Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.497
Filter
2.
Reprod Biol Endocrinol ; 22(1): 83, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020374

ABSTRACT

BACKGROUND: Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS: Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION: Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.


Subject(s)
Fertility , Infertility, Male , Mitochondria , Spermatozoa , Humans , Male , Infertility, Male/physiopathology , Infertility, Male/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Mitochondria/metabolism , Mitochondria/physiology , Fertility/physiology , Sperm Motility/physiology , Female , Reactive Oxygen Species/metabolism , Animals
3.
Reprod Domest Anim ; 59(7): e14664, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010850

ABSTRACT

In several mammalian species, the measurement of mitochondrial oxygen consumption (MITOX) under different metabolic conditions has demonstrated a positive correlation with sperm motility and may be a sensitive indicator of mitochondrial health. In general, the maintenance of sperm motility and many key sperm functions and fertilizing events are heavily energy-dependent processes, and some species-specific substrate preferences exist. Although canine sperm have been known to undergo capacitation and maintain motility with supplementation of a wide range of energy substrates, the relationship between mitochondrial function, and the maintenance of oxidative metabolism and sperm motility remain unclear. The objective of this study was to explore the metabolic flexibility of canine sperm, and to investigate the relationship between mitochondrial function, and maintenance of motility under differing nutrient conditions. We explored substrate preferences and the bioenergetics underlying maintenance of canine sperm motility by monitoring mitochondrial oxidative function and sperm kinematics in the presence of mitochondrial effector drug treatments: FCCP, antimycin (ANTI), and oligomycin (OLIGO). We hypothesized that canine sperm possess the ability to use compensatory pathways and utilize diverse nutrient sources in the maintenance of motility. Oxygen consumption (change in pO2, oxygen partial pressure) and sperm kinematics (CASA) were measured concurrently (t0-t30) to assess the relationship between oxidative metabolism and maintenance of sperm motility in dogs. Four media were tested: containing glucose, lactate, and pyruvate (GLP), containing glucose (G), fructose (F), or lactate and pyruvate (LP). In the absence of pharmacological inhibition of the electron transport chain, energetic substrate had no effect on sperm kinematics in fertile dogs. Following mitochondrial disruption by ANTI and OLIGO, mitochondrial oxygen consumption was negatively correlated with several sperm motility parameters in GLP, G, F, and LP media. In every media, FCCP treatment quickly induced significantly higher oxygen consumption than in untreated sperm, and spare respiratory capacity, the maximal inducible oxidative metabolism, was high. With respiratory control ratios RCR >1 there was no indication of bioenergetic dysfunction in any media type, indicating that sperm mitochondria of fertile dogs have a high capacity for substrate oxidation and ATP turnover regardless of substrate. Our results suggest MITOX assessment is a valuable tool for assessing mitochondrial functionality, and that canine sperm employ flexible energy management systems which may be exploited to improve sperm handling and storage.


Subject(s)
Mitochondria , Oxygen Consumption , Sperm Motility , Spermatozoa , Animals , Male , Dogs , Mitochondria/metabolism , Mitochondria/physiology , Spermatozoa/physiology , Spermatozoa/drug effects , Energy Metabolism , Antimycin A/pharmacology , Antimycin A/analogs & derivatives , Fertility/physiology
4.
Biol Res ; 57(1): 37, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824571

ABSTRACT

It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.


Subject(s)
Hormesis , Mitochondria , Oxidative Stress , Humans , Hormesis/physiology , Mitochondria/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/physiopathology , Signal Transduction/physiology
5.
Curr Biol ; 34(12): R581-R583, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889682

ABSTRACT

A new study reports the identification of a fission yeast dynamin superfamily protein, Mmc1, that self-assembles on the matrix side of the inner mitochondrial membrane and interacts with subunits of the mitochondrial contact site and cristae organizing system to maintain cristae architecture.


