in this study reaches 97.78%, F1-score is 94.20%, and the model size is only 7.56 MB, which is 53.28% of the standard YoloV5s model size, and has a better detection speed. Compared with other classical target detection models, it shows strong robustness and generalization ability. The lightweight model performs better in the detection of pictures and videos in the Jetson Nano. The results show that the improved lightweight YOLOv5 millet detection model in this study can overcome the influence of complex environments, and significantly improve the detection effect of millet under dense distribution and occlusion conditions. The millet detection model is deployed on the Jetson Nano, and the millet detection system is implemented based on the PyQt5 framework. The detection accuracy and detection speed of the millet detection system can meet the actual needs of intelligent agricultural machinery equipment and has a good application prospect.


Agriculture , Millets , Computers, Handheld , Edible Grain , Intelligence
14.
Food Res Int ; 174(Pt 1): 113573, 2023 12.
Article En | MEDLINE | ID: mdl-37986522

The rising popularity of probiotic food in the diet for improved health benefits leads to the development of new probiotic functional foods. In general, biscuit is a long-shelf-life snack product that can be consumed straight from the pack without further processing. Although the development of probiotic bakery products is an innovative approach to market expansion, the infusion of probiotics in biscuits to produce probiotic biscuits has not been explored because of the complexity of the baking process. Therefore, this study aimed to evaluate the impact of baking conditions (160, 180, 200, and 220 °C) on the viability of free and encapsulated probiotic Lactobacillus acidophilus NCDC 016 cells by adding them into biscuit dough separately and baking for up to 600 sec. The cells were encapsulated using 20 % maltodextrin and 8.51 % gum arabic as a wall material and spray drying at an inlet and outlet air temperature of 150 and 55 ± 2 °C, respectively. At different baking temperatures (160, 180, 200, and 220 °C), the viability of probiotic (free and encapsulated) cells, the physicochemical properties of biscuits, and the inactivation kinetics of cells were examined by withdrawing samples every 120 sec. The survivability of encapsulated cells was observed to be higher than free cells at 160 and 180 °C for 600 sec. The moisture content and water activity were found to be higher and lower, respectively for encapsulated probiotic biscuits than for the biscuit containing free cells. The observed results of higher cell viability at 200 °C, 360 sec (5.38 log CFU/g) than at 180 °C, 600 sec (5.02 log CFU/g) can be explained by the time-temperature combination. Thus, producing the probiotic biscuit at baking conditions of 200 °C and 360 min is possible, providing the cell viability of 5 log CFU/g of probiotic biscuit. Further, the inactivation kinetics of cells were predicted by log-linear, Weibull, log-logistic, Gompertz, and Buchanan models. Under all baking conditions, the log-linear model was the best model for describing the data of encapsulated and free cells.


Millets , Probiotics , Lactobacillus acidophilus , Lactobacillus , Food Additives/chemistry , Probiotics/chemistry
15.
Mol Nutr Food Res ; 67(24): e2300450, 2023 Dec.
Article En | MEDLINE | ID: mdl-37899300

Cognition is the mental processes and abilities involved in acquiring, storing, retrieving and using it for decision making. Cognitive decline due to aging, lifestyle factor, chronic health conditions, genetic, and environmental factors are rising global concern and propose a potential threat to the cognitive health. The nutritional imbalance has led to increase in cognitive disorders around the world. Millets can be a nutritional intervention for promoting cognitive health and preventing cognitive decline. Millets has abundant phenolic compounds, flavonoids, and antioxidants to protect against oxidative stress-induced cognitive impairment. Millets exert neuroprotective effects by modulating pathways involved in neuronal-survival, synaptic-plasticity, and release of brain-derived neurotrophic factor. Millets demonstrates anti-inflammatory properties by regulating inflammatory-pathways and suppressing cytokines associated with cognitive impairment. Millets maintain healthy gut microbiota by producing metabolites such as short-chain fatty acids, which influence brain function and cognition. However, further research is needed to elucidate the underlying mechanisms and on optimizing the proportion do exploit its potential. Implementing millet-based dietary strategies through public health initiatives and educational programs can be a practical approach to support cognitive health across populations. Harnessing the potential of millets as a nutritional intervention offers a promising avenue for promoting cognitive health and improving the quality of life.


Millets , Nootropic Agents , Millets/genetics , Quality of Life , Cognition , Antioxidants
16.
Food Res Int ; 173(Pt 2): 113395, 2023 11.
Article En | MEDLINE | ID: mdl-37803733

This study explored the use of millets flours as a secondary ingredient with soy protein isolate (SPI) to develop fibrous high moisture meat analogue (HMMA). Three millets (sorghum, pearl millet, and finger millet) with three incorporation levels (10%, 20%, and 30%) were extruded at 60%, 65%, and 70% moisture content. The results showed that millet type, incorporation level, and moisture content significantly influenced the system parameters and textural properties. Good visual texturization was achieved at addition of pearl millet up to 30% incorporation level and sorghum and finger millet up to 20% incorporation level. Furthermore, the textural properties of HMMA made from SPI-millet blends were compared against HMMA made from SPI-gluten blend and real chicken. The HMMA made from SPI-millet flour had lower hardness, chewiness, resilience, springiness, tensile strength, cutting strength than that for SPI and SPI-wheat gluten blend and were much closer to corresponding values for real chicken. The results also showed that each of the three millet types generated distinctly different fibre patterns (thick to thin fibres) and colour (whiter to darker) of HMMA. Thus, HMMA produced from SPI-millet flour blends can offer a wide textural, fibre pattern and colour space for different plant-based meat applications. Since millets do not have gluten, they also offer an opportunity to make gluten-free HMMA's.


Millets , Soybean Proteins , Millets/chemistry , Color , Glutens , Meat , Edible Grain
17.
Food Res Int ; 173(Pt 2): 113444, 2023 11.
Article En | MEDLINE | ID: mdl-37803769

The present work aimed to study the influence of atmospheric pressure pin-to-plate cold plasma on the physicochemical (pH, moisture, and amylose content), functional (water & oil binding capacity, solubility & swelling power, paste clarity on storage, pasting), powder flow, thermal and structural (FTIR, XRD, and SEM) characteristics at an input voltage of 170-230 V for 5-15 min. The starch surface modification by cold plasma was seen in the SEM images which cause the surge in WBC (1.54 g/g to 1.93 g/g), OBC (2.22 g/g to 2.79 g/g), solubility (3.05-5.38% at 70 °C; 37.11-52.98% at 90 °C) and swelling power (5.39-7.83% at 70 °C; 25.67-35.33% at 90 °C) of starch. Reduction in the amylose content (27.82% to 25.07%) via plasma-induced depolymerization resists the retrogradation tendency, thereby increasing the paste clarity (up to Ì´ 39%) during the 5 days of refrigerated storage. However, the paste viscosity is reduced after cold plasma treatment yielding low-strength starch pastes. The relative crystallinity of starch increased (37.35% to 45.36%) by the plasma-induced fragmented starch granules which would aggregate and broaden the gelatinization temperature, but these starch fragments reduced the gelatinization enthalpy. The fundamental starch structure is conserved as seen in FTIR spectra. Thus, cold plasma aids in the production of soluble, low-viscous, stable, and clear paste-forming depolymerized proso-millet starch.


Panicum , Plasma Gases , Starch/chemistry , Amylose/chemistry , Millets , Panicum/chemistry
18.
BMC Public Health ; 23(1): 2003, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833667

BACKGROUND: The increasing health challenge in urban India has led to consumers to change their diet preferences by shifting away from staple cereals and making way for healthier foods such as nutri-cereals like millets and other diverse food groups. Taking the case of millets, this study seeks to uncover the exact drivers for this shift of consumers away from a traditional cereal dense diet to a nutritionally more diverse diet that includes nutri-cereal. We also look at deterrents that dissuade consumers from shifting to millets. METHOD: We use primary data by surveying respondents through interviews and focused group discussions and online questionnaires. A total of 20 personal consumer interviews and 4 focus group discussions having 8-12 members each were conducted to arrive at the measures for the study. We use logistic regression and Structural Equation Modeling for data analysis. Responses were obtained across major metropolitan cities and tier 2 cities of India thus ensuring representation of geographical, cultural and diet diversity. 875 participants' responses were analysed for results. RESULTS: Health reasons and social networks are the major drivers for shift to millets while lack of awareness, lack of easy availability, high prices, lack of branded products, family being averse to switching to millets and lack of attractive promotional cashbacks and discounts are major deterrents to trying out millets. CONCLUSIONS: Diet focussed interventions are urgently needed to curb rising diet related non communicable diseases. Government policies aimed at greater production of millets, running awareness campaigns on mass media and private sector initiatives aimed at generating better value added market offerings could lead the way.


Diet , Millets , Humans , Millets/chemistry , Urban Population , Edible Grain , India
19.
Curr Biol ; 33(22): 4995-5002.e7, 2023 11 20.
Article En | MEDLINE | ID: mdl-37852263

The study of southwest China is vital for understanding the dispersal and development of farming because of the coexistence of millet and rice in this region since the Neolithic period.1,2 However, the process of the Neolithic transition in southwest China is largely unknown, mainly due to the lack of ancient DNA from the Neolithic period. Here, we report genome-wide data from 11 human samples from the Gaoshan and Haimenkou sites with mixed farming of millet and rice dating to between 4,500 and 3,000 years before present in southwest China. The two ancient groups derived approximately 90% of their ancestry from the Neolithic Yellow River farmers, suggesting a demic diffusion of millet farming to southwest China. We inferred their remaining ancestry to be derived from a Hòabìnhian-related hunter-gatherer lineage. We did not detect rice farmer-related ancestry in the two ancient groups, which indicates that they likely adopted rice farming without genetic assimilation. We, however, observed rice farmer-related ancestry in the formation of some present-day Tibeto-Burman populations. Our results suggested the occurrence of both demic and cultural diffusion in the development of Neolithic mixed farming in some parts of southwest China.


Millets , Rivers , Humans , Millets/genetics , Agriculture , Genome , Farms , DNA, Ancient , Human Migration
20.
Plant Foods Hum Nutr ; 78(4): 790-795, 2023 Dec.
Article En | MEDLINE | ID: mdl-37656398

Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.


Antioxidants , Caenorhabditis elegans Proteins , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Longevity/physiology , Millets/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Peptides/pharmacology , Peptides/metabolism , Subtilisins/metabolism
...