Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.989
Filter
1.
Expert Rev Endocrinol Metab ; 19(4): 317-333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38899737

ABSTRACT

INTRODUCTION: Molecular imaging of thyroid and parathyroid diseases has changed in recent years due to the introduction of new radiopharmaceuticals and new imaging techniques. Accordingly, we provided an clinicians-oriented overview of such techniques and their indications. AREAS COVERED: A review of the literature was performed in the PubMed, Web of Science, and Scopus without time or language restrictions through the use of one or more fitting search criteria and terms as well as through screening of references in relevant selected papers. Literature up to and including December 2023 was included. Screening of titles/abstracts and removal of duplicates was performed and the full texts of the remaining potentially relevant articles were retrieved and reviewed. EXPERT OPINION: Thyroid and parathyroid scintigraphy remains integral in patients with thyrotoxicosis, thyroid nodules, differentiated thyroid cancer and, respectively, hyperparathyroidism. In the last years positron-emission tomography with different tracers emerged as a more accurate alternative in evaluating indeterminate thyroid nodules [18F-fluorodeoxyglucose (FDG)], differentiated thyroid cancer [124I-iodide, 18F-tetrafluoroborate, 18F-FDG] and hyperparathyroidism [18F-fluorocholine]. Other PET tracers are useful in evaluating relapsing/advanced forms of medullary thyroid cancer (18F-FDOPA) and selecting patients with advanced follicular and medullary thyroid cancers for theranostic treatments (68Ga/177Ga-somatostatin analogues).


Subject(s)
Molecular Imaging , Parathyroid Diseases , Radiopharmaceuticals , Thyroid Diseases , Humans , Molecular Imaging/methods , Parathyroid Diseases/diagnostic imaging , Thyroid Diseases/diagnostic imaging , Positron-Emission Tomography
2.
Biol Pharm Bull ; 47(6): 1066-1071, 2024.
Article in English | MEDLINE | ID: mdl-38825459

ABSTRACT

Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.


Subject(s)
Molecular Imaging , Nuclear Medicine , Optical Imaging , Humans , Animals , Optical Imaging/methods , Molecular Imaging/methods , Nuclear Medicine/methods , Phototherapy/methods , Molecular Targeted Therapy/methods , Neoplasms/therapy , Neoplasms/diagnostic imaging
3.
Radiol Imaging Cancer ; 6(4): e230186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847615

ABSTRACT

Purpose To develop a molecular breast imaging (MBI)-guided biopsy system using dual-detector MBI and to perform initial testing in participants. Materials and Methods The Stereo Navigator MBI Accessory biopsy system comprises a lower detector, upper fenestrated compression paddle, and upper detector. The upper detector retracts, allowing craniocaudal, oblique, or medial or lateral biopsy approaches. The compression paddle allows insertion of a needle guide and needle. Lesion depth is calculated by triangulation of lesion location on the upper detector at 0° and 15° and relative lesion activity on upper and lower detectors. In a prospective study (July 2022-June 2023), participants with Breast Imaging Reporting and Data System category 2, 3, 4, or 5 breast lesions underwent MBI-guided biopsy. After injection of 740 MBq technetium 99m sestamibi, craniocaudal and mediolateral oblique MBI (2-minute acquisition per view) confirmed lesion visualization. A region of interest over the lesion permitted depth calculation in the system software. Upper detector retraction allowed biopsy device placement. Specimen images were obtained on the retracted upper detector, confirming sampling of the target. Results Of 21 participants enrolled (mean age, 50.6 years ± 10.1 [SD]; 21 [100%] women), 17 underwent MBI-guided biopsy with concordant pathology. No lesion was observed at the time of biopsy in four participants. Average lesion size was 17 mm (range, 6-38 mm). Average procedure time, including preprocedure imaging, was 55 minutes ± 13 (range, 38-90 minutes). Pathology results included invasive ductal carcinoma (n = 1), fibroadenoma (n = 4), pseudoangiomatous stromal hyperplasia (n = 6), and fibrocystic changes (n = 6). Conclusion MBI-guided biopsy using a dual-head system with retractable upper detector head was feasible, well tolerated, and efficient. Keywords: Breast Biopsy, Molecular Breast Imaging, Image-guided Biopsy, Molecular Breast Imaging-guided Biopsy, Breast Cancer Clinical trial registration no. NCT06058650 © RSNA, 2024.


Subject(s)
Breast Neoplasms , Image-Guided Biopsy , Molecular Imaging , Technetium Tc 99m Sestamibi , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Middle Aged , Prospective Studies , Image-Guided Biopsy/methods , Image-Guided Biopsy/instrumentation , Adult , Molecular Imaging/methods , Molecular Imaging/instrumentation , Aged , Radiopharmaceuticals , Breast/diagnostic imaging
4.
J Nucl Med ; 65(7): 998-1003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38871386

ABSTRACT

Gynecological pathologies account for approximately 4.5% of the overall global disease burden. Although cancers of the female reproductive system have understandably been the focus of a great deal of research, benign gynecological conditions-such as endometriosis, polycystic ovary syndrome, and uterine fibroids-have remained stubbornly understudied despite their astonishing ubiquity and grave morbidity. This historical inattention has frequently become manifested in flawed diagnostic and treatment paradigms. Molecular imaging could be instrumental in improving patient care on both fronts. In this Focus on Molecular Imaging review, we will examine recent advances in the use of PET, SPECT, MRI, and fluorescence imaging for the diagnosis and management of benign gynecological conditions, with particular emphasis on recent clinical reports, areas of need, and opportunities for growth.


Subject(s)
Molecular Imaging , Humans , Molecular Imaging/methods , Molecular Imaging/trends , Female , Gynecology
5.
J Nucl Med Technol ; 52(2): 107-114, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839120

ABSTRACT

Molecular breast imaging (MBI) is one of several options available to patients seeking supplemental screening due to mammographically dense breasts. Patient experience during MBI may influence willingness to undergo the test but has yet to be formally assessed. We aimed to assess patient comfort level during MBI, to compare MBI comfort with mammography comfort, to identify factors associated with MBI discomfort, and to evaluate patients' willingness to return for future MBI. Methods: A 10-question survey was sent by e-mail to patients undergoing MBI between August and December 2022 to obtain quantitative assessments and qualitative opinions about MBI. Results: Of 561 invited patients, 209 (37%) completed the survey and provided study consent. Their average age was 60.1 y (range, 40-81 y). Of the 209 responders, 202 (97%) were presenting for screening MBI, 195 (94%) had dense breasts, and 46 (22%) had a personal history of breast cancer. The average rating of MBI comfort was 2.9 (SD, 1.5; median, 3.0) on a 7-point scale (1 indicating extremely comfortable and 7 indicating extremely uncomfortable). The rating distribution was as follows: 140 (67%) comfortable (rating, 1-3); 24 (12%) neither comfortable nor uncomfortable (rating, 4); and 45 (22%) uncomfortable (rating, 5 or 6). No responders gave a 7 rating. The most frequently mentioned sources of discomfort included breast compression (n = 16), back or neck discomfort (n = 14), and maintaining position during the examination (n = 14). MBI comfort was associated with responder age (74% ≥55 y old were comfortable, versus 53% <55 y old [P = 0.003]) and history of MBI (71% with prior MBI were comfortable, versus 61% having a first MBI [P = 0.006]). Of 208 responders with a prior mammogram, 148 (71%) said MBI is more comfortable than mammography (a significant majority [P < 0.001]). Of 202 responders to the question of whether they were willing to return for a future MBI, 196 (97%) were willing. A notable factor in positive patient experience was interaction with the MBI nuclear medicine technologist. Conclusion: Most responders thought MBI to be a comfortable examination and more comfortable than mammography. Patient experience during MBI may be improved by ensuring back support and soliciting patient feedback at the time of positioning and throughout the examination. Methods under study to reduce imaging time may be most important for improving patient experience.