Subject(s)
Mitochondria , Mitochondrial Membranes , Schizosaccharomyces , Mitochondrial Membranes/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces/physiology , Mitochondria/metabolism , Mitochondria/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Dynamins/metabolism , Dynamins/genetics
6.
Sheng Li Xue Bao ; 76(3): 418-428, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939936

ABSTRACT

Aging refers to a progressive decline in biological functions, leading to age-related diseases and mortality. The transition metals, including iron, copper, and manganese, play important roles in human physiological and pathological processes. Substantial research has demonstrated that senescent cells accumulate higher levels of transition metals, which in turn accelerates the process of cellular senescence and related diseases through mechanisms such as production of excessive reactive oxygen species (ROS), induction of oxidative stress, DNA damage, and mitochondrial dysfunction. This review article provides a comprehensive overview of the causes of transition metal accumulation in senescent cells, as well as the mechanisms by which it further promotes cellular senescence and related diseases. The aim is to provide insights into anti-aging and treatment of aging-related diseases caused by transition metal accumulation.


Subject(s)
Aging , Cellular Senescence , DNA Damage , Oxidative Stress , Reactive Oxygen Species , Cellular Senescence/physiology , Humans , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Aging/physiology , Aging/metabolism , Animals , Transition Elements/metabolism , Iron/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Copper/metabolism , Manganese/metabolism
7.
Mil Med Res ; 11(1): 32, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812059

ABSTRACT

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.


Subject(s)
Mitochondria , Mitophagy , Humans , Mitochondria/metabolism , Mitochondria/physiology , Mitophagy/physiology , Mitophagy/drug effects , Mitochondrial Dynamics/physiology
8.
Nat Rev Gastroenterol Hepatol ; 21(8): 537-555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38740978

ABSTRACT

Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.


Subject(s)
Gastrointestinal Diseases , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/physiology , Gastrointestinal Diseases/physiopathology , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Colorectal Neoplasms , Inflammatory Bowel Diseases/physiopathology , Signal Transduction
9.
Reprod Biol ; 24(2): 100889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733657

ABSTRACT

Mitophagy, the cellular process that removes damaged mitochondria, plays a crucial role in maintaining normal cell functions. It is deeply involved in the entire process of follicle development and is associated with various ovarian diseases. This review aims to provide a comprehensive overview of mitophagy regulation, emphasizing its role at different stages of follicular development. Additionally, the study illuminates the relationship between mitophagy and ovarian diseases, including ovary aging (OA), primary ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS). A detailed understanding of mitophagy could reveal valuable insights and novel strategies for managing female ovarian reproductive health.


Subject(s)
Mitophagy , Ovarian Follicle , Mitophagy/physiology , Female , Ovarian Follicle/physiology , Humans , Animals , Mitochondria/physiology , Mitochondria/metabolism , Primary Ovarian Insufficiency
12.
Neuron ; 112(12): 1997-2014.e6, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38582081

ABSTRACT

Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.


Subject(s)
Hippocampus , Mitochondrial Dynamics , Neuronal Plasticity , Neurons , Animals , Mitochondrial Dynamics/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Mice , Hippocampus/cytology , Hippocampus/physiology , Mitochondria/metabolism , Mitochondria/physiology , Neurogenesis/physiology , Synapses/physiology , Mice, Inbred C57BL
13.
Curr Biol ; 34(9): 1904-1917.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38642548

ABSTRACT

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Subject(s)
Memory, Long-Term , Mitochondrial Dynamics , Mushroom Bodies , Animals , Axons/metabolism , Axons/physiology , Drosophila melanogaster/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Memory, Long-Term/physiology , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Dynamics/physiology , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Neurons/metabolism , Neurons/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
15.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474079

ABSTRACT

Mitochondria are commonly perceived as "cellular power plants". Intriguingly, power conversion is not their only function. In the first part of this paper, we review the role of mitochondria in the evolution of eukaryotic organisms and in the regulation of the human body, specifically focusing on cancer and autism in relation to mitochondrial dysfunction. In the second part, we overview our previous works, revealing the physical principles of operation for proton-pumping complexes in the inner mitochondrial membrane. Our proposed simple models reveal the physical mechanisms of energy exchange. They can be further expanded to answer open questions about mitochondrial functions and the medical treatment of diseases associated with mitochondrial disorders.


Subject(s)
Mitochondria , Mitochondrial Membranes , Humans , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Proton Pumps/metabolism , Physics , Biology
16.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474206

ABSTRACT

Mitochondria are key organelles that regulate several functions essential for maintaining cellular homeostasis [...].


Subject(s)
Mitochondria , Respiration , Mitochondria/physiology , Homeostasis
17.
Nature ; 626(7998): 271-279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326590

ABSTRACT

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.


Subject(s)
Inflammation , Mitochondria , Models, Biological , Symbiosis , Humans , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Diet/adverse effects , Homeostasis , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Nucleic Acids/metabolism , Obesity/complications , Obesity/metabolism , Obesity/pathology , Phospholipids/metabolism , Reactive Oxygen Species/metabolism , Symbiosis/physiology , Animals
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166946, 2024 02.
Article in English | MEDLINE | ID: mdl-37939908

ABSTRACT

Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.


Subject(s)
Endothelial Cells , Sepsis , Humans , Endothelial Cells/metabolism , Sepsis/metabolism , Mitochondria/physiology
19.
Eur J Clin Invest ; 54(4): e14138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041247

ABSTRACT

Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.


Subject(s)
Mitochondria , Mitophagy , Humans , Mitophagy/physiology , Mitochondria/physiology , Autophagy , Homeostasis
20.
Sci Total Environ ; 908: 168383, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37951264

ABSTRACT

Intrauterine growth retardation (IUGR) is a major cause of perinatal morbidity and mortality. Previous studies showed that 1-nitropyrene (1-NP), an atmospheric pollutant, induces placental dysfunction and IUGR, but the exact mechanisms remain uncertain. In this research, we aimed to explore the role of mitophagy on 1-NP-evoked placental progesterone (P4) synthesis inhibition and IUGR in a mouse model. As expected, P4 levels were decreased in 1-NP-exposed mouse placentas and maternal sera. Progesterone synthases, CYP11A1 and 3ßHSD1, were correspondingly declined in 1-NP-exposed mouse placentas and JEG-3 cells. Mitophagy, as determined by LC3B-II elevation and TOM20 reduction, was evoked in 1-NP-exposed JEG-3 cells. Mdivi-1, a specific mitophagy inhibitor, relieved 1-NP-evoked downregulation of progesterone synthases in JEG-3 cells. Additional experiments showed that ULK1/FUNDC1 signaling was activated in 1-NP-exposed JEG-3 cells. ULK1 inhibitor or FUNDC1-targeted siRNA blocked 1-NP-induced mitophagy and progesterone synthase downregulation in JEG-3 cells. Further analysis found that mitochondrial reactive oxygen species (ROS) were increased and GCN2 was activated in 1-NP-exposed JEG-3 cells. GCN2iB, a selective GCN2 inhibitor, and MitoQ, a mitochondria-targeted antioxidant, attenuated GCN2 activation, FUNDC1-mediated mitophagy, and downregulation of progesterone synthases in JEG-3 cells. In vivo, gestational MitoQ supplement alleviated 1-NP-evoked reduction of placental P4 synthesis and IUGR. These results suggest that FUNDC1-mediated mitophagy triggered by mitochondrial ROS may contribute partially to 1-NP-induced placental P4 synthesis inhibition and IUGR.


Subject(s)
Mitophagy , Placenta , Humans , Mice , Female , Pregnancy , Animals , Progesterone , Reactive Oxygen Species , Cell Line, Tumor , Fetal Growth Retardation , Mitochondria/physiology , Membrane Proteins/genetics , Mitochondrial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL