Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Arch Virol ; 169(7): 135, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839691

ABSTRACT

Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.


Subject(s)
Cathelicidins , Monocytes , Virus Replication , Vitamin D3 24-Hydroxylase , Zika Virus Infection , Zika Virus , Humans , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Cytokines/metabolism , Cytokines/genetics , Monocytes/virology , Monocytes/metabolism , Monocytes/immunology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Virus Replication/drug effects , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Zika Virus/physiology , Zika Virus Infection/virology , Zika Virus Infection/metabolism
2.
Front Cell Infect Microbiol ; 11: 714088, 2021.
Article in English | MEDLINE | ID: mdl-34568093

ABSTRACT

Dengue virus (DENV) is the most widespread arbovirus, responsible for a wide range of clinical manifestations, varying from self-limited illness to severe hemorrhagic fever. Dengue severity is associated with host intense proinflammatory response and monocytes have been considered one of the key cell types involved in the early steps of DENV infection and immunopathogenesis. To better understand cellular mechanisms involved in monocyte infection by DENV, we analyzed the expression levels of 754 human microRNAs in DENV-infected THP-1 cells, a human monocytic cell line. Eleven human microRNAs showed differential expression after DENV infection and gene ontology and enrichment analysis revealed biological processes potentially affected by these molecules. Five downregulated microRNAs were significantly linked to cellular response to stress, four to cell death/apoptosis, two to innate immune responses and one upregulated to vesicle mediated, TGF-ß signaling, phosphatidylinositol mediated signaling, lipid metabolism process and blood coagulation.


Subject(s)
Dengue , MicroRNAs , Monocytes , Dengue/genetics , Dengue Virus , Humans , Immunity, Innate , MicroRNAs/genetics , Monocytes/metabolism , Monocytes/virology , THP-1 Cells
3.
Immunol Lett ; 228: 15-23, 2020 12.
Article in English | MEDLINE | ID: mdl-32946919

ABSTRACT

INTRODUCTION: After DAA treatment for chronic hepatitis C infection, peripheral monocyte subsets from patients who achieved sustained virological response (SVR) reduced compared to healthy control. Improvement in inflammatory parameters and liver stiffness has been observed. However, little is known about the long-term impact of DAA treatment on peripheral monocyte subsets and immune mediators levels. OBJECTIVES: We aimed to examine peripheral monocyte subsets and immune mediators levels in Brazilian chronic HCV patients after long-term successful IFN-free SOF-based treatment. MATERIAL AND METHODS: We analyzed CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes and 27 immune mediators by flow cytometry and analysis of multiple secreted proteins assay, respectively, in monoinfected chronic HCV patients receiving IFN-free sofosbuvir-based regimens followed before treatment, at SVR and one year after the end of treatment (1y). RESULTS: Twenty-one biomarkers decreased significantly at 1y and 55-80 % of patients this reduction at 1y. Experimented patients presented a greater modulation of immune mediators at 1y. HLA-DR expression significantly decreased on CD14++CD16- and CD14++CD16+ monocytes at 1y when compared to SVR. CONCLUSIONS: Successful DAA therapy did not modify monocyte subsets frequency but reduced monocyte activation at 1y and sustained the downregulation and restoration of circulating immune mediators, indicating that long-term reversal of inflammation status could occur after HCV eradication.


Subject(s)
Antiviral Agents/therapeutic use , HLA-DR Antigens/metabolism , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Inflammation Mediators/blood , Monocytes/metabolism , Sofosbuvir/therapeutic use , Adult , Aged , Biomarkers/blood , Brazil , Case-Control Studies , Drug Therapy, Combination , Female , Follow-Up Studies , Hepacivirus/immunology , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Humans , Male , Middle Aged , Monocytes/immunology , Monocytes/virology , Prospective Studies , Sofosbuvir/adverse effects , Sustained Virologic Response , Time Factors , Treatment Outcome , Young Adult
4.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32759267

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors. Extensive use of atazanavir (ATV) as antiretroviral and previous evidence suggesting its bioavailability within the respiratory tract prompted us to study this molecule against SARS-CoV-2. Our results show that ATV docks in the active site of SARS-CoV-2 Mpro with greater strength than LPV, blocking Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells and a human pulmonary epithelial cell line. ATV/RTV also impaired virus-induced enhancement of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Atazanavir Sulfate/pharmacology , Betacoronavirus/drug effects , Cytokines/metabolism , Ritonavir/pharmacology , Animals , Atazanavir Sulfate/chemistry , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Death/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Therapy, Combination , Humans , Inflammation/metabolism , Inflammation/virology , Lopinavir/pharmacology , Molecular Docking Simulation , Monocytes/virology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Protease Inhibitors/pharmacology , SARS-CoV-2 , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , COVID-19 Drug Treatment
5.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697943

ABSTRACT

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Subject(s)
Betacoronavirus/physiology , Blood Glucose/metabolism , Coronavirus Infections/complications , Diabetes Complications/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Monocytes/metabolism , Pneumonia, Viral/complications , Adult , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Female , Glycolysis , Humans , Inflammation/complications , Inflammation/metabolism , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Signal Transduction
6.
Blood ; 136(11): 1330-1341, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32678428

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/ß3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


Subject(s)
Betacoronavirus/immunology , Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Coronavirus Infections/complications , Monocytes/pathology , Pneumonia, Viral/complications , Thromboplastin/metabolism , Adult , Biomarkers/metabolism , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Monocytes/metabolism , Monocytes/virology , P-Selectin/metabolism , Pandemics , Platelet Activation , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Prognosis , Prospective Studies , SARS-CoV-2 , Survival Rate
7.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326627

ABSTRACT

There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.


Subject(s)
Endothelial Cells/metabolism , Fibroblasts/metabolism , Monocytes/metabolism , RNA, Long Noncoding/blood , Virus Diseases/metabolism , Adult , Asian People , Biomarkers/blood , Biomarkers/metabolism , Child, Preschool , Data Mining , Down-Regulation , Endothelial Cells/microbiology , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Fibroblasts/microbiology , Human Umbilical Vein Endothelial Cells , Humans , Influenza, Human/genetics , Influenza, Human/metabolism , Machine Learning , Mexico , Monocytes/microbiology , Monocytes/virology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq , Rotavirus Infections/genetics , Rotavirus Infections/metabolism , Varicella Zoster Virus Infection/genetics , Varicella Zoster Virus Infection/metabolism , Virus Diseases/genetics , White People
8.
Mol Ther ; 28(5): 1276-1286, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32220305

ABSTRACT

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.


Subject(s)
Brain Neoplasms/complications , Brain Neoplasms/therapy , Oncolytic Virotherapy/methods , Patient Safety , Tumor Burden , Zika Virus Infection/complications , Zika Virus/immunology , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques , Cytokines/metabolism , Disease Models, Animal , Dogs , Immunity , Injections, Spinal , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Monocytes/immunology , Monocytes/virology , Neurons/metabolism , Neurons/virology , Treatment Outcome
9.
Viruses ; 11(11)2019 10 31.
Article in English | MEDLINE | ID: mdl-31683569

ABSTRACT

Conventional dendritic cells (cDCs) cannot be infected by porcine reproductive and respiratory syndrome virus (PRRSV) but respond to infection via cytokine production, indicating a possible role in initiation/regulation of the immune response against PRRSV. In this work, we evaluated the responses of splenic and blood cDCs, with DEC205+CADM1+CD172a+/- phenotype, as well as those of CD163+ cells against PRRSV and porcine epidemic diarrhea virus (PEDV). Both populations were incubated in the presence of PRRSV or PEDV with and without naïve CD3+ T cells, and cytokine responses were evaluated by qPCR and ELISA. Our results showed that cDCs, but not CD163+ cells, produced IL-12 in response to PRRSV. PEDV did not induce IL-12 production. Cocultures of cDCs and autologous naïve CD3+ cells resulted in decreased IL-12 production and low expression of IFN-γ transcripts in response to PRRSV. Interestingly, cDCs increased the proliferation of naïve T cells in the presence of PRRSV compared with that achieved with monocytes and peripheral blood mononuclear cells (PBMCs). Cocultures of CD163+ cells induced IL-10 and IL-4 expression in the presence of PRRSV and PEDV, respectively. In conclusion, cDCs can selectively produce IL-12 in response to PRRSV but poorly participate in the activation of naïve T cells.


Subject(s)
Coronavirus Infections/veterinary , Dendritic Cells/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , T-Lymphocytes , Animals , Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , Cell Adhesion Molecule-1/blood , Coronavirus Infections/immunology , Cytokines/blood , Dendritic Cells/virology , Interleukin-10/blood , Interleukin-12/blood , Interleukin-4/blood , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Monocytes/immunology , Monocytes/virology , Porcine epidemic diarrhea virus , Porcine respiratory and reproductive syndrome virus , Primary Cell Culture , Receptors, Cell Surface/blood , Spleen/cytology , Spleen/immunology , Spleen/virology , Swine , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , T-Lymphocytes/immunology , T-Lymphocytes/virology
10.
BMC Infect Dis ; 19(1): 986, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752731

ABSTRACT

BACKGROUND: Zika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV. METHODS: PBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry. RESULTS: We detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3-CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells. CONCLUSIONS: These findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.


Subject(s)
Leukocytes, Mononuclear/virology , Zika Virus Infection/virology , Zika Virus/isolation & purification , Antigens, CD19/genetics , Antigens, CD19/immunology , B-Lymphocytes/immunology , Brazil , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Humans , Leukocytes, Mononuclear/immunology , Monocytes/immunology , Monocytes/virology , Real-Time Polymerase Chain Reaction , Zika Virus/genetics , Zika Virus/physiology , Zika Virus Infection/diagnosis , Zika Virus Infection/genetics , Zika Virus Infection/immunology
11.
Horm Mol Biol Clin Investig ; 40(1)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31539353

ABSTRACT

Background Dendritic cells (DCs) play a crucial role during HIV-1 transmission due to their ability to transfer virions to susceptible CD4+ T cells, particularly in the lymph nodes during antigen presentation which favors the establishment of systemic infection. As mature dendritic cells (mDCs) exhibit a greater ability to transfer virions, compared to immature DCs (iDCs), maintenance of an iDC phenotype could decrease viral transmission. The immunomodulatory vitamin D (VitD) has been shown to reduce activation and maturation of DCs; hence, we hypothesized that it would reduce viral transference by DCs. Materials and methods We evaluated the effect of in vitro treatment with a precursor of VitD, cholecalciferol, on the activation/maturation phenotype of differentiated monocyte-derived DCs and their ability to transfer HIV-1 to autologous CD4+ T cells. Results Our findings show that although cholecalciferol decreases the activation of iDCs, it did not impact the maturation phenotype after LPS treatment nor iDCs' ability to transfer viral particles to target cells. Conclusion These findings suggest that despite cholecalciferol potentially modulates the phenotype of mucosal iDCs in vivo, such modulation might not impact the ability of these cells to transfer HIV-1 to target CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Cholecalciferol/pharmacology , Dendritic Cells/drug effects , HIV Infections/immunology , HIV-1/drug effects , Vitamins/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/virology , HIV Infections/prevention & control , HIV Infections/transmission , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Humans , Immunologic Factors/pharmacology , Monocytes/drug effects , Monocytes/immunology , Monocytes/virology , Virus Internalization/drug effects
12.
Immunobiology ; 224(6): 792-803, 2019 11.
Article in English | MEDLINE | ID: mdl-31493920

ABSTRACT

Details of the "Trojan Horse" mechanism by which Zika virus (ZIKV) crosses the blood-brain barrier (BBB) remain unclear. However, the migration of ZIKV-infected monocytes to the brain is thought to be dependent on both pattern-recognition and chemokine receptors. In this study, we investigated whether the migration of ZIKV-infected MonoMac-1 (MM-1) cells through the BBB is dependent on chemokine receptor 7 (CCR7) and receptor for advanced glycation end (RAGE); we also determined whether high mobility group box protein 1 (HMGB1) could facilitate the permeabilization of endothelial cells. We demonstrated that ZIKV infects MM-1 cells, leading to milieu accumulation of HMGB1. Our results suggest that HMGB1 is involved in the dysregulation of primary human brain microvascular endothelial cell junction markers. Our results also indicate that the migration of ZIKV-infected monocytes is dependent on chemokine ligand 19 (CCL19), the natural ligand of CCR7, in conditions recapitulating inflammation. RAGE-dependent migration of ZIKV-infected cells declined during transmigration assays in the presence of RAGE receptor antagonist FPS-ZM1. Understanding the molecular role of monocyte trafficking during ZIKV infections could facilitate the development of new therapeutic strategies to prevent the deleterious consequences of ZIKV neuroinfection.


Subject(s)
Antigens, Neoplasm/physiology , Blood-Brain Barrier/physiology , Chemokine CCL19/physiology , HMGB1 Protein/physiology , Mitogen-Activated Protein Kinases/physiology , Monocytes/physiology , Receptors, CCR7/physiology , Zika Virus Infection , Animals , Cell Line , Cell Movement , Chlorocebus aethiops , Endothelial Cells/physiology , Humans , Monocytes/virology , Zika Virus
13.
Emerg Microbes Infect ; 8(1): 920-933, 2019.
Article in English | MEDLINE | ID: mdl-31237479

ABSTRACT

In early 2017, an outbreak caused by an unknown and supposedly viral agent in the Marilena region of southern Brazil was investigated. Since the etiological agent causing the outbreak was not identified from human samples, mosquitoes from this region were collected. Three out of 121 mosquito pools collected from the region tested positive for alphavirus in molecular tests. Next generation sequencing results revealed the presence of a novel alphavirus, tentatively named here as Caainguá virus (CAAV). DNA barcoding analyses indicated that different species of Culex are hosts for CAAV. This new virus was basal to the New World encephalitic alphaviruses in a comprehensive and robust phylogenetic approach using complete genomes. Viral particles were observed in the cytosol and inside of intracellular compartments of cells in mosquito-derived cell cultures. Despite being noninfectious in vertebrate derived cell cultures, primary culturing of CAAV in human mononuclear cells suggests monocytes and lymphocytes as CAAV targets. However, the epidemiological link of CAAV on the human outbreak should be further explored.


Subject(s)
Alphavirus/isolation & purification , Encephalitis/virology , Adult , Alphavirus/classification , Alphavirus/genetics , Alphavirus/physiology , Animals , Brazil/epidemiology , Culicidae/physiology , Culicidae/virology , Encephalitis/epidemiology , Female , Humans , Lymphocytes/virology , Male , Monocytes/virology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Phylogeny , Young Adult
14.
Arch Immunol Ther Exp (Warsz) ; 67(1): 27-40, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30238127

ABSTRACT

Diseases caused by dengue virus (DENV) are a major public health problem worldwide, considered one of the infections with more prevalence in tropical and subtropical zones of the world. Despite the intense research in the pathogenesis of DENV, this feature is not well understood. One of the main target cells for DENV infection is monocytes; these phagocytes can play a dual role, since they are essential to control viremia, but they also participate in the induction of tissue damage during DENV infection. Monocytes produce different pro-inflammatory cytokines and chemokines in response to infection, and also mediate endothelial damage. In peripheral blood, monocytes can be divided into three different subpopulations, namely classical, intermediate and non-classical, which differ in frequency, cytokine production, among others. Studies in the last years suggest that non-classical monocytes have higher affinity for microvasculature endothelium compared to other type of monocytes, which implies that they could be more involved in the increase of endothelial permeability observed during DENV infection. This review provides a general view of the role of monocytes and their subpopulations in DENV pathogenesis and its effect in viral replication. Finally, the potential contribution of these phagocytes in the alterations of endothelial permeability is discussed.


Subject(s)
Dengue Virus/pathogenicity , Dengue/virology , Monocytes/virology , Animals , Capillary Permeability , Cytokines/immunology , Cytokines/metabolism , Dengue/immunology , Dengue/metabolism , Dengue Virus/growth & development , Dengue Virus/immunology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/virology , Host-Pathogen Interactions , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Microvessels/immunology , Microvessels/metabolism , Microvessels/virology , Monocytes/immunology , Monocytes/metabolism , Phagocytosis , Signal Transduction , Virus Replication
15.
Vet Microbiol ; 223: 27-33, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30173748

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important disease affecting the swine industry worldwide. Although monocytes and macrophages, especially tissue-resident and alveolar macrophages, are the primary target of PRRSV, monocyte- and bone marrow-derived dendritic cells (DCs) are also susceptible to PRRSV infection. It has been shown that lung DCs cannot be infected with PRRSV, but the response and susceptibility of bona fide conventional DC subtypes (cDCs; cDC1 and cDC2) is unknown. In this work, evaluation of the response of tracheal cDC1 and cDC2 subsets to PRRSV revealed differential cytokine expression, whereby cDC1 subsets expressed higher levels of IFN-α and cDC2 subsets more IL-10. Toll-like receptors (TLRs) were also affected: cDC2 cells induced greater upregulation of TLR2 and TLR4, and CD163+ cells showed TLR3 upregulation. However, we could not demonstrate under our experimental conditions that cDC1 and cCD2 subsets are susceptible to PRRSV infection. Our findings show the effects of PRRSV on cDC1 and cDC2 subsets and that these cells were not infected by PRRSV.


Subject(s)
Cytokines/metabolism , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Dendritic Cells/immunology , Dendritic Cells/virology , Macrophages/immunology , Macrophages/virology , Monocytes/immunology , Monocytes/virology , Porcine Reproductive and Respiratory Syndrome/virology , Receptors, Cell Surface/metabolism , Swine , Trachea/immunology , Trachea/virology
16.
Apoptosis ; 23(11-12): 576-586, 2018 12.
Article in English | MEDLINE | ID: mdl-30267240

ABSTRACT

Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.


Subject(s)
Cell Death , Dengue Virus/physiology , Dengue/pathology , Monocytes/pathology , Apoptosis , Dengue/metabolism , Dengue/virology , Dengue Virus/pathogenicity , Humans , Monocytes/metabolism , Monocytes/virology , Pyroptosis , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Virus Replication
17.
J Leukoc Biol ; 103(4): 731-738, 2018 04.
Article in English | MEDLINE | ID: mdl-29345359

ABSTRACT

In this work, we identified the expression, regulation, and viral targeting of Scribble and Dlg1 in antigen-presenting cells. Scribble and Dlg1 belong to the family of PDZ (postsynaptic density (PSD95), disc large (Dlg), and zonula occludens (ZO-1)) proteins involved in cell polarity. The relevance of PDZ proteins in cellular functions is reinforced by the fact that many viruses interfere with host PDZ-dependent interactions affecting cellular mechanisms thus favoring viral replication. The functions of Scribble and Dlg have been widely studied in polarized cells such as epithelial and neuron cells. However, within the cells of the immune system, their functions have been described only in T and B lymphocytes. Here we demonstrated that Scribble and Dlg1 are differentially expressed during antigen-presenting cell differentiation and dendritic cell maturation. While both Scribble and Dlg1 seem to participate in distinct dendritic cell functions, both are targeted by the viral protein NS1 of influenza A in a PDZ-dependent manner in dendritic cells. Our findings suggest that these proteins might be involved in the mechanisms of innate immunity and/or antigen processing and presentation that can be hijacked by viral pathogens.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigen-Presenting Cells/immunology , Host-Pathogen Interactions , Influenza A virus/pathogenicity , Influenza, Human/virology , Membrane Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/virology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , Discs Large Homolog 1 Protein , Humans , Influenza, Human/immunology , Influenza, Human/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Membrane Proteins/genetics , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , PDZ Domains , Tumor Suppressor Proteins/genetics , Viral Nonstructural Proteins/genetics
18.
Life Sci ; 191: 180-185, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29055802

ABSTRACT

AIMS: The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. MAIN METHODS: GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. KEY FINDINGS: Increased DENV2 replication and anti-viral cytokine production (IFN-α/ß, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. SIGNIFICANCE: The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/immunology , Dengue Virus/drug effects , Dengue/drug therapy , Monocytes/drug effects , Pyrrolidines/pharmacology , Quinazolines/pharmacology , Thiocarbamates/pharmacology , Adult , Animals , Cell Line , Cells, Cultured , Culicidae , Cytokines/antagonists & inhibitors , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/physiology , ErbB Receptors/antagonists & inhibitors , Gefitinib , Humans , Male , Monocytes/immunology , Monocytes/virology , NF-kappa B/antagonists & inhibitors , Nod2 Signaling Adaptor Protein/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Virus Replication/drug effects
19.
Nat Microbiol ; 2(11): 1462-1470, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28970482

ABSTRACT

The recent Zika pandemic in the Americas is linked to congenital birth defects and Guillain-Barré syndrome. White blood cells (WBCs) play an important role in host immune responses early in arboviral infection. Infected WBCs can also function as 'Trojan horses' and carry viruses into immune-sheltered spaces, including the placenta, testes and brain. Therefore, defining which WBCs are permissive to Zika virus (ZIKV) is critical. Here, we analyse ZIKV infectivity of peripheral blood mononuclear cells (PBMCs) in vitro and from Nicaraguan Zika patients and show CD14+CD16+ monocytes are the main target of infection, with ZIKV replication detected in some dendritic cells. The frequency of CD14+ monocytes was significantly decreased, while the CD14+CD16+ monocyte population was significantly expanded during ZIKV infection compared to uninfected controls. Viral RNA was detected in PBMCs from all patients, but in serum from only a subset, suggesting PBMCs may be a reservoir for ZIKV. In Zika patients, the frequency of infected cells was lower but the percentage of infected CD14+CD16+ monocytes was significantly higher compared to dengue cases. The gene expression profile in monocytes isolated from ZIKV- and dengue virus-infected patients was comparable, except for significant differences in interferon-γ, CXCL12, XCL1, interleukin-6 and interleukin-10 levels. Thus, our study provides a detailed picture of the innate immune profile of ZIKV infection and highlights the important role of monocytes, and CD14+CD16+ monocytes in particular.


Subject(s)
Lipopolysaccharide Receptors/immunology , Monocytes/immunology , Monocytes/virology , Receptors, IgG/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/physiology , Adolescent , Chemokine CXCL12/genetics , Chemokines, C/genetics , Child , Child, Preschool , Dendritic Cells/immunology , Dendritic Cells/virology , Dengue/immunology , Dengue/virology , Female , GPI-Linked Proteins/immunology , Humans , Immunity, Innate/genetics , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-6/genetics , Male , Monocytes/metabolism , Nicaragua , RNA, Viral/blood , Transcriptome , Viral Load , Virus Replication , Zika Virus/immunology
20.
Microbiol Immunol ; 61(10): 433-441, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28881485

ABSTRACT

Heterologous secondary infections are at increased risk of developing dengue hemorrhagic fever (DHF) because of antibody-dependent enhancement (ADE). IgG subclasses can fix and activate complement and bind to Fcɣ receptors. These factors may also play an important role in the development of ADE and thus in the pathogenesis of DHF. The aim of this study was to analyze the indices of anti-dengue IgG subclasses in adult patients with febrile and hemorrhagic dengue in the acute phase. In 2013, 129 patients with dengue fever (DF) and 57 with DHF in Veracruz, Mexico were recruited for this study and anti-dengue IgM and IgG determined by capture ELISA. Anti-dengue IgG subclasses were detected by indirect ELISA. Anti-dengue IgG2 and IgG3 subclasses were detected in patients with dengue. IgG1 increased significantly in the sera of patients with both primary and secondary infections and DHF, but was higher in patients with secondary infections. The IgG4 subclass index was significantly higher in the sera of patients with DHF than in that of those with DF, who were in the early and late acute phase of both primary and secondary infection. In conclusion, indices of subclasses IgG1 and IgG4 were higher in patients with DHF.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/immunology , Immunoglobulin G/blood , Severe Dengue/immunology , Adult , Dengue/virology , Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Female , Humans , Immunoglobulin G/classification , Immunoglobulin M/blood , Immunoglobulin M/pharmacology , Lymphocytes/virology , Male , Mexico , Middle Aged , Monocytes/immunology , Monocytes/virology , Neutrophils/immunology , Neutrophils/virology , RNA, Viral/analysis , Serotyping , Severe Dengue/virology , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL