Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90.013
Filter
1.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003032

ABSTRACT

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Subject(s)
Charcoal , Dimethylnitrosamine , Particle Size , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Dimethylnitrosamine/chemistry , Kinetics , Models, Chemical
2.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003031

ABSTRACT

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Subject(s)
Charcoal , Charcoal/chemistry , Halogenation , Oxidation-Reduction , Ethylene Dibromide/chemistry , Models, Chemical
3.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003045

ABSTRACT

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Subject(s)
Arsenic , Charcoal , Machine Learning , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Models, Chemical
4.
J Environ Sci (China) ; 147: 451-461, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003061

ABSTRACT

Ketoprofen (KET), as a non-steroidal anti-inflammatory drug frequently detected in aqueous environments, is a threat to human health due to its accumulation and low biodegradability, which requires the transformation and degradation of KET in aqueous environments. In this paper, the reaction process of ozone-initiated KET degradation in water was investigated using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The detailed reaction path of KET ozonation is proposed. The thermodynamic results show that ozone-initiated KET degradation is feasible. Under ultraviolet irradiation, the reaction of ozone with water can also produce OH radicals (HO·) that can react with KET. The degradation reaction of KET caused by HO· was further studied. The kinetic calculation illustrates that the reaction rate (1.99 × 10-1 (mol/L)-1 sec-1) of KET ozonation is relatively slow, but the reaction rate of HO· reaction is relatively high, which can further improve the degradation efficiency. On this basis, the effects of pollutant concentration, ozone concentration, natural organic matter, and pH value on degradation efficiency under UV/O3 process were analyzed. The ozonolysis reaction of KET is not sensitive to pH and is basically unaffected. Finally, the toxicity prediction of oxidation compounds produced by degradation reaction indicates that most of the degradation products are harmless, and a few products containing benzene rings are still toxic and have to be concerned. This study serves as a theoretical basis for analyzing the migration and transformation process of anti-inflammatory compounds in the water environment.


Subject(s)
Ketoprofen , Ozone , Water Pollutants, Chemical , Ketoprofen/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Models, Chemical , Water Purification/methods
5.
J Environ Sci (China) ; 147: 392-403, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003057

ABSTRACT

This study used steel slag, fly ash, and metakaolin as raw materials (SFM materials) to create silica-alumina-based geopolymers that can solidify Hg2+ when activated with sodium-based water glass. The experiments began with a triangular lattice point mixing design experiment, and the results were fitted, analyzed, and predicted. The optimum SFM material mass ratio was found to be 70% steel slag, 25% fly ash, and 5% metakaolin. The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg2+of geosynthetics with different modulus. The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings. The inclusion of 50% SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%. The mercury concentration of herbaceous plant samples was also reduced by 78%. It indicates that the SFM material can effectively attenuate the migration transformation of mercury. Finally, characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg2+ solidification by geopolymers generated by SFM materials. The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation, chemical bonding s, surface adsorption of Hg2+ and its precipitates by the geopolymer, and physical encapsulation.


Subject(s)
Mercury , Mercury/chemistry , Mercury/analysis , Polymers/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Mining , Coal Ash/chemistry , Models, Chemical
6.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003066

ABSTRACT

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Subject(s)
Arsenic , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Arsenic/analysis , China , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods , Models, Chemical , Models, Theoretical
7.
J Environ Sci (China) ; 147: 561-570, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003071

ABSTRACT

In the present study, we investigated the influence of surface fluorine (F) on TiO2 for the photocatalytic oxidation (PCO) of toluene. TiO2 modified with different F content was prepared and tested. It was found that with the increasing of F content, the toluene conversion rate first increased and then decreased. However, CO2 mineralization efficiency showed the opposite trend. Based on the characterizations, we revealed that F substitutes the surface hydroxyl of TiO2 to form the structure of Ti-F. The presence of the appropriate amount of surface Ti-F on TiO2 greatly enhanced the separation of photogenerated carriers, which facilitated the generation of ·OH and promoted the activity for the PCO of toluene. It was further revealed that the increase of only ·OH promoted the conversion of toluene to ring-containing intermediates, causing the accumulation of intermediates and then conversely inhibited the ·OH generation, which led to the decrease of the CO2 mineralization efficiency. The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.


Subject(s)
Fluorides , Oxidation-Reduction , Titanium , Toluene , Toluene/chemistry , Titanium/chemistry , Catalysis , Fluorides/chemistry , Photochemical Processes , Models, Chemical
8.
J Environ Sci (China) ; 147: 665-676, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003081

ABSTRACT

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.


Subject(s)
Microplastics , Water Pollutants, Chemical , Zinc Oxide , Adsorption , Microplastics/chemistry , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry , Nanoparticles/chemistry , Models, Chemical , Anti-Bacterial Agents/chemistry , Humic Substances
9.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003082

ABSTRACT

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Subject(s)
Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Kinetics , Adsorption , Polyethylene/chemistry , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Models, Chemical
10.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003084

ABSTRACT

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Subject(s)
Cadmium , Iron Compounds , Magnesium Compounds , Silicates , Water Pollutants, Chemical , Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Iron Compounds/chemistry , Adsorption , Models, Chemical , Water Purification/methods
11.
J Environ Sci (China) ; 147: 83-92, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003086

ABSTRACT

The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δ18OH2O value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined. The sulfur isotope fractionation factor (Δ34SSO4-stibnite) values decreased from 0.8‰ to -2.1‰ during the first 90 days, and increased to 2.6‰ at the 180 days, indicating the dominated intermediate sulfur species such as S2O32-, S0, and H2S (g) involved in Sb2S3 oxidation processes. The incorporation of O into sulfate derived from O2 (∼100%) indicated that the dissociated O2 was only directly adsorbed on the stibnite-S sites in the initial stage (0-90 days). The proportion of O incorporation into sulfate from water (27%-52%) increased in the late stage (90-300 days), which suggested the oxidation mechanism changed to hydroxyl attack on stibnite-S sites promoted by nearby adsorbed O2 on stibnite-Sb sites. The exchange of oxygen between sulfite and water may also contributed to the increase of water derived O into SO42-. The new insight of stibnite oxidation pathway contributes to the understanding of sulfide oxidation mechanism and helps to interpret field data.


Subject(s)
Oxidation-Reduction , Oxygen Isotopes , Sulfates , Sulfur Isotopes , Sulfur Isotopes/analysis , Sulfates/chemistry , Oxygen Isotopes/analysis , Antimony/chemistry , Models, Chemical , Aerobiosis , Oxygen/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Oxides
12.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003087

ABSTRACT

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Subject(s)
Colloids , Flame Retardants , Groundwater , Halogenated Diphenyl Ethers , Soil Pollutants , Soil , Water Pollutants, Chemical , Halogenated Diphenyl Ethers/analysis , Colloids/chemistry , Groundwater/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Water Pollutants, Chemical/analysis , China , Flame Retardants/analysis , Environmental Monitoring , Models, Chemical
13.
J Environ Sci (China) ; 148: 116-125, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095150

ABSTRACT

Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.


Subject(s)
Fluorocarbons , Light , Photolysis , Fluorocarbons/chemistry , Nanostructures/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Zinc/chemistry , Indium/chemistry , Models, Chemical
14.
J Environ Sci (China) ; 148: 27-37, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095163

ABSTRACT

Naphthenic acids, NAs, are a major contaminant of concern and a focus of much research around remediation of oil sand process affected waters, OSPW. Using activated carbon adsorbents are an attractive option given their low cost of fabrication and implementation. A deeper evaluation of the effect NA structural differences have on uptake affinity is warranted. Here we provide an in-depth exploration of NA adsorption including many more model NA species than have been assessed previously with evaluation of adsorption kinetics and isotherms at the relevant alkaline pH of OSPW using several different carbon adsorbents with pH buffering to simulate the behaviour of real OSPW. Uptake for the NA varied considerably regardless of the activated carbon used, ranging from 350 mg/g to near zero highlighting recalcitrant NAs. The equilibrium data was explored to identify structural features of these species and key physiochemical properties that influence adsorption. We found that certain NA will be resistant to adsorption when hydrophobic adsorbents are used. Adsorption isotherm modelling helped explore interactions occurring at the interface between NA and adsorbent surfaces. We identified the importance of NA hydrophobicity for activated carbon uptake. Evidence is also presented that indicates favorable hydrogen bonding between certain NA and surface site hydroxyl groups, demonstrating the importance of adsorbent surface functionality for NA uptake. This research highlights the challenges associated with removing NAs from OSPW through adsorption and also identifies how adsorbent surface chemistry modification can be used to increase the removal efficiency of recalcitrant NA species.


Subject(s)
Carboxylic Acids , Water Pollutants, Chemical , Adsorption , Carboxylic Acids/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Models, Chemical , Kinetics , Hydrogen-Ion Concentration
15.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095158

ABSTRACT

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Subject(s)
Aerosols , Air Pollutants , Bicyclic Monoterpenes , Humidity , Hydroxyl Radical , Oxidation-Reduction , Aerosols/chemistry , Hydroxyl Radical/chemistry , Bicyclic Monoterpenes/chemistry , Air Pollutants/chemistry , Air Pollutants/analysis , Ozone/chemistry , Models, Chemical , Atmosphere/chemistry , Monoterpenes/chemistry
16.
J Environ Sci (China) ; 148: 399-408, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095175

ABSTRACT

A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.


Subject(s)
Carbamazepine , Chlorine Compounds , Oxides , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification , Carbamazepine/chemistry , Water Pollutants, Chemical/chemistry , Chlorine Compounds/chemistry , Water Purification/methods , Oxides/chemistry , Kinetics , Sodium Hypochlorite/chemistry , Models, Chemical
17.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095180

ABSTRACT

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Subject(s)
Aerosols , Air Pollutants , Models, Chemical , Thermodynamics , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/chemistry , Air Pollutants/analysis , China , Environmental Monitoring/methods , Particulate Matter/chemistry , Particulate Matter/analysis , Hydrogen-Ion Concentration , Particle Size
18.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095182

ABSTRACT

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Subject(s)
Copper , Hydrogen Sulfide , Oxidation-Reduction , Titanium , Titanium/chemistry , Adsorption , Copper/chemistry , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Plasma Gases/chemistry , Models, Chemical
19.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095186

ABSTRACT

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Subject(s)
Manganese Compounds , Nickel , Oxides , Ozone , Oxides/chemistry , Nickel/chemistry , Manganese Compounds/chemistry , Ozone/chemistry , Catalysis , Humidity , Cobalt/chemistry , Models, Chemical , Air Pollutants/chemistry
20.
J Environ Sci (China) ; 148: 541-552, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095187

ABSTRACT

The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.


Subject(s)
Saline Waters , Salinity , Seawater , Water Pollutants, Chemical , Zinc Oxide , Zinc Oxide/chemistry , Seawater/chemistry , Saline Waters/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Porosity , Microplastics , Models, Chemical , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL