Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.047
1.
Nat Commun ; 15(1): 4700, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830851

BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.


Apoptosis , Mitochondrial Membranes , bcl-2 Homologous Antagonist-Killer Protein , bcl-2-Associated X Protein , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/metabolism , Humans , Mitochondrial Membranes/metabolism , Molecular Dynamics Simulation , Mitochondria/metabolism , Cell Line, Tumor , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Animals
2.
Acta Biochim Pol ; 71: 13126, 2024.
Article En | MEDLINE | ID: mdl-38863652

Mitochondrial investigations have extended beyond their traditional functions, covering areas such as ATP synthesis and metabolism. Mitochondria are now implicated in new functional areas such as cytoprotection, cellular senescence, tumor function and inflammation. The basis of these new areas still relies on fundamental biochemical/biophysical mitochondrial functions such as synthesis of reactive oxygen species, mitochondrial membrane potential, and the integrity of the inner mitochondrial membrane i.e., the passage of various molecules through the mitochondrial membranes. In this view transport of potassium cations, known as the potassium cycle, plays an important role. It is believed that K+ influx is mediated by various potassium channels present in the inner mitochondrial membrane. In this article, we present an overview of the key findings and characteristics of mitochondrial potassium channels derived from research of many groups conducted over the past 33 years. We propose a list of six fundamental observations and most important ideas dealing with mitochondrial potassium channels. We also discuss the contemporary challenges and future prospects associated with research on mitochondrial potassium channels.


Mitochondria , Potassium Channels , Potassium , Humans , Mitochondria/metabolism , Potassium Channels/metabolism , Animals , Potassium/metabolism , Mitochondrial Membranes/metabolism , Membrane Potential, Mitochondrial , Reactive Oxygen Species/metabolism
3.
Nat Commun ; 15(1): 4740, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834545

Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.


Bacterial Proteins , Burkholderia pseudomallei , Macrophages , Mitochondria , Mitophagy , Burkholderia pseudomallei/metabolism , Burkholderia pseudomallei/pathogenicity , Burkholderia pseudomallei/physiology , Burkholderia pseudomallei/genetics , Animals , Mice , Mitochondria/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Macrophages/microbiology , Macrophages/metabolism , Ubiquitination , Melioidosis/microbiology , Melioidosis/metabolism , Host-Pathogen Interactions , Reactive Oxygen Species/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Mice, Inbred C57BL , Mitochondrial Membranes/metabolism , HEK293 Cells , RAW 264.7 Cells
4.
Adv Immunol ; 162: 59-108, 2024.
Article En | MEDLINE | ID: mdl-38866439

Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.


Apoptosis , Mitochondria , Mitochondrial Membranes , Proto-Oncogene Proteins c-bcl-2 , Humans , Animals , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Inflammation/immunology , Caspases/metabolism , Signal Transduction , Neoplasms/immunology , Neoplasms/metabolism
5.
Elife ; 122024 May 29.
Article En | MEDLINE | ID: mdl-38808578

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.


Breast Neoplasms , Humans , Animals , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Mitochondria/metabolism , Mitochondria/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mitochondrial Membranes/metabolism , Female , Energy Metabolism
6.
Ann Clin Lab Sci ; 54(2): 137-148, 2024 Mar.
Article En | MEDLINE | ID: mdl-38802154

OBJECTIVE: We have previously shown that the anti-cancer peptide PNC-27 kills cancer cells by co-localizing with membrane-expressed HDM-2, resulting in transmembrane pore formation causing extrusion of intracellular contents. We have also observed cancer cell mitochondrial disruption in PNC-27-treated cancer cells. Our objectives are to determine: 1. if PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) in the cancer cell membrane and 2. if this peptide causes selective disruption of cancer cell mitochondria. METHODS: For aim 1, we incubated MIA-PaCa-2 human pancreatic carcinoma cells with PNC-27 in the presence of a monoclonal antibody against the amino terminal p53 binding site of HDM-2 to determine if it, but not negative control immune serum, blocks PNC-27-induced tumor cell necrosis. For the second aim, we incubated these cells with PNC-27 in the presence of two specific dyes that highlight normal organelle function: mitotracker for mitochondria and lysotracker for lysosomes. We also performed immuno-electron microscopy (IEM) with gold-labeled anti-PNC-27 antibody on the mitochondria of these cells treated with PNC-27. RESULTS: Monoclonal antibody to the p53 binding site of HDM-2 blocks PNC-27-induced cancer cell necrosis, whereas negative control immune serum does not. The mitochondria of PNC-27-treated cancer cells fail to retain mitotracker dye while their lysosomes retain lysotracker dye. IEM of the mitochondria cancer cells reveals gold particles present on the mitochondrial membranes. CONCLUSIONS: PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) inducing transmembrane pore formation and cancer cell necrosis. Furthermore, this peptide enters cancer cells and binds to the membranes of mitochondria, resulting in their disruption.


Cell Membrane , Mitochondrial Membranes , Proto-Oncogene Proteins c-mdm2 , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Cell Line, Tumor , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Binding/drug effects , Peptides/pharmacology , Peptides/metabolism , Necrosis
7.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Article En | MEDLINE | ID: mdl-38725862

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mitochondria , Pyroptosis , Squamous Cell Carcinoma of Head and Neck , Tumor Suppressor Proteins , Animals , Humans , Mice , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Mice, Nude , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731864

The human brain possesses three predominate phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which account for approximately 35-40%, 35-40%, and 20% of the brain's phospholipids, respectively. Mitochondrial membranes are relatively diverse, containing the aforementioned PC, PE, and PS, as well as phosphatidylinositol (PI) and phosphatidic acid (PA); however, cardiolipin (CL) and phosphatidylglycerol (PG) are exclusively present in mitochondrial membranes. These phospholipid interactions play an essential role in mitochondrial fusion and fission dynamics, leading to the maintenance of mitochondrial structural and signaling pathways. The essential nature of these phospholipids is demonstrated through the inability of mitochondria to tolerate alteration in these specific phospholipids, with changes leading to mitochondrial damage resulting in neural degeneration. This review will emphasize how the structure of phospholipids relates to their physiologic function, how their metabolism facilitates signaling, and the role of organ- and mitochondria-specific phospholipid compositions. Finally, we will discuss the effects of global ischemia and reperfusion on organ- and mitochondria-specific phospholipids alongside the novel therapeutics that may protect against injury.


Brain , Heart Arrest , Mitochondria , Phospholipids , Humans , Phospholipids/metabolism , Mitochondria/metabolism , Animals , Brain/metabolism , Brain/pathology , Heart Arrest/metabolism , Signal Transduction , Mitochondrial Membranes/metabolism , Mitochondrial Dynamics
9.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Article En | MEDLINE | ID: mdl-38669296

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Mitochondria , Mitochondrial Dynamics , Peroxisomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Peroxisomes/metabolism , Mitochondrial Dynamics/physiology , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Fatty Acids/metabolism , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Citric Acid Cycle , Membrane Potential, Mitochondrial/physiology , Mitochondrial Membranes/metabolism , Humans
10.
Proc Natl Acad Sci U S A ; 121(19): e2317703121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687792

Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.


Aldehydes , Fluorescent Dyes , Microscopy, Fluorescence , Mitochondria , Mitochondria/metabolism , Humans , Fluorescent Dyes/chemistry , Aldehydes/metabolism , Aldehydes/chemistry , Microscopy, Fluorescence/methods , HeLa Cells , Cross-Linking Reagents/chemistry , Animals , Mitochondrial Membranes/metabolism
11.
Mitochondrion ; 76: 101880, 2024 May.
Article En | MEDLINE | ID: mdl-38604459

Plasma membrane large-conductance calcium-activated potassium (BKCa) channels are important players in various physiological processes, including those mediated by epithelia. Like other cell types, human bronchial epithelial (HBE) cells also express BKCa in the inner mitochondrial membrane (mitoBKCa). The genetic relationships between these mitochondrial and plasma membrane channels and the precise role of mitoBKCa in epithelium physiology are still unclear. Here, we tested the hypothesis that the mitoBKCa channel is encoded by the same gene as the plasma membrane BKCa channel in HBE cells. We also examined the impact of channel loss on the basic function of HBE cells, which is to create a tight barrier. For this purpose, we used CRISPR/Cas9 technology in 16HBE14o- cells to disrupt the KCNMA1 gene, which encodes the α-subunit responsible for forming the pore of the plasma membrane BKCa channel. Electrophysiological experiments demonstrated that the disruption of the KCNMA1 gene resulted in the loss of BKCa-type channels in the plasma membrane and mitochondria. We have also shown that HBE ΔαBKCa cells exhibited a significant decrease in transepithelial electrical resistance which indicates a loss of tightness of the barrier created by these cells. We have also observed a decrease in mitochondrial respiration, which indicates a significant impairment of these organelles. In conclusion, our findings indicate that a single gene encodes both populations of the channel in HBE cells. Furthermore, this channel is critical for maintaining the proper function of epithelial cells as a cellular barrier.


Bronchi , Epithelial Cells , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Bronchi/metabolism , Bronchi/cytology , Epithelial Cells/metabolism , Cell Line , Mitochondria/metabolism , CRISPR-Cas Systems , Respiratory Mucosa/metabolism , Respiratory Mucosa/cytology , Cell Membrane/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/physiology
12.
J Mol Biol ; 436(10): 168559, 2024 May 15.
Article En | MEDLINE | ID: mdl-38580077

Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.


Mitochondrial Membranes , Mitochondrial Proteins , Nucleotide Transport Proteins , Open Reading Frames , Humans , 5' Untranslated Regions/genetics , Amino Acid Sequence , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Open Reading Frames/genetics , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , HEK293 Cells
13.
Mol Microbiol ; 121(6): 1112-1126, 2024 Jun.
Article En | MEDLINE | ID: mdl-38622999

All mitochondria import >95% of their proteins from the cytosol. This process is mediated by protein translocases in the mitochondrial membranes, whose subunits are generally highly conserved. Most eukaryotes have two inner membrane protein translocases (TIMs) that are specialized to import either presequence-containing or mitochondrial carrier proteins. In contrast, the parasitic protozoan Trypanosoma brucei has a single TIM complex consisting of one conserved and five unique subunits. Here, we identify candidates for new subunits of the TIM or the presequence translocase-associated motor (PAM) using a protein-protein interaction network of previously characterized TIM and PAM subunits. This analysis reveals that the trypanosomal TIM complex contains an additional trypanosomatid-specific subunit, designated TbTim15. TbTim15 is associated with the TIM complex, lacks transmembrane domains, and localizes to the intermembrane space. TbTim15 is essential for procyclic and bloodstream forms of trypanosomes. It contains two twin CX9C motifs and mediates import of both presequence-containing and mitochondrial carrier proteins. While the precise function of TbTim15 in mitochondrial protein import is unknown, our results are consistent with the notion that it may function as an import receptor for the non-canonical trypanosomal TIM complex.


Mitochondria , Mitochondrial Membrane Transport Proteins , Mitochondrial Membranes , Protein Transport , Protozoan Proteins , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/enzymology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Protein Subunits/metabolism
14.
Cells ; 13(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38607048

Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.


Neurodegenerative Diseases , Parkinson Disease , Humans , Cardiolipins/metabolism , Neurodegenerative Diseases/metabolism , Mitochondria , Mitochondrial Membranes/metabolism , Parkinson Disease/metabolism
15.
EMBO Rep ; 25(4): 2071-2096, 2024 Apr.
Article En | MEDLINE | ID: mdl-38565738

Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.


Mitochondria , Saccharomyces cerevisiae Proteins , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protein Transport , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism
16.
FEMS Yeast Res ; 242024 Jan 09.
Article En | MEDLINE | ID: mdl-38587863

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.


Saccharomyces cerevisiae , Succinic Acid , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Glycerol/metabolism , Carbon Dioxide/metabolism , NAD/metabolism , Pyruvic Acid/metabolism , Mitochondrial Membranes/metabolism , Carbon/metabolism , Metabolic Engineering/methods
17.
Biochem Biophys Res Commun ; 709: 149836, 2024 May 21.
Article En | MEDLINE | ID: mdl-38564937

Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.


Mitochondria , Mitochondrial Membranes , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , HeLa Cells
18.
Cells ; 13(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38607086

Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.


GTP Phosphohydrolases , Mitochondria , Humans , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Biological Transport , Microtubules/metabolism
19.
Biochemistry (Mosc) ; 89(2): 257-268, 2024 Feb.
Article En | MEDLINE | ID: mdl-38622094

This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aß42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer's disease. The results showed that the Aß42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes in vivo.


Electrons , Mitochondrial Diseases , Animals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Microscopy, Electron , Mitochondrial Diseases/metabolism
20.
Sci Rep ; 14(1): 8675, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622160

Mitochondria are essential organelles in cellular energy metabolism and other cellular functions. Mitochondrial dysfunction is closely linked to cellular damage and can potentially contribute to the aging process. The purpose of this study was to investigate the subcellular structure of mitochondria and their activities in various cellular environments using super-resolution stimulated emission depletion (STED) nanoscopy. We examined the morphological dispersion of mitochondria below the diffraction limit in sub-cultured human primary skin fibroblasts and mouse skin tissues. Confocal microscopy provides only the overall morphology of the mitochondrial membrane and an indiscerptible location of nucleoids within the diffraction limit. Conversely, super-resolution STED nanoscopy allowed us to resolve the nanoscale distribution of translocase clusters on the mitochondrial outer membrane and accurately quantify the number of nucleoids per cell in each sample. Comparable results were obtained by analyzing the translocase distribution in the mouse tissues. Furthermore, we precisely and quantitatively analyzed biomolecular distribution in nucleoids, such as the mitochondrial transcription factor A (TFAM), using STED nanoscopy. Our findings highlight the efficacy of super-resolution fluorescence imaging in quantifying aging-related changes on the mitochondrial sub-structure in cells and tissues.


Mitochondria , Ultraviolet Rays , Humans , Animals , Mice , Microscopy, Fluorescence/methods , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , HeLa Cells
...