Subject(s)
Molecular Imaging , Humans , Middle Aged , Aged , Adult , Female , Surveys and Questionnaires , Aged, 80 and over , Molecular Imaging/methods , Breast Neoplasms/diagnostic imaging , Mammography
7.
Methods Mol Biol ; 2822: 65-75, 2024.
Article in English | MEDLINE | ID: mdl-38907912

ABSTRACT

We present a powerful method for direct mRNA detection based on ligation-based recognition and in situ amplification, capable of single-cell imaging mRNA at single-nucleotide and single-molecule resolution. Attributed to the use of Splint R ligase that can ligate padlock probe with RNA as target template, this method can efficiently detect mRNA in the absence of reverse transcription. This method enables spatial localization and correlation analysis of gene expression in single cells, which helps us to elucidate gene function and regulatory mechanisms.


Subject(s)
RNA, Messenger , Single-Cell Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Humans , Nucleic Acid Amplification Techniques/methods , Single Molecule Imaging/methods , Molecular Imaging/methods
8.
Phys Med Biol ; 69(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38843809

ABSTRACT

Objective. Image reconstruction is a fundamental step in magnetic particle imaging (MPI). One of the main challenges is the fact that the reconstructions are computationally intensive and time-consuming, so choosing an algorithm presents a compromise between accuracy and execution time, which depends on the application. This work proposes a method that provides both fast and accurate image reconstructions.Approach. Image reconstruction algorithms were implemented to be executed in parallel ingraphics processing units(GPUs) using the CUDA framework. The calculation of the model-based MPI calibration matrix was also implemented in GPU to allow both fast and flexible reconstructions.Main results. The parallel algorithms were able to accelerate the reconstructions by up to about6,100times in comparison to the serial Kaczmarz algorithm executed in the CPU, allowing for real-time applications. Reconstructions using the OpenMPIData dataset validated the proposed algorithms and demonstrated that they are able to provide both fast and accurate reconstructions. The calculation of the calibration matrix was accelerated by up to about 37 times.Significance. The parallel algorithms proposed in this work can provide single-frame MPI reconstructions in real time, with frame rates greater than 100 frames per second. The parallel calculation of the calibration matrix can be combined with the parallel reconstruction to deliver images in less time than the serial Kaczmarz reconstruction, potentially eliminating the need of storing the calibration matrix in the main memory, and providing the flexibility of redefining scanning and reconstruction parameters during execution.


Subject(s)
Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Algorithms , Computer Graphics , Time Factors , Molecular Imaging/methods , Calibration
9.
Science ; 384(6701): eadh9979, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870291

ABSTRACT

Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain. The platform includes three core elements: a vibrating microtome for ultraprecision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and a computational pipeline for reconstructing three-dimensional connectivity across multiple brain slabs (UNSLICE). We applied this platform for analyzing human Alzheimer's disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain.


Subject(s)
Alzheimer Disease , Brain , Molecular Imaging , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Molecular Imaging/methods , Phenotype , Hydrogels/chemistry , Connectome
10.
Anal Chem ; 96(25): 10348-10355, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857182

ABSTRACT

Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of ∼1900 (PH ∼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.


Subject(s)
Magnetic Resonance Imaging , Molecular Imaging , Niacinamide , Point-of-Care Systems , Pyrazines , Niacinamide/chemistry , Molecular Imaging/methods , Pyrazines/chemistry , Humans
11.
Anal Chem ; 96(24): 10084-10091, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836421

ABSTRACT

Due to the potential off-tumor signal leakage and limited biomarker content, there is an urgent need for stimulus-responsive and amplification-based tumor molecular imaging strategies. Therefore, two tetrahedral framework DNA (tFNA-Hs), tFNA-H1AP, and tFNA-H2, were rationally engineered to form a polymeric tFNA network, termed an intelligent DNA network, in an AND-gated manner. The intelligent DNA network was designed for tumor-specific molecular imaging by leveraging the elevated expression of apurinic/apyrimidinic endonuclease 1 (APE1) in tumor cytoplasm instead of normal cells and the high expression of miRNA-21 in tumor cytoplasm. The activation of tFNA-H1AP can be achieved through specific recognition and cleavage by APE1, targeting the apurinic/apyrimidinic site (AP site) modified within the stem region of hairpin 1 (H1AP). Subsequently, miRNA-21 facilitates the hybridization of activated H1AP on tFNA-H1AP with hairpin 2 (H2) on tFNA-H2, triggering a catalytic hairpin assembly (CHA) reaction that opens the H1AP at the vertices of tFNA-H1AP to bind with H2 at the vertices of tFNA-H2 and generate fluorescence signals. Upon completion of hybridization, miRNA-21 is released, initiating the subsequent cycle of the CHA reaction. The AND-gated intelligent DNA network can achieve specific tumor molecular imaging in vivo and also enables risk stratification of neuroblastoma patients.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , MicroRNAs , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , MicroRNAs/metabolism , MicroRNAs/analysis , DNA/chemistry , DNA/metabolism , Molecular Imaging/methods , Animals , Optical Imaging
13.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893419

ABSTRACT

Zinc ions (Zn2+) play a key role in maintaining and regulating protein structures and functions. To better understand the intracellular Zn2+ homeostasis and signaling role, various fluorescent sensors have been developed that allow the monitoring of Zn2+ concentrations and bioimaging in live cells in real time. This review highlights the recent development of organic fluorescent probes for the detection and imaging of intracellular Zn2+, including the design and construction of the probes, fluorescent response mechanisms, and their applications to intracellular Zn2+ detection and imaging on-site. Finally, the current challenges and prospects are discussed.


Subject(s)
Fluorescent Dyes , Zinc , Fluorescent Dyes/chemistry , Zinc/metabolism , Zinc/analysis , Zinc/chemistry , Humans , Optical Imaging/methods , Animals , Molecular Imaging/methods
14.
Phys Med Biol ; 69(13)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38815602

ABSTRACT

Objective.Magnetic particle imaging (MPI) is a promising imaging modality that leverages the nonlinear magnetization behavior of superparamagnetic iron oxide nanoparticles to determine their concentration distribution. Previous optimization models with multiple regularization terms have been proposed to achieve high-quality MPI reconstruction, but these models often result in increased computational burden, particularly for dense gridding 3D fields of view. In order to achieve faster reconstruction speeds without compromising reconstruction quality, we have developed a novel fused LASSO operator, total sum-difference (TSD), which effectively captures the sparse and smooth priors of MPI images.Methods.Through an analysis-synthesis equivalence strategy and a constraint smoothing strategy, the TSD regularized model was solved using the fast iterative soft-thresholding algorithm (FISTA). The resulting reconstruction method, TSD-FISTA, boasts low computational complexity and quadratic convergence rate over iterations.Results.Experimental results demonstrated that TSD-FISTA required only 10% and 37% of the time to achieve comparable or superior reconstruction quality compared to commonly used fused LASSO-based alternating direction method of multipliers and Tikhonov-based algebraic reconstruction techniques, respectively.Significance.TSD-FISTA shows promise for enabling real-time 3D MPI reconstruction at high frame rates for large fields of view.


Subject(s)
Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Time Factors , Algorithms , Phantoms, Imaging , Molecular Imaging/methods
15.
Cancer J ; 30(3): 142-152, 2024.
Article in English | MEDLINE | ID: mdl-38753748

ABSTRACT

ABSTRACT: Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.


Subject(s)
Breast Neoplasms , Molecular Imaging , Positron-Emission Tomography , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Female , Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, Steroid/metabolism , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Radiopharmaceuticals/metabolism , Receptors, Androgen/metabolism
16.
Nanotheranostics ; 8(3): 401-426, 2024.
Article in English | MEDLINE | ID: mdl-38751937

ABSTRACT

The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Magnetic Resonance Imaging/methods , Humans , Tomography, X-Ray Computed/methods , Animals , Molecular Imaging/methods , Nanoparticles/chemistry , Theranostic Nanomedicine/methods
18.
Int J Biol Macromol ; 271(Pt 1): 132514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768917

ABSTRACT

Accurate early diagnosis of rheumatoid arthritis (RA) and prompt implementation of appropriate treatment approaches are crucial. In the clinic, magnetic resonance imaging (MRI) has been recommended for implementation to aid in the precise and early diagnosis of RA. However, they are still limited by issues regarding specificity and their ability to capture comprehensive information about the pathological features. Herein, a responsive multifunctional nanoplatform with targeting capabilities (hMnO2-IR@BSA-PEG-FA) is constructed through integrating a RA microenvironment-responsive MRI contrast agent with activatable near-infrared (NIR) fluorescence imaging, aiming to simultaneously acquire comprehensive pathological features of RA from both structural and molecular imaging perspectives. Moreover, taking advantage of its targeting function to synovial microphages, hMnO2-IR@BSA-PEG-FA demonstrated a remarkable capability to accumulate effectively at the synovial tissue. Additionally, hMnO2 responded to the mild acidity and reactive oxygen species (ROS) in the RA microenvironment, leading to the controlled release of Mn2+ ions and IR780, which separately caused special MRI contrast enhancement of synovial tissues and sensitively demonstrated the presence of ROS and weakly acid microenvironment by NIR imaging. Consequently, hMnO2-IR@BSA-PEG-FA is expected to serve as a promising nanoplatform, offering valuable assistance in the precise diagnosis of early-stage RA by specially providing comprehensive information about the pathological features.


Subject(s)
Arthritis, Rheumatoid , Magnetic Resonance Imaging , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/diagnosis , Magnetic Resonance Imaging/methods , Animals , Contrast Media/chemistry , Humans , Molecular Imaging/methods , Nanoparticles/chemistry , Early Diagnosis , Reactive Oxygen Species/metabolism , Mice
19.
Cancer J ; 30(3): 194-201, 2024.
Article in English | MEDLINE | ID: mdl-38753754

ABSTRACT

ABSTRACT: Differentiated thyroid carcinoma (DTC) has been increasing in incidence in the United States over the last several decades, although mortality rates have remained low. Radioactive iodine therapy (RAI-T) has been a mainstay of treatment for DTC since the 1940s. Imaging of DTC before and after RAI-T primarily focuses on molecular imaging of the sodium iodide symporter. The expanding understanding of the molecular profile of DTC has increased available treatment options. Incorporation of risk stratification to treatment approaches has led to deintensification of both surgical and nonsurgical treatments, leading to decreased morbidity without compromising disease control.


Subject(s)
Iodine Radioisotopes , Molecular Imaging , Thyroid Neoplasms , Humans , Thyroid Neoplasms/therapy , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnostic imaging , Molecular Imaging/methods , Iodine Radioisotopes/therapeutic use , Adult , Symporters/genetics , Symporters/metabolism
20.
Cancer J ; 30(3): 170-175, 2024.
Article in English | MEDLINE | ID: mdl-38753751

ABSTRACT

ABSTRACT: Positron emission tomography (PET) is an established tool for molecular imaging of cancers, and its role in diagnosis, staging, and phenotyping continues to evolve and expand rapidly. PET imaging of increased glucose utilization with 18F-fluorodeoxyglucose is now entrenched in clinical oncology practice for improving prognostication and treatment response assessment. Additional critical processes for cancer cell survival can also be imaged by PET, helping to inform individualized treatment selections for patients by improving our understanding of cell survival mechanisms and identifying relevant active mechanisms in each patient. The critical importance of quantifying cell proliferation and DNA repair pathways for prognosis and treatment selection is highlighted by the nearly ubiquitous use of the Ki-67 index, an established histological quantitative measure of cell proliferation, and BRCA mutation testing for treatment selection. This review focuses on PET advances in imaging and quantifying cell proliferation and poly(ADP-ribose)polymerase expression that can be used to complement cancer phenotyping approaches that will identify the most effective treatments for each individual patient.


Subject(s)
Cell Proliferation , DNA Repair , Neoplasms , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/metabolism , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Molecular Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...