Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.923
Filter
1.
Front Immunol ; 15: 1403263, 2024.
Article in English | MEDLINE | ID: mdl-39086490

ABSTRACT

Background: Cell energy metabolism controls the activation and function of dendritic cells (DCs). Inflammatory dendritic epidermal cells (IDECs) in skin lesions of atopic dermatitis (AD) express high-affinity IgE receptor (FcϵRI) and toll-like receptor 2 (TLR2), which mediate the generation and maintenance of inflammation. However, cellular energy metabolism and effector function of IDECs mediated by FcϵRI and TLR2 have not been fully elucidated. Methods: IDECs in vitro were treated with TLR2 agonist Pam3CSK4 and anti-IgE alone or in combination for 24 h. Further, we analyzed the expression of cell surface activation markers, production of inflammatory factors, and cellular energy metabolism profiles of IDECs by using flow cytometry, multiplex assay, RNA sequencing, targeted energy metabolism, and seahorse assays. Results: Compared to the unstimulated or anti-IgE groups, Pam3CSK4 alone or combined with anti-IgE groups significantly increased the expression of CD80, CD83, and CD86 on IDECs, but did not affect the expression of the above markers in the anti-IgE group. The release of inflammatory cytokines increased in the Pam3CSK4 alone or combined with anti-IgE groups, while there was a weak increasing trend in the anti-IgE group. The glycolysis/gluconeogenesis pathway of carbon metabolism was affected in all treatment groups. Furthermore, compared to the control group, we found a decrease in pyruvic acid, upregulation of PFKM, downregulation of FBP1, and increase in extracellular lactate, glycolysis rate, and glycolysis capacity after all treatments, while there was no difference between each treatment group. However, there was no difference in glycolytic reserve and mitochondrial basic and maximum respiration among all groups. Conclusion: Our results indicate that glycolysis of IDECs may be activated through FcϵRI and TLR2 to upregulate inflammatory factors, suggesting that danger signals from bacteria or allergens might evoke an inflammatory response from AD through the glycolysis pathway.


Subject(s)
Dendritic Cells , Glucose , Lipopeptides , Monocytes , Toll-Like Receptor 2 , Humans , Lipopeptides/pharmacology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Glucose/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/agonists , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Energy Metabolism/drug effects , Inflammation/immunology , Inflammation/metabolism , Cells, Cultured , Receptors, IgE/metabolism , Cytokines/metabolism , Immunoglobulin E/immunology , Glycolysis , Cell Differentiation
2.
BMC Cancer ; 24(1): 782, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951749

ABSTRACT

BACKGROUND AND AIMS: The cardiotoxicity related to 5-Fluorouracil (5-FU) in cancer patients has garnered widespread attention. The systemic immune-inflammation index (SII) has recently been identified as a novel predictive marker for the development of cardiovascular illnesses in individuals without pre-existing health conditions. However, it remains unclear whether the levels of SII are linked to cardiotoxicity related to 5-FU. This retrospective study aims to fill this knowledge gap by examining the correlation between SII and cardiotoxicity related to 5-FU in a colorectal cancer cohort. METHODS: The study comprised colorectal cancer patients who received 5-FU-based chemotherapy at the affiliated cancer hospital of Guizhou Medical University between January 1, 2018 and December 31, 2020. After adjustment for confounders and stratification by tertiles of the interactive factor, linear regression analyses, curve fitting and threshold effect analyses were conducted. RESULTS: Of the 754 patients included final analysis, approximately 21% (n = 156) of them ultimately experienced cardiotoxicity related to 5-FU. Monocytes (M) was found as an influential element in the interaction between SII and cardiotoxicity related to 5-FU. In the low tertile of M (T1: M ≤ 0.38 × 109/L), increasing log SII was positively correlated with cardiotoxicity related to 5-FU (Odds Ratio [OR], 8.04; 95% confidence interval [95%CI], 1.68 to 38.56). However, a curvilinear relationship between log SII and cardiotoxicity was observed in the middle tertile of M (T2: 0.38 < M ≤ 0.52 × 109/L). An increase in log SII above 1.37 was shown to be associated with a decreased risk of cardiotoxicity (OR, 0.14; 95%CI, 0.02 to 0.88), indicating a threshold effect. In the high tertile of M (T3: M > 0.52 × 109/L), there was a tendency towards a negative linear correlation between the log SII and cardiotoxicity was observed (OR, 0.85; 95%CI, 0.37 to 1.98). CONCLUSION: Our findings suggest that SII may serve as a potential biomarker for predicting cardiotoxicity related to 5-FU in colorectal cancer patients. SII is an independent risk factor for cardiotoxicity related to 5-FU with low monocytes levels (T1). Conversely, in the middle monocytes levels (T2), SII is a protective factor for cardiotoxicity related to 5-FU but with a threshold effect.


Subject(s)
Cardiotoxicity , Colorectal Neoplasms , Fluorouracil , Humans , Fluorouracil/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Male , Female , Middle Aged , Cardiotoxicity/etiology , Retrospective Studies , Aged , Inflammation , Antimetabolites, Antineoplastic/adverse effects , Monocytes/immunology , Monocytes/drug effects , Adult
3.
Front Immunol ; 15: 1423776, 2024.
Article in English | MEDLINE | ID: mdl-38979427

ABSTRACT

Introduction: The endocannabinoid system (ECS), named after the chemical compounds found in the cannabis plant, is a regulatory network of neurotransmitters, receptors, and enzymes that plays crucial roles in skin health and disease. Endogenous ligands of the ECS, called endocannabinoids, have proven to be important regulators of immune responses. One of the most prevalent endocannabinoids, arachidonoylethanolamide (also known as anandamide), is known for its anti-inflammatory effects. Langerhans cells (LCs) are the sole antigen-presenting cells present in the human epidermis. They serve as the first line of defense against pathogens and are essential for the skin's specific immune responses and play a critical role in maintaining tissue homeostasis; however, little is known about the effect of endocannabinoids on these cells. Our research aimed to provide the connection between monocyte-derived Langerhans cells (moLCs) and the ECS, shedding light on their collaborative roles in immune homeostasis and inflammation. Methods: Human monocytes were differentiated into moLCs using established protocols. Anandamide was applied during the differentiation process to test its effect on the viability, marker expression, and cytokine production of the cells, as well as in short term treatments for intracellular calcium measurement. TLR ligands applied after the differentiation protocol were used to activate moLCs. The impact of anandamide on the functionality of moLCs was further assessed using differential gene expression analysis of bulk RNA-Seq data, moLC-T cell cocultures, while ELISpot was employed to determine polarization of T cells activated in the aforementioned cocultures. Results: Anandamide did not significantly affect the viability of moLCs up to 10 µM. When applied during the differentiation process it had only a negligible effect on CD207 expression, the prototypic marker of LCs; however, there was an observed reduction in CD1a expression by moLCs. Anandamide had no significant effects on the maturation status of moLCs, nor did it affect the maturation induced by TLR3 and TLR7/8 agonists. MoLCs differentiated in the presence of anandamide did however show decreased production of CXCL8, IL-6, IL-10 and IL-12 cytokines induced by TLR3 and TLR7/8 activation. Anandamide-treated moLCs showed an increased capability to activate naïve T cells; however, not to the level seen with combined TLR agonism. RNA sequencing analysis of moLCs differentiated with anandamide showed modest changes compared to control cells but did reveal an inhibitory effect on oxidative phosphorylation specifically in activated moLCs. Anandamide also promoted the polarization of naïve T cells towards a Th1 phenotype. Discussion: Our results show that anandamide has nuanced effects on the differentiation, maturation, cytokine secretion, metabolism and function of activated moLCs. Among these changes the decrease in CD1a expression on moLCs holds promise to selectively dampen inflammation induced by CD1a restricted T cells, which have been implicated as drivers of inflammation in common inflammatory skin conditions such as psoriasis, atopic dermatitis and contact dermatitis.


Subject(s)
Arachidonic Acids , Endocannabinoids , Homeostasis , Langerhans Cells , Monocytes , Polyunsaturated Alkamides , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Humans , Polyunsaturated Alkamides/pharmacology , Langerhans Cells/immunology , Langerhans Cells/metabolism , Langerhans Cells/drug effects , Arachidonic Acids/pharmacology , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Cytokines/metabolism , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Skin/immunology , Skin/metabolism , Inflammation/immunology , Inflammation/metabolism
4.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980302

ABSTRACT

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Subject(s)
Indican , Kidney Failure, Chronic , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Humans , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Arachidonic Acid/metabolism , Male , Immunity, Innate/drug effects , Mice, Inbred C57BL , Arachidonate 5-Lipoxygenase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Trained Immunity
5.
PLoS One ; 19(7): e0306429, 2024.
Article in English | MEDLINE | ID: mdl-38980867

ABSTRACT

Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.


Subject(s)
Brucella abortus , Endothelial Cells , Epithelial Cells , Histocompatibility Antigens Class I , Interferon-gamma , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , RNA, Bacterial/genetics , Cell Line , Down-Regulation/drug effects , ErbB Receptors/metabolism , Brucellosis/immunology , Brucellosis/metabolism , Brucellosis/microbiology , Brucellosis/genetics , Golgi Apparatus/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/microbiology , Monocytes/metabolism , Monocytes/immunology , Monocytes/drug effects
6.
J Immunol Res ; 2024: 5537948, 2024.
Article in English | MEDLINE | ID: mdl-39056014

ABSTRACT

CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Proliferation , Dendritic Cells , Lymphocyte Activation , Mast Cells , Thapsigargin , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Thapsigargin/pharmacology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Mast Cells/immunology , Mast Cells/drug effects , Mast Cells/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Monocytes/immunology , Monocytes/drug effects , Monocytes/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Cytokines/metabolism , Imidazoles/pharmacology , Cell Line
7.
Sci Rep ; 14(1): 16897, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043893

ABSTRACT

The chemokine (CCL)-chemokine receptor (CCR2) interaction, importantly CCL2-CCR2, involved in the intrahepatic recruitment of monocytes upon liver injury promotes liver fibrosis. CCL2-CCR2 antagonism using Cenicriviroc (CVC) showed promising results in several preclinical studies. Unfortunately, CVC failed in phase III clinical trials due to lack of efficacy to treat liver fibrosis. Lack of efficacy could be attributed to the fact that macrophages are also involved in disease resolution by secreting matrix metalloproteinases (MMPs) to degrade extracellular matrix (ECM), thereby inhibiting hepatic stellate cells (HSCs) activation. HSCs are the key pathogenic cell types in liver fibrosis that secrete excessive amounts of ECM causing liver stiffening and liver dysfunction. Knowing the detrimental role of intrahepatic monocyte recruitment, ECM, and HSCs activation during liver injury, we hypothesize that combining CVC and MMP (MMP1) could reverse liver fibrosis. We evaluated the effects of CVC, MMP1 and CVC + MMP1 in vitro and in vivo in CCl4-induced liver injury mouse model. We observed that CVC + MMP1 inhibited macrophage migration, and TGF-ß induced collagen-I expression in fibroblasts in vitro. In vivo, MMP1 + CVC significantly inhibited normalized liver weights, and improved liver function without any adverse effects. Moreover, MMP1 + CVC inhibited monocyte infiltration and liver inflammation as confirmed by F4/80 and CD11b staining, and TNFα gene expression. MMP1 + CVC also ameliorated liver fibrogenesis via inhibiting HSCs activation as assessed by collagen-I staining and collagen-I and α-SMA mRNA expression. In conclusion, we demonstrated that a combination therapeutic approach by combining CVC and MMP1 to inhibit intrahepatic monocyte recruitment and increasing collagen degradation respectively ameliorate liver inflammation and fibrosis.


Subject(s)
Extracellular Matrix , Hepatic Stellate Cells , Liver Cirrhosis , Matrix Metalloproteinase 1 , Monocytes , Animals , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Monocytes/metabolism , Monocytes/drug effects , Extracellular Matrix/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Male , Mice, Inbred C57BL , Carbon Tetrachloride , Disease Models, Animal , Macrophages/metabolism , Macrophages/drug effects , Humans , Cell Movement/drug effects , Drug Synergism , Imidazoles , Sulfoxides
8.
Cells ; 13(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39056769

ABSTRACT

Background: Immunological imbalances characteristic of endometriosis may develop as early as the primary manifestations of the disease in adolescence. Objective: To evaluate subpopulation dynamics of monocytes and lymphocytes in peripheral blood and peritoneal fluid of adolescents with peritoneal endometriosis at diagnosis and after 1-year progestogen therapy. Methods: This study included 70 girls, 13-17 years old, diagnosed laparoscopically with peritoneal endometriosis (n = 50, main group) or paramesonephric cysts (n = 20, comparison group). Phenotypes of monocytes and lymphocytes of the blood and macrophages of the peritoneal fluid were analyzed by flow cytometry at diagnosis and during progestogen therapy. Results: Differential blood counts of CD16+ (p < 0.001) and CD86+ (p = 0.017) monocytes were identified as independent risk factors for peritoneal endometriosis in adolescents. During the treatment, cytotoxic lymphocytes CD56dimCD16bright (p = 0.049) and CD206+ monocytes (p < 0.001) significantly increased while CD163+ monocytes decreased in number (p = 0.017). The CD56dimCD16bright blood counts before (p < 0.001) and during progestogen therapy (p = 0.006), as well as CD206+ blood counts during the treatment (p = 0.038), were associated with the efficacy of pain relief after 1-year progestogen therapy. Conclusions: Adolescents with peritoneal endometriosis have altered counts of pro- and anti-inflammatory monocytes and lymphocytes both before and after 1-year progestogen therapy, correlating with treatment efficacy and justifying long-term hormonal therapy.


Subject(s)
Endometriosis , Lymphocytes , Monocytes , Phenotype , Progestins , Humans , Female , Endometriosis/drug therapy , Endometriosis/pathology , Adolescent , Monocytes/drug effects , Monocytes/metabolism , Lymphocytes/drug effects , Lymphocytes/metabolism , Progestins/therapeutic use , Progestins/pharmacology , Treatment Outcome , Ascitic Fluid
9.
Biochem Pharmacol ; 226: 116413, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971333

ABSTRACT

Chronic nonhealing diabetic wounds are a critical clinical challenge. Regulatory T cells (Tregs) are immunosuppressive modulators affecting wound healing progression by controlling the inflammatory response. The current study attempted to investigate whether the exosomes derived from cord blood (CB) Tregs can accelerate the healing process. Exosomes were isolated from CB-Treg cultures using ultracentrifugation and validated with different specific markers of exosomes. The purified CB-Treg-derived exosomes were co-cultured with peripheral blood mononuclear cells (PBMCs) and CD14+ monocytes. The migration-promoting effect of CB-Treg-derived exosomes on fibroblasts and endothelial cells was investigated. We used thermosensitive Pluronic F-127 hydrogel (PF-127) loaded with CB-Treg-derived exosomes in a diabetic wound healing mouse model. CB-Treg-derived exosomes with 30-120 nm diameters revealed exosome-specific markers, such as TSG101, Alix, and CD63. CB-Treg-derived exosomes were mainly bound to the monocytes when co-cultured with PBMCs, and promoted monocyte polarization to the anti-inflammatory phenotype (M2) in vitro. CB-Treg-derived exosomes enhanced the migration of endothelial cells and fibroblasts. Furthermore, CB-Treg-derived exosomes treatment accelerated wound healing by downregulating inflammatory factor levels and upregulating the M2 macrophage ratio in vivo. Our findings indicated that CB-Treg-derived exosomes could be a promising cell-free therapeutic strategy for diabetic wound healing, partly by targeting monocytes.


Subject(s)
Diabetes Mellitus, Experimental , Exosomes , Fetal Blood , Monocytes , T-Lymphocytes, Regulatory , Wound Healing , Exosomes/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Wound Healing/drug effects , Wound Healing/physiology , Monocytes/metabolism , Monocytes/drug effects , Monocytes/immunology , Mice , Fetal Blood/cytology , Humans , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/immunology , Male , Mice, Inbred C57BL , Coculture Techniques , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects
10.
Clin Immunol ; 265: 110304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964633

ABSTRACT

Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.


Subject(s)
Cladribine , Cytokines , Immunity, Innate , Monocytes , Multiple Sclerosis, Relapsing-Remitting , Humans , Cladribine/therapeutic use , Cladribine/pharmacology , Immunity, Innate/drug effects , Female , Male , Adult , Prospective Studies , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Monocytes/immunology , Monocytes/drug effects , Middle Aged , Cytokines/blood , Cytokines/immunology , Receptors, Purinergic P2X7/immunology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Young Adult
11.
Front Immunol ; 15: 1415565, 2024.
Article in English | MEDLINE | ID: mdl-38989285

ABSTRACT

How the microbiome regulates responses of systemic innate immune cells is unclear. In the present study, our purpose was to document a novel mechanism by which the microbiome mediates crosstalk with the systemic innate immune system. We have identified a family of microbiome Bacteroidota-derived lipopeptides-the serine-glycine (S/G) lipids, which are TLR2 ligands, access the systemic circulation, and regulate proinflammatory responses of splenic monocytes. To document the role of these lipids in regulating systemic immunity, we used oral gavage with an antibiotic to decrease the production of these lipids and administered exogenously purified lipids to increase the systemic level of these lipids. We found that decreasing systemic S/G lipids by decreasing microbiome Bacteroidota significantly enhanced splenic monocyte proinflammatory responses. Replenishing systemic levels of S/G lipids via exogenous administration returned splenic monocyte responses to control levels. Transcriptomic analysis demonstrated that S/G lipids regulate monocyte proinflammatory responses at the level of gene expression of a small set of upstream inhibitors of TLR and NF-κB pathways that include Trem2 and Irf4. Consistent with enhancement in proinflammatory cytokine responses, decreasing S/G lipids lowered gene expression of specific pathway inhibitors. Replenishing S/G lipids normalized gene expression of these inhibitors. In conclusion, our results suggest that microbiome-derived S/G lipids normally establish a level of buffered signaling activation necessary for well-regulated innate immune responses in systemic monocytes. By regulating gene expression of inflammatory pathway inhibitors such as Trem2, S/G lipids merit broader investigation into the potential dysfunction of other innate immune cells, such as microglia, in diseases such as Alzheimer's disease.


Subject(s)
Monocytes , Signal Transduction , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Animals , Mice , Microbiota/immunology , Mice, Inbred C57BL , Immunity, Innate , Toll-Like Receptor 2/metabolism , Gene Expression Regulation/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Lipopeptides/pharmacology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , NF-kappa B/metabolism , Inflammation/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Male , Lipids , Spleen/immunology , Spleen/metabolism , Cytokines/metabolism , Female
12.
Sci Transl Med ; 16(758): eadl3381, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083587

ABSTRACT

The adjuvant AS01 plays a key role in the immunogenicity of several approved human vaccines with demonstrated high efficacy. Its adjuvant effect relies on activation of the innate immune system. However, specific effects of AS01-adjuvanted vaccines on innate cell function and epigenetic remodeling, as described for Bacille Calmette-Guérin (BCG) and influenza vaccines, are still unknown. We assessed the long-term functional and epigenetic changes in circulating monocytes and dendritic cells induced by a model vaccine containing hepatitis B surface antigen and AS01 in healthy adults (NCT01777295). The AS01-adjuvanted vaccine, but not an Alum-adjuvanted vaccine, increased the number of circulating monocytes and their expression of human leukocyte antigen (HLA)-DR, which correlated with the magnitude of the memory CD4+ T cell response. Single-cell analyses revealed epigenetic alterations in monocyte and dendritic cell subsets, affecting accessibility of transcription factors involved in cell functions including activator protein-1 (AP-1), GATA, C/EBP, and interferon regulatory factor. The functional changes were characterized by a reduced proinflammatory response to Toll-like receptor activation and an improved response to interferon-γ, a cytokine critical for the adjuvant's mode of action. Epigenetic changes were most evident shortly after the second vaccine dose in CD14+ monocytes, for which accessibility differences of some transcription factors could persist for up to 6 months postvaccination. Together, we show that reprogramming of monocyte subsets occurs after vaccination with an AS01-adjuvanted vaccine, an effect that may contribute to the impact of vaccination beyond antigen-specific protection.


Subject(s)
Epigenesis, Genetic , Monocytes , Humans , Monocytes/metabolism , Monocytes/immunology , Monocytes/drug effects , Adult , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Male , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Female , Young Adult , Vaccination , Middle Aged , Adjuvants, Vaccine , Interferon-gamma/metabolism , Drug Combinations , Lipid A/analogs & derivatives , Saponins
13.
Cancer Med ; 13(14): e7378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031026

ABSTRACT

INTRODUCTION: Although the combination of venetoclax (VEN) and hypomethylating agents (HMAs) results in impressive efficacy in acute myeloid leukemia (AML), there is still a subset of patients who are refractory. We investigated the outcomes of AML patients with monocytic differentiation who were treated with frontline VEN/HMA. METHODS: A total of 155 patients with newly diagnosed AML treated with frontline VEN/HMA were enrolled in the study. Monocyte-like AML was identified by flow cytometry with typical expression of monocytic markers, and M5 was identified according to French, American, and British category. We compared the outcomes of patients with different characteristics. RESULTS: The rate of complete remission (CR) and CR with incomplete recovery of blood counts (CRi), progression-free survival (PFS), and overall survival (OS) in monocyte-like AML were inferior to those in nonmonocyte-like AML (CR/CRi rates, 26.7% vs. 80.0%, p < 0.001; median PFS, 2.1 vs. 8.8 months, p < 0.001; median OS, 9.2 vs. 19 months, p = 0.013). CR/CRi rate in M5 was lower than that in non-M5 (60.7% vs. 75.5%, p = 0.049). Multivariate analyses showed that monocyte-like AML was associated with lower odds of CR/CRi and higher risk of progression. CONCLUSION: Our study suggested that newly diagnosed AML with a monocytic immunophenotype had a poor prognosis with VEN/HMA treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bridged Bicyclo Compounds, Heterocyclic , Cell Differentiation , Leukemia, Myeloid, Acute , Monocytes , Sulfonamides , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Female , Sulfonamides/therapeutic use , Sulfonamides/pharmacology , Middle Aged , Aged , Monocytes/drug effects , Adult , Cell Differentiation/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aged, 80 and over , Young Adult , DNA Methylation
14.
Biomed Pharmacother ; 177: 117039, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955085

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.


Subject(s)
Disease Progression , Hepatocyte Growth Factor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Microenvironment , Animals , Hepatocyte Growth Factor/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Mice , Mice, Inbred C57BL , Cell Line, Tumor , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology
15.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063086

ABSTRACT

Pyrogens are fever-inducing substances routinely investigated in health products through tests such as the Rabbit Pyrogen Test (RPT), the Limulus Amebocyte Lysate (LAL), and the Monocyte Activation Test (MAT). However, the applications of the MAT for medical devices and biomaterials remain limited. This work aimed to overview the studies evaluating the pyrogenicity of medical devices and biomaterials using the MAT, highlighting its successes and potential challenges. An electronic search was performed by December 2023 in PubMed, Scopus, and Web of Science, identifying 321 records which resulted in ten selected studies. Data were extracted detailing the tested materials, MAT variants, interferences, and comparisons between methods. Methodological quality was assessed using the ToxRTool, and the results were synthesized descriptively. The selected studies investigated various materials, including polymers, metals, and natural compounds, employing the different biological matrices of the MAT. Results showed the MAT's versatility, with successful detection of pyrogens in most materials tested, though variability in sensitivity was noted based on the material and testing conditions. Challenges remain in optimizing protocols for different material properties, such as determining the best methods for direct contact versus eluate testing and addressing the incubation conditions. In conclusion, the MAT demonstrates significant potential as a pyrogen detection method for medical devices and biomaterials. However, continued research is essential to address existing gaps, optimize protocols, and validate the test across a broader range of materials.


Subject(s)
Biocompatible Materials , Equipment and Supplies , Monocytes , Pyrogens , Monocytes/drug effects , Monocytes/metabolism , Pyrogens/analysis , Biocompatible Materials/chemistry , Humans , Animals
16.
Phytomedicine ; 131: 155784, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878325

ABSTRACT

BACKGROUND: Currently, SARS-CoV-2 has not disappeared and continues to prevail worldwide, with the ongoing risk of mutations and the potential for severe COVID-19. The impairment of monocyte mitochondrial function caused by SARS-CoV-2, leading to a metabolic and immune dysregulation, is a crucial factor in the development of severe COVID-19. PURPOSE: Discover effective phytomedicines based on mitochondrial-related biomarkers in severe SARS-CoV-2 infection. METHODS: Firstly, differential gene analysis and gene set enrichment analysis (GSEA) were conducted on monocytes datasets to identify genes and pathways distinguishing severe patients from uninfected individuals. Then, GO and KEGG enrichment analysis on the differentially expressed genes (DEGs) obtained. Take the DEGs and intersect them with the MitoCarta 3.0 gene set to obtain the differentially expressed mitochondrial-related genes (DE-MRGs). Subsequently, machine learning algorithms were employed to screen potential mitochondrial dysfunction biomarkers for severe COVID-19 based on score values. ROC curves were then plotted to assess the distinguish capability of the biomarkers, followed by validation using two additional independent datasets. Next, the effects of the identified biomarkers on metabolic pathways and immune cells were explored through Gene Set Variation Analysis (GSVA) and CIBERSORT. Finally, potential nature products for severe COVID-19 were screened from the expression profile dataset based on dysregulated mitochondrial-related genes, followed by in vitro experimental validation. RESULTS: There are 1812 DEGs and 17 dysregulated mitochondrial processes between severe COVID-19 patients and uninfected individuals. A total of 77 DE-MRGs were identified, and the potential biomarkers were identified as RECQL4, PYCR1, PIF1, POLQ, and GLDC. In both the training and validation sets, the area under the ROC curve (AUC) for these five biomarkers was greater than 0.9. And they did not show significant changes in mild to moderate patients (p > 0.05), indicating their ability to effectively distinguish severe COVID-19. These biomarkers exhibit a highly significant correlation with the dysregulated metabolic processes (p < 0.05) and immune cell imbalance (p < 0.05) in severe patients, as demonstrated by GSVA and CIBERSORT algorithms. Curcumin has the highest score in the predictive model based on transcriptomic data from 496 natural compounds (p = 0.02; ES = 0.90). Pre-treatment with curcumin for 8 h has been shown to alleviate mitochondrial membrane potential damage caused by the SARS-CoV-2 S1 protein (p < 0.05) and reduce elevated levels of reactive oxygen species (ROS) (p < 0.01). CONCLUSION: The results of this study indicate a significant correlation between severe SARS-CoV-2 infection and mitochondrial dysfunction. The proposed mitochondrial dysfunction biomarkers identified in this study are associated with the disease progression, metabolic and immune changes in severe SARS-CoV-2 infected patients. Curcumin has a potential role in preventing severe COVID-19 by protecting mitochondrial function. Our findings provide new strategies for predicting the prognosis and enabling early intervention in SARS-CoV-2 infection.


Subject(s)
Biomarkers , COVID-19 Drug Treatment , COVID-19 , Mitochondria , Humans , Biomarkers/blood , Mitochondria/drug effects , SARS-CoV-2 , Phytotherapy , Machine Learning , Monocytes/drug effects , Monocytes/metabolism , Computational Biology , Severity of Illness Index
17.
J Transl Med ; 22(1): 534, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835045

ABSTRACT

BACKGROUND: Macrophages are involved in tissue homeostasis, angiogenesis and immunomodulation. Proangiogenic and anti-inflammatory macrophages (regulatory macrophages, Mreg) can be differentiated in-vitro from CD14+ monocytes by using a defined cell culture medium and a stimulus of IFNγ. AIM OF THE STUDY: To scrutinize the potential impact of temporal IFNγ exposure on macrophage differentiation as such exposure may lead to the emergence of a distinct and novel macrophage subtype. METHODS: Differentiation of human CD14+ monocytes to Mreg was performed using a GMP compliant protocol and administration of IFNγ on day 6. Monocytes from the same donor were in parallel differentiated to MregIFNγ0 using the identical protocol but with administration of IFNγ on day 0. Cell characterization was performed using brightfield microscopy, automated and metabolic cell analysis, transmission electron microscopy, flow cytometry, qPCR and secretome profiling. RESULTS: Mreg and MregIFNγ0 showed no differences in cell size and volume. However, phenotypically MregIFNγ0 exhibited fewer intracellular vesicles/vacuoles but larger pseudopodia-like extensions. MregIFNγ0 revealed reduced expression of IDO and PD-L1 (P < 0.01 for both). They were positive for CD80, CD14, CD16 and CD38 (P < 0.0001vs. Mreg for all), while the majority of MregIFNγ0 did not express CD206, CD56, and CD103 on their cell surface (P < 0.01 vs. Mreg for all). In terms of their secretomes, MregIFNγ0 differed significantly from Mreg. MregIFNγ0 media exhibited reduced levels of ENA-78, Osteopontin and Serpin E1, while the amounts of MIG (CXCL9) and IP10 were increased. CONCLUSION: Exposing CD14+ monocytes to an alternatively timed IFNγ stimulation results in a novel macrophage subtype which possess additional M1-like features (MregIFNγ0). MregIFNγ0 may therefore have the potential to serve as cellular therapeutics for clinical applications beyond those covered by M2-like Mreg, including immunomodulation and tumor treatment.


Subject(s)
Cell Differentiation , Interferon-gamma , Macrophages , Phenotype , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Cell Differentiation/drug effects , Monocytes/metabolism , Monocytes/drug effects , Time Factors , Lipopolysaccharide Receptors/metabolism
18.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892256

ABSTRACT

E-cigarette users predominantly also continue to smoke cigarettes. These Dual Users either consume e-cigarettes in locations where smoking is not allowed, but vaping is, or to reduce their consumption of cigarettes, believing it will lead to harm reduction. Whilst it is known that e-cigarette vapour is chemically less complex than cigarette smoke, it has a distinct chemical profile, and very little is known about the health impacts of exposure to both chemical profiles vs. either alone. We simultaneously exposed cells in vitro to non-toxic levels of e-cigarette vapour extract (EVE) and cigarette smoke extract (CSE) to determine their effects on 16HBE14o- airway epithelial cell metabolism and inflammatory response, as well as immune cell (THP-1 cells and monocyte-derived macrophages (MDM) from healthy volunteers) migration, phagocytosis, and inflammatory response. We observed increased toxicity, reduced metabolism (a marker of proliferation) in airway epithelial cells, and reduced monocyte migration, macrophage phagocytosis, and altered chemokine production after exposure to either CSE or EVE. These cellular responses were greater after dual exposure to CSE and EVE. The airway epithelial cells from smokers showed reduced metabolism after EVE (the Switcher model) and dual CSE and EVE exposure. When EVE and CSE were allowed to interact, the chemicals were found to be altered, and new chemicals were also found compared to the CSE and EVE profiles. Dual exposure to e-cigarette vapour and cigarette smoke led to worse functional outcomes in cells compared to either single exposure alone, adding to limited data that dual use may be more dangerous than smoking only.


Subject(s)
Electronic Nicotine Delivery Systems , Macrophages , Monocytes , Humans , Macrophages/metabolism , Macrophages/drug effects , Monocytes/metabolism , Monocytes/drug effects , Smoke/adverse effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , E-Cigarette Vapor/adverse effects , Vaping/adverse effects , Phagocytosis/drug effects , THP-1 Cells , Cell Movement/drug effects , Smoking/adverse effects , Tobacco Products/adverse effects
19.
Cell Biochem Funct ; 42(4): e4067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874324

ABSTRACT

Dendritic cells (DCs) are known as antigen-presenting cells that are capable of regulating immune responses. DCs and T cells can interact mutually to induce antigen-specific T-cell responses. Cabergoline, which is a dopamine (DA) receptor agonist, seems to implement anti-inflammatory properties in the immune system, and therefore in the present study the impact of a DA receptor agonist cabergoline on the monocyte-derived DCs (moDCs) was assessed. Immature moDCs were treated with lipopolysaccharide to produce mature DCs (mDCs). The expression of DCs' related surface markers namely: CD11c, HLA-DR, and CD86 was measured by utilizing of flow cytometry. Real-time PCR was the technique of choice to determine the levels at which diverse inflammatory and anti-inflammatory factors in cabergoline-treated and control mDC groups were expressed. DCs treated with cabergoline displayed a significant decrease in CD86 and HLA-DR expression, markers linked to maturation and antigen presentation, respectively. In addition, the cabergoline-mDC group showed a considerable decline in terms of the levels at which IL-10, TGF-ß, and IDO genes were expressed, and an increase in the expression of TNF-α and IL-12 in comparison to the mDC control group. Our findings revealed that cabergoline as an immunomodulatory agent can relatively shift DCs into an immunogenic state, and there is a requirement for further investigations to evaluate the effects of cabergoline-treated DCs on the T cell responses in vitro, and also in various diseases including cancer in animal models.


Subject(s)
Cabergoline , Dendritic Cells , Dopamine Agonists , Monocytes , Humans , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/immunology , Cabergoline/pharmacology , Dopamine Agonists/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Monocytes/immunology , Monocytes/cytology , Phenotype , Ergolines/pharmacology , Cells, Cultured , Lipopolysaccharides/pharmacology
20.
Bioorg Chem ; 149: 107470, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838619

ABSTRACT

Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3ß (GSK-3ß). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3ß inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3ß, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3ß and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.


Subject(s)
Indoles , Monocytes , Protein Kinase Inhibitors , Signal Transduction , Humans , Monocytes/drug effects , Monocytes/metabolism , Indoles/pharmacology , Indoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Signal Transduction/drug effects , Structure-Activity Relationship , Molecular Structure , Inflammation Mediators/metabolism , Inflammation Mediators/antagonists & inhibitors , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Cytokines/metabolism , Cytokines/antagonists & inhibitors , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL