Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.825
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000004

ABSTRACT

Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.


Subject(s)
Anticonvulsants , Drug Resistant Epilepsy , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Receptors, Purinergic P2X7/metabolism , Humans , Animals , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Purinergic P2X Receptor Antagonists/pharmacology , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/metabolism , Signal Transduction/drug effects , Molecular Targeted Therapy , Epilepsy/drug therapy , Epilepsy/metabolism , Seizures/drug therapy , Seizures/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000083

ABSTRACT

The treatment of unresectable metastatic colorectal cancer has evolved over the last two decades, as knowledge of cancer biology has broadened and new targets have emerged. 'The Hallmarks of Cancer' illustrate the crucial capabilities acquired by cells to become malignant and represent the evolution of knowledge of tumor biology. This review integrates these novel targets and therapies into selected hallmarks: sustaining proliferative signaling, inducing vasculature, avoiding immune destruction, genome instability and mutation, reprogramming cellular metabolism, and resisting cell death. The different strategies and combinations under study are based on treatments with anti-EGFR, anti-VEGF, and anti-HER2 agents, KRAS G12C inhibitors, BRAF and MEK inhibitors, and immune checkpoint inhibitors. However, new approaches are emerging, including vaccines, WEE1 inhibitors, and PARP inhibitors, among others. The further deciphering of cancer biology will unravel new targets, develop novel therapies, and improve patients' outcomes.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Molecular Targeted Therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Signal Transduction/drug effects
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000217

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.


Subject(s)
Alzheimer Disease , Neurosteroids , PPAR alpha , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , PPAR alpha/metabolism , Neurosteroids/metabolism , Animals , Mental Disorders/metabolism , Mental Disorders/drug therapy , Cholesterol/metabolism , Molecular Targeted Therapy , Mitochondria/metabolism
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000238

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , ErbB Receptors , Organoids , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Organoids/metabolism , Organoids/drug effects , Drug Resistance, Neoplasm/drug effects , Animals , Cetuximab/pharmacology , Cetuximab/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Molecular Targeted Therapy/methods , Panitumumab/pharmacology , Panitumumab/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Signal Transduction/drug effects
5.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000443

ABSTRACT

The advent of comprehensive genomic profiling using next-generation sequencing (NGS) has unveiled an abundance of potentially actionable genetic aberrations that have shaped our understanding of the cancer biology landscape. Isocitrate dehydrogenase (IDH) is an enzyme present in the cytosol (IDH1) and mitochondria (IDH2 and IDH3). In the mitochondrion, it catalyzes the irreversible oxidative decarboxylation of isocitrate, yielding the production of α-ketoglutarate and nicotinamide adenine dinucleotide phosphate (NADPH) as well as carbon dioxide (CO2). In the cytosol, IDH catalyzes the decarboxylation of isocitrate to α-ketoglutarate as well as the reverse reductive carboxylation of α-ketoglutarate to isocitrate. These rate-limiting steps in the tricarboxylic acid cycle, as well as the cytoplasmic response to oxidative stress, play key roles in gene regulation, cell differentiation, and tissue homeostasis. Mutations in the genes encoding IDH1 and IDH2 and, less commonly, IDH3 have been found in a variety of cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. In this paper, we intend to elucidate the theorized pathophysiology behind IDH isomer mutation, its implication in cancer manifestation, and discuss some of the available clinical data regarding the use of novel IDH inhibitors and their role in therapy.


Subject(s)
Isocitrate Dehydrogenase , Molecular Targeted Therapy , Neoplasms , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Mutation , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
6.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000466

ABSTRACT

It is acknowledged that conventional renal cell carcinoma (cRCC), which makes up 85% of renal malignancies, is a highly vascular tumor. Humanized monoclonal antibodies were developed to inhibit tumor neo-angiogenesis, which is driven by VEGFA/KDR signaling. The results largely met our expectations, and in several cases, adverse events occurred. Our study aimed to analyze the expression of VEGFA and its receptor KDR by immunohistochemistry in tissue multi-array containing 811 cRCC and find a correlation between VEGFA/KDR signaling and new vessel formation. None of the 811 cRCC displayed VEGFA-positive immunostaining. However, each glomerulus in normal kidney showed VEGFA-positive endothelial cells. KDR expression in endothelial meshwork was found in only 9% of cRCC, whereas 2% of the cRCC displayed positive KDR reaction in the cytoplasm of tumor cells. Our results disclose the involvement of VEGFA/KDR signaling in the neo-vascularization of cRCC and explain the frequent resistance to drugs targeting the VEGFA/KDR signaling and the high frequency of adverse events.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Signal Transduction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Female , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/drug therapy , Aged , Molecular Targeted Therapy , Adult
7.
Biol Aujourdhui ; 218(1-2): 33-39, 2024.
Article in French | MEDLINE | ID: mdl-39007775

ABSTRACT

Interleukin (IL)-17A and then IL-17F have been discovered through their roles in chronic inflammatory diseases. These cytokines share 50% of sequence homology and bind to the same receptor made of the IL-17RA et IL-17RC chains. While they have rather similar pro-inflammatory effects, slight differences exist depending on the cell type considered or whether there is TNF or not. Indeed, there is a synergistic effect of TNF and IL-17A or IL-17F on many cell types. In addition, the interactions between immune and stromal cells also modulate their effects which vary according to stromal cell subtype. The identification of IL-17A and IL-17F roles in inflammatory diseases, as psoriasis, has led to the development of inhibitors of those cytokines. Anti-IL-17A, then anti-IL-17A/F and now anti-IL-17RA have been approved for different diseases and are particularly efficient in psoriasis. Their use is expending to other diseases like psoriatic arthritis and spondyloarthritis. Last, the recent understanding of the importance of stromal cells during chronic inflammation explains the relative inefficacy of such inhibitors in some other diseases.


Title: IL-17A et IL-17F : de la découverte au ciblage thérapeutique - Un exemple de médecine translationnelle. Abstract: L'interleukine (IL)-17A puis l'IL-17F ont été découvertes tour à tour pour leur rôle joué dans les maladies inflammatoires chroniques. Elles ont une homologie de séquence d'environ 50 % et partagent le même récepteur formé des chaînes IL-17RA et IL-17RC. Si elles ont des effets pro-inflammatoires assez similaires, il existe néanmoins quelques différences selon le type cellulaire considéré et selon la présence ou non de TNF, autre cytokine avec laquelle elles ont une synergie d'action. La troisième variable venant moduler leurs effets réside dans les interactions entre cellules immunes et cellules stromales, qui, là encore, varient selon le type de cellules stromales. La mise en évidence de leur rôle dans le psoriasis a notamment conduit au développement d'inhibiteurs de l'IL-17A, puis à la fois de l'IL-17A et de l'IL-17F et enfin d'un de leurs récepteurs. Ces inhibiteurs sont utilisés avec succès dans cette pathologie, et leur indication a été étendue progressivement au rhumatisme psoriasique et à certaines formes de spondylarthrite. Enfin, la récente compréhension de l'importance des cellules stromales dans la réaction inflammatoire chronique permet d'expliquer l'efficacité variable de ces biothérapies dans certaines pathologies.


Subject(s)
Biological Products , Interleukin-17 , Psoriasis , Translational Research, Biomedical , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-17/physiology , Psoriasis/drug therapy , Psoriasis/immunology , Animals , Biological Products/therapeutic use , Biological Products/pharmacology , Inflammation/drug therapy , Drug Discovery/trends , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Receptors, Interleukin-17/physiology , Receptors, Interleukin-17/antagonists & inhibitors
8.
Biol Aujourdhui ; 218(1-2): 41-54, 2024.
Article in French | MEDLINE | ID: mdl-39007776

ABSTRACT

The review is focused on recent drug discovery advances based on targeted protein degradation strategies. This new area of research has exploded leading to the development of potential drugs useful in a large variety of human diseases. They first target disease relevant proteins difficult to counteract with other classical strategies and extend now to aggregates, organelles, nucleic acids or lipidic droplets. These degraders engaged either the ubiquitin-proteasome system for PROTACs and molecular glues (first generation), or the lysosomal system via endosome-lysosome degradation (LYTACs) and autophagy-lysosome degradation (ATTEC, AUTAC, AUTOTAC) (following generations of degraders). PROTACs have expanded from the orthodox heterobifunctional ones to new derivatives such as homo-PROTACs, pro-PROTACs, CLIPTACs, HaloPROTACs, PHOTOTACs, Bac-PROTACs, AbTACs, ARN-PROTACs. The small molecular-weight molecular glues induce the formation of new ternary complexes which implicate the targeted protein and an ubiquitin ligase E3 allowing the protein ubiquinitation followed by its proteasomal degradation. Lysosomal degraders (LYTAC, ATTEC, AUTAC, AUTOTAC) specifically recognize extracellular and membrane proteins or dysfunctional organelles and transport them into lysosomes where they are degraded. They overcome the limitations observed with proteasomal degradations induced by PROTAC and molecular glues and demonstrate their potential to treat human diseases, especially neurodegenerative ones. Pharmaceutical companies are engaged at the world level to develop these new potential drugs targeting cancers, immuno-inflammatory and neurodegenerative diseases as well as a variety of other ones. Efficiency and risks for these novel therapeutic strategies are discussed.


Title: Induction de proximité et dégradation de cibles thérapeutiques par les nouveaux dégradeurs : quels concepts, quels développements, quel futur ? Abstract: La recherche dans le domaine de la dégradation ciblée des protéines s'est considérablement développée conduisant à l'élaboration de nouveaux outils chimiques à visée thérapeutique, les dégradeurs, potentiellement utiles dans diverses pathologies. Une grande variété d'objets à dégrader appartenant à divers compartiments intra- ou extracellulaires (protéines, complexes ou agrégats, organelles, acides nucléiques, gouttelettes lipidiques) a été ciblée à l'aide de ligands déjà existants, d'autres restent à découvrir. Les molécules de première génération, PROTAC et colles moléculaires, utilisent le système ubiquitine-protéasome pour détruire spécifiquement des protéines pathogéniques, certaines considérées jusqu'à présent comme inaccessibles en tant que cibles thérapeutiques. Au cours des cinq dernières années, ont été développés de nouveaux types de PROTAC hétéro-bifonctionnels comme les homo-PROTAC, pro-PROTAC, CLIPTAC, HaloPROTAC, PHOTOTAC, Bac-PROTAC, mais aussi des PROTAC macromoléculaires comme les AbTAC et ARN-PROTAC. Du fait de la grande diversité des substrats dégradés par les lysosomes, de nouveaux dégradeurs impliquant deux voies distinctes ont été ensuite produits : les chimères LYTAC pour la voie endosome-lysosome et les chimères ATTEC, AUTAC et AUTOTAC pour la voie autophagie-lysosome, augmentant ainsi considérablement le champ d'action des dégradeurs. Ces nouvelles molécules reconnaissent spécifiquement des protéines et/ou des organelles et permettent leur transport dans les lysosomes où ils sont dégradés. Les succès obtenus, que ce soit par dégradation protéasomale ou lysosomale pour plusieurs dizaines de dégradeurs (preuves de concepts et études cliniques en cours), expliquent l'intérêt quasi mondial des industries pharmaceutiques pour ces nouvelles molécules. Les challenges posés par leur développement et leur utilisation en clinique sont discutés.


Subject(s)
Lysosomes , Proteolysis , Humans , Proteolysis/drug effects , Lysosomes/metabolism , Animals , Proteins/metabolism , Drug Discovery/trends , Drug Discovery/methods , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/physiology , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Autophagy/physiology
9.
Neurology ; 103(3): e209688, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39008801

ABSTRACT

The discovery in 2008 that many adult gliomas harbor a hitherto unknown mutation in the metabolic gene isocitrate dehydrogenase (IDH) initiated revolutionary advances in our understanding of the biology, and correspondingly our classification, of gliomas. IDH mutations are found in most nonglioblastoma adult gliomas and portend a better prognosis. Massive efforts have unraveled many of the pleiotropic cellular effects of these mutations and spawned several lines of investigation to target the effect to therapeutic benefit. In this article are reviewed the implications of the IDH mutation in gliomas, in particular focusing on recent studies that have culminated in a rare positive phase 3 trial in these generally refractory tumors.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Mutation , Humans , Glioma/genetics , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Molecular Targeted Therapy
10.
Front Endocrinol (Lausanne) ; 15: 1416668, 2024.
Article in English | MEDLINE | ID: mdl-38948520

ABSTRACT

Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.


Subject(s)
Diabetic Retinopathy , Molecular Targeted Therapy , Humans , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Animals , Molecular Targeted Therapy/methods , Cell- and Tissue-Based Therapy/methods , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
11.
Hematol Oncol ; 42(2): e3250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38949887

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptor Tyrosine Kinase-like Orphan Receptors , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Prognosis , Molecular Targeted Therapy , Animals , Biomarkers, Tumor/metabolism
12.
Oncol Res ; 32(7): 1141-1162, 2024.
Article in English | MEDLINE | ID: mdl-38948020

ABSTRACT

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm with intermediate malignancy characterized by a propensity for recurrence but a low metastatic rate. Diagnostic challenges arise from the diverse pathological presentation, variable symptomatology, and lack of different imaging features. However, IMT is identified by the fusion of the anaplastic lymphoma kinase (ALK) gene, which is present in approximately 70% of cases, with various fusion partners, including ran-binding protein 2 (RANBP2), which allows confirmation of the diagnosis. While surgery is the preferred approach for localized tumors, the optimal long-term treatment for advanced or metastatic disease is difficult to define. Targeted therapies are crucial for achieving sustained response to treatment within the context of genetic alteration in IMT. Crizotinib, an ALK tyrosine kinase inhibitor (TKI), was officially approved by the US Food and Drug Administration (FDA) in 2020 to treat IMT with ALK rearrangement. However, most patients face resistance and disease progression, requiring consideration of sequential treatments. Combining radiotherapy with targeted therapy appears to be beneficial in this indication. Early promising results have also been achieved with immunotherapy, indicating potential for combined therapy approaches. However, defined recommendations are still lacking. This review analyzes the available research on IMT, including genetic disorders and their impact on the course of the disease, data on the latest targeted therapy regimens and the possibility of developing immunotherapy in this indication, as well as summarizing general knowledge about prognostic and predictive factors, also in terms of resistance to systemic therapy.


Subject(s)
Neoplasms, Muscle Tissue , Humans , Neoplasms, Muscle Tissue/genetics , Neoplasms, Muscle Tissue/diagnosis , Neoplasms, Muscle Tissue/pathology , Neoplasms, Muscle Tissue/therapy , Neoplasms, Muscle Tissue/drug therapy , Anaplastic Lymphoma Kinase/genetics , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use
13.
Theranostics ; 14(9): 3439-3469, 2024.
Article in English | MEDLINE | ID: mdl-38948053

ABSTRACT

Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.


Subject(s)
Disease Progression , Etoposide , Neuroblastoma , Tumor Microenvironment , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Microenvironment/drug effects , Humans , Animals , Mice , Cell Line, Tumor , Etoposide/pharmacology , Etoposide/therapeutic use , Prognosis , Cellular Reprogramming/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Molecular Targeted Therapy/methods , Machine Learning , Apoptosis/drug effects , Metabolic Reprogramming
14.
Theranostics ; 14(9): 3674-3692, 2024.
Article in English | MEDLINE | ID: mdl-38948057

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) is overexpressed in a range of solid tumors and participants in multiple oncogenic signaling pathways, making it an attractive therapeutic target. In the past decade, the rapid development of various Trop2-targeted therapies, notably marked by the advent of the antibody-drug conjugate (ADC), revolutionized the outcome for patients facing Trop2-positive tumors with limited treatment opinions, such as triple-negative breast cancer (TNBC). This review provides a comprehensive summary of advances in Trop2-targeted therapies, including ADCs, antibodies, multispecific agents, immunotherapy, cancer vaccines, and small molecular inhibitors, along with in-depth discussions on their designs, mechanisms of action (MOAs), and limitations. Additionally, we emphasize the clinical research progress of these emerging Trop2-targeted agents, focusing on their clinical application and therapeutic efficacy against tumors. Furthermore, we propose directions for future research, such as enhancing our understanding of Trop2's structure and biology, exploring the best combination strategies, and tailoring precision treatment based on Trop2 testing methodologies.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Immunoconjugates , Molecular Targeted Therapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods , Animals , Cancer Vaccines/therapeutic use
15.
Biosci Trends ; 18(3): 224-232, 2024.
Article in English | MEDLINE | ID: mdl-38987162

ABSTRACT

Pancreatic cancer (PC) has the poorest prognosis among digestive cancers; only 15-20% of cases are resectable at diagnosis. This review explores multidisciplinary treatments for advanced PC, emphasizing resectability classification and treatment strategies. For locally advanced unresectable PC, systemic chemotherapy using modified FOLFIRINOX and gemcitabine with albumin-bound paclitaxel is standard, while the role of chemoradiation is debated. Induction chemotherapy followed by chemoradiation may be a promising therapy. Conversion surgery after initial chemotherapy or chemoradiotherapy offers favorable survival, however criteria for conversion need further refinements. For metastatic PC, clinical trials using immune checkpoint inhibitors and molecular targeted therapies are ongoing. Multidisciplinary approaches and further research are crucial for optimizing treatment and improving outcomes for advanced PC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy/methods , Chemoradiotherapy/trends , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Irinotecan/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Fluorouracil/therapeutic use , Oxaliplatin/therapeutic use , Oxaliplatin/administration & dosage , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Leucovorin/therapeutic use
16.
Drug Discov Ther ; 18(3): 207-209, 2024.
Article in English | MEDLINE | ID: mdl-38987209

ABSTRACT

Aortic aneurysm and aortic dissection (AAD) are severe life-threatening cardiovascular disorders for which no approved pharmaceutical therapies are currently available. Protein S-nitrosylation (SNO) is a typical redox-dependent posttranslational modification whose role in AAD has yet to be described. Recently, Zhang et al. revealed for the first time that SNO modification of macrophage cytoskeletal protein septin2 promotes vascular inflammation and extracellular matrix degradation in aortic aneurysm. Mechanically, the TIAM1-RAC1(T lymphoma invasion and metastasis-inducing protein 1-Ras-related C3 botulinum toxin substrate 1) axis participates in the progression of AAD induced with S-nitrosylated septin2. More importantly, developing R-ketorolac and NSC23766 compounds that specifically target the TIAM1-RAC1 pathway may be new a potential strategy for alleviating AAD.


Subject(s)
Aortic Dissection , Septins , Humans , Septins/metabolism , Aortic Dissection/drug therapy , Aortic Dissection/metabolism , Aortic Aneurysm/drug therapy , Aortic Aneurysm/metabolism , Animals , rac1 GTP-Binding Protein/metabolism , Protein Processing, Post-Translational/drug effects , Molecular Targeted Therapy , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Signal Transduction/drug effects
17.
Med Sci (Paris) ; 40(6-7): 534-543, 2024.
Article in French | MEDLINE | ID: mdl-38986098

ABSTRACT

Cyclic nucleotide phosphodiesterases (PDEs) modulate neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple isoforms of PDEs with different enzymatic properties and subcellular locally regulate cyclic nucleotide levels and associated cellular functions. This organisation is severely disrupted during hypertrophy and heart failure (HF), which may contribute to disease progression. Clinically, PDE inhibition has been seen as a promising approach to compensate for the catecholamine desensitisation that accompanies heart failure. Although PDE3 inhibitors such as milrinone or enoximone can be used clinically to improve systolic function and relieve the symptoms of acute CHF, their chronic use has proved detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as potential new targets for the treatment of HF, each with a unique role in local cyclic nucleotide signalling pathways. In this review, we describe cAMP and cGMP signalling in cardiomyocytes and present the different families of PDEs expressed in the heart and their modifications in pathological cardiac hypertrophy and HF. We also review results from preclinical models and clinical data indicating the use of specific PDE inhibitors or activators that may have therapeutic potential in CI.


Title: Les phosphodiestérases des nucléotides cycliques - Cibles thérapeutiques dans l'hypertrophie et l'insuffisance cardiaques. Abstract: Les phosphodiestérases des nucléotides cycliques (PDE) modulent la régulation neuro-hormonale de la fonction cardiaque en dégradant l'AMPc et le GMPc. Dans les cardiomyocytes, de multiples isoformes de PDE, aux propriétés enzymatiques et aux localisations subcellulaires différentes, régulent localement les niveaux de nucléotides cycliques et les fonctions cellulaires associées. Cette organisation est fortement perturbée au cours de l'hypertrophie et de l'insuffisance cardiaque à fraction d'éjection réduite (IC), ce qui peut contribuer à la progression de la maladie. Sur le plan clinique, l'inhibition des PDE a été considérée comme une approche prometteuse pour compenser la désensibilisation aux catécholamines qui accompagne l'IC. Bien que des inhibiteurs de la PDE3, tels que la milrinone ou l'énoximone, puissent être utilisés cliniquement pour améliorer la fonction systolique et soulager les symptômes de l'IC aiguë, leur utilisation chronique s'est avérée préjudiciable. D'autres PDE, telles que les PDE1, PDE2, PDE4, PDE5, PDE9 et PDE10, sont apparues comme de nouvelles cibles potentielles pour le traitement de l'IC, chacune ayant un rôle unique dans les voies de signalisation locales des nucléotides cycliques. Dans cette revue, nous décrivons la signalisation de l'AMPc et du GMPc dans les cardiomyocytes et présentons les différentes familles de PDE exprimées dans le cœur ainsi que leurs modifications dans l'hypertrophie cardiaque pathologique et dans l'IC. Nous évaluons également les résultats issus de modèles précliniques ainsi que les données cliniques indiquant l'utilisation d'inhibiteurs ou d'activateurs de PDE spécifiques qui pourraient avoir un potentiel thérapeutique dans l'IC.


Subject(s)
Cardiomegaly , Heart Failure , Phosphodiesterase Inhibitors , Humans , Cardiomegaly/drug therapy , Heart Failure/drug therapy , Animals , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/physiology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Molecular Targeted Therapy/methods , Cyclic GMP/metabolism , Cyclic GMP/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Cyclic AMP/metabolism , Cyclic AMP/physiology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/physiology
19.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946486

ABSTRACT

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Subject(s)
Antineoplastic Agents , Drug Design , Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Patents as Topic , Protein Kinase Inhibitors , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Drug Development , Chemistry, Pharmaceutical , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...