Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.518
Filter
1.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930952

ABSTRACT

Based on the fact that substances with a ß-phenyl-α,ß-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1-8 were prepared as potential tyrosinase inhibitors. Four analogs (1-3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.


Subject(s)
Agaricales , Antioxidants , Enzyme Inhibitors , Melanins , Molecular Docking Simulation , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Agaricales/enzymology , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Mice , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Melanins/antagonists & inhibitors , Melanins/biosynthesis , Thiazolidines/chemistry , Thiazolidines/pharmacology , Cell Line, Tumor , Kinetics , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Benzylidene Compounds/pharmacology , Benzylidene Compounds/chemistry , Pyrones
2.
J Agric Food Chem ; 72(25): 14326-14336, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870410

ABSTRACT

Cadmium (Cd) is a hazardous element that may jeopardize environmental safety and human health through biotransfer and trophic accumulation. Here, we tested Cd toxicity on cotton plants, cotton bollworms, and their responses. Results demonstrated that Cd accumulated in plant roots, aerial parts, insect larvae, pupae, and frass in a dose-dependent pattern. The ∼9.35 mg kg-1 of Cd in plant aerial parts, ∼3.68 in larvae, ∼6.43 in pupae, and high transfer coefficient (∼5.59) indicate significant mobility. The ∼19.61 mg kg-1 of Cd in larvae frass suggests an effective detoxification strategy, while BAFcotton (∼1.14) and BAFworm (∼0.54) indicated low bioaccumulation. Cadmium exposure resulted in compromised plant growth and yield as well as alterations in photosynthetic pigment contents, antioxidant enzyme activities, and certain life history traits of cotton bollworms. Furthermore, carboxylesterase activity and encapsulation rates of insect larvae decreased with increasing Cd concentrations, whereas acetylcholinesterase, phenol oxidase, glutathione S-transferase, and multifunctional oxidase exhibited hormesis responses.


Subject(s)
Cadmium , Gossypium , Larva , Soil Pollutants , Animals , Cadmium/metabolism , Cadmium/toxicity , Larva/growth & development , Larva/metabolism , Larva/drug effects , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Gossypium/growth & development , Gossypium/metabolism , Gossypium/parasitology , Moths/growth & development , Moths/metabolism , Moths/drug effects , Inactivation, Metabolic , Glutathione Transferase/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/chemistry , Plant Roots/parasitology , Monophenol Monooxygenase/metabolism , Biotransformation , Acetylcholinesterase/metabolism
3.
Sci Rep ; 14(1): 14370, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909081

ABSTRACT

Metabolites exploration of the ethyl acetate extract of Fusarium solani culture broth that was isolated from Euphorbia tirucalli root afforded five compounds; 4-hydroxybenzaldehyde (1), 4-hydroxybenzoic acid (2), tyrosol (3), azelaic acid (4), malic acid (5), and fusaric acid (6). Fungal extract as well as its metabolites were evaluated for their anti-inflammatory and anti-hyperpigmentation potential via in vitro cyclooxygenases and tyrosinase inhibition assays, respectively. Azelaic acid (4) exhibited powerful and selective COX-2 inhibition followed by fusaric acid (6) with IC50 values (2.21 ± 0.06 and 4.81 ± 0.14 µM, respectively). As well, azelaic acid (4) had the most impressive tyrosinase inhibitory effect with IC50 value of 8.75 ± 0.18 µM compared to kojic acid (IC50 = 9.27 ± 0.19 µM). Exclusive computational studies of azelaic acid and fusaric acid with COX-2 were in good accord with the in vitro results. Interestingly, this is the first time to investigate and report the potential of compounds 3-6 to inhibit cyclooxygenase enzymes. One of the most invasive forms of skin cancer is melanoma, a molecular docking study using a set of enzymes related to melanoma suggested pirin to be therapeutic target for azelaic acid and fusaric acid as a plausible mechanism for their anti-melanoma activity.


Subject(s)
Anti-Inflammatory Agents , Dicarboxylic Acids , Fusarium , Molecular Docking Simulation , Fusarium/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Dicarboxylic Acids/metabolism , Dicarboxylic Acids/pharmacology , Dicarboxylic Acids/chemistry , Melanoma/drug therapy , Melanoma/metabolism , Humans , Cyclooxygenase 2/metabolism , Fusaric Acid/pharmacology , Fusaric Acid/metabolism , Fusaric Acid/chemistry , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Computer Simulation , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry
4.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893349

ABSTRACT

This study aimed to isolate and purify resveratrol and oxyresveratrol from the heartwoods of Maclura cochinchinensis, and to evaluate their inhibitory effects on melanogenesis in B16F10 murine melanoma cells. A methanol maceration process yielded a crude extract comprising 24.86% of the initial mass, which was subsequently analyzed through HPTLC, HPLC, and LC-MS/MS. These analyses revealed the presence of resveratrol and oxyresveratrol at concentrations of 4.32 mg/g and 33.6 mg/g in the extract, respectively. Initial purification employing food-grade silica gel column chromatography separated the extract into two fractions: FA, exhibiting potent inhibition of both tyrosinase activity and melanogenesis, and FM, showing no such inhibitory activity. Further purification processes led to the isolation of fractions Y11 and Gn12 with enhanced concentrations of resveratrol (94.9 and 110.21 mg/g, respectively) and fractions Gn15 and Gn16 with elevated levels of oxyresveratrol (321.93 and 274.59 mg/g, respectively), all of which significantly reduced melanin synthesis. These outcomes affirm the substantial presence of resveratrol and oxyresveratrol in the heartwood of M. cochinchinensis, indicating their promising role as natural agents for skin lightening.


Subject(s)
Melanins , Melanoma, Experimental , Plant Extracts , Resveratrol , Stilbenes , Resveratrol/pharmacology , Resveratrol/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Mice , Melanins/biosynthesis , Stilbenes/pharmacology , Stilbenes/chemistry , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Cell Line, Tumor , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Melanogenesis
5.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892131

ABSTRACT

Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.


Subject(s)
Melanins , Molecular Docking Simulation , Zebrafish , Animals , Zebrafish/metabolism , Melanins/metabolism , Melanins/biosynthesis , Phosphorylation , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Melanocytes/metabolism , Melanocytes/drug effects
6.
Org Lett ; 26(26): 5511-5516, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38904436

ABSTRACT

1,2,4-Triazoles are privileged scaffolds for many pharmaceuticals, and methods for structurally diverse compound libraries are of current interest. Here we report an efficient coupling of α-diazoacetates with amino acid-derived alkyl N-hydroxy phthalimide esters, under metal-free conditions involving 1,8-diazabicyclo(5.4.0)undec-7-ene as the base, with which highly functionalized 1,2,4-triazoles can be obtained in excellent yields with remarkable functional group tolerance. Preliminary studies revealed that 1,2,4-triazole 3a exhibits potent inhibition of tyrosinase activities in melanoma B16F10 cell lines, demonstrating promising skin-whitening properties.


Subject(s)
Amino Acids , Esters , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Triazoles/pharmacology , Molecular Structure , Esters/chemistry , Amino Acids/chemistry , Amino Acids/chemical synthesis , Cycloaddition Reaction , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Animals
7.
Bioorg Med Chem Lett ; 109: 129823, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823727

ABSTRACT

The tyrosinase (TYR) enzyme catalyses sequential reactions in the melanogenesis pathway: l-tyrosine is oxidised to yield L-3,4-dihydroxyphenylalanine (l-dopa), which in turn is converted to dopaquinone. These two reactions are the first two steps of melanin biosynthesis and are rate limiting. The accumulation or overproduction of melanin may cause skin hyperpigmentation and inhibitors of TYR are thus of interest to the cosmeceutical industry. Several TYR inhibitors are used to treat skin hyperpigmentation, however, some are ineffective and possess questionable safety profiles. This emphasises the need to develop novel TYR inhibitors with better safety and efficacy profiles. The small molecule, 3-hydroxycoumarin, has been reported to be a good potency TYR inhibitor (IC50 = 2.49 µM), and based on this, a series of eight structurally related 3-hydroxyquinolin-2(1H)-one derivatives were synthesised with the aim to discover novel TYR inhibitors. The results showed that four of the derivatives inhibited TYR from the champignon mushroom Agaricus bisporus (abTYR) with IC50 < 6.11 µM. The most potent inhibitor displayed an IC50 value of 2.52 µM. Under the same conditions, the reference inhibitors, thiamidol and kojic acid, inhibited abTYR with IC50 values of 0.130 and 26.4 µM, respectively. Based on the small molecular structures of the active 3-hydroxyquinolin-2(1H)-one inhibitors which are amenable to structure optimisation, it may be concluded that this class of compounds are good leads for the design of TYR inhibitors for cosmeceutical applications.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Molecular Structure , Agaricus/enzymology , Dose-Response Relationship, Drug
8.
Chem Biodivers ; 21(6): e202400379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743034

ABSTRACT

Robusta coffee blossom honey stands as a key regional product in Dak Lak province, Vietnam. Despite its significance, there exists a dearth of scientific data for assessing its quality. This study aims to fill this gap by characterizing the physicochemical properties and biological activities of coffee blossom honeys from three distinct sub-regions within Dak Lak province, Vietnam. These activities include ferric reducing power (FRP), DPPH and ABTS radical scavenging, as well as tyrosinase inhibitory activities. Moreover, the study compares these honey samples with other popular varieties in Vietnam, such as Lychee and Longan honeys. The physicochemical parameters of the honey samples meet the standards set by Codex Alimentarius 2001. Through UPLC analysis, eleven compounds were identified, with caffeine serving as a marker for coffee honey. Furthermore, by employing multiple factor analysis (MFA), it was observed that certain physicochemical properties correlate positively with tyrosinase inhibitory, DPPH, ABTS free radicals scavenging activities, and FRP. Notably, tyrosinase inhibitory activity exhibited a positive correlation with antioxidant activity. These findings underscore the high quality of Coffea robusta honey, showcasing its potent antioxidant and tyrosinase inhibitory activities.


Subject(s)
Antioxidants , Enzyme Inhibitors , Honey , Monophenol Monooxygenase , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Benzothiazoles/chemistry , Biphenyl Compounds/antagonists & inhibitors , Coffee/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Flowers/chemistry , Honey/analysis , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Picrates/antagonists & inhibitors , Sulfonic Acids/antagonists & inhibitors , Vietnam
9.
Chem Commun (Camb) ; 60(43): 5618-5621, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713525

ABSTRACT

A tyrosinase-activatable fluorescent probe with endoplasmic reticulum targetability was developed for the first time. It can ratiometrically fluoresce and hence be used to monitor refluxed tyrosinase into the endoplasmic reticulum.


Subject(s)
Endoplasmic Reticulum , Fluorescent Dyes , Monophenol Monooxygenase , Monophenol Monooxygenase/metabolism , Endoplasmic Reticulum/metabolism , Fluorescent Dyes/chemistry , Fluorescence , Humans , Spectrometry, Fluorescence
10.
J Ethnopharmacol ; 332: 118348, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38762211

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tokishakuyakusan (TSS), a traditional Kampo medicine, can effectively alleviate symptoms unique to women, such as menstrual pain and menopausal symptoms, and this effect is believed to be related to its ability to increase the secretion of female hormones. TSS is also believed to be effective against skin pigmentation. However, no studies have examined the effect of TSS on pigmentation. AIM OF THE STUDY: In this study, we conducted basic research to determine the effects of TSS on pigmentation. MATERIALS AND METHODS: Female HRM-2 mice were given free access to a normal diet or a TSS-containing diet for 7 weeks. For 3 weeks starting from the 4th week of treatment, the back of the skin was irradiated with ultraviolet (UV) light, and the melanin level was measured. The expression levels of melanogenesis-related genes and inflammatory markers in the skin were analyzed. RESULTS: The melanin level in the skin of the mice exposed to UV radiation was approximately three times greater than that in the skin of the mice in the non-UV-irradiated group, confirming pigmentation due to UV irradiation. The protein expression levels of tyrosinase (Tyr), tyrosinase-related protein-1 (Tyrp1), and dopachrome tautomerase (Dct), which are important for melanin production, were significantly greater in the UV irradiation group than in the non-UV irradiation group. In contrast, the amount of skin melanin in the mice treated with TSS was significantly lower than that in the UV-irradiated group, and the expression levels of melanogenesis-related enzymes were also lower. Furthermore, TSS significantly decreased the expression of microphthalmia transcription factor (Mitf), a transcription factor for melanogenesis-related enzymes, and the inflammatory cytokines interleukin-1ß and interleukin-6. CONCLUSIONS: TSS inhibits melanin production in melanocytes by suppressing the increase in the expression of melanogenesis-related enzymes caused by UV irradiation. These findings suggested that this effect of TSS is exerted through the combined regulation of MITF expression and anti-inflammatory responses.


Subject(s)
Drugs, Chinese Herbal , Melanins , Monophenol Monooxygenase , Skin Pigmentation , Ultraviolet Rays , Animals , Ultraviolet Rays/adverse effects , Melanins/biosynthesis , Melanins/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects , Female , Mice , Monophenol Monooxygenase/metabolism , Drugs, Chinese Herbal/pharmacology , Skin/drug effects , Skin/radiation effects , Skin/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Medicine, Kampo , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Mice, Hairless , Melanogenesis , Membrane Glycoproteins , Oxidoreductases
11.
Nat Microbiol ; 9(6): 1454-1466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806673

ABSTRACT

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.


Subject(s)
Carbon Cycle , Microbiota , Permafrost , Polyphenols , Soil Microbiology , Polyphenols/metabolism , Permafrost/microbiology , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/classification , Carbon/metabolism , Oxidation-Reduction , Arctic Regions , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/genetics , Soil/chemistry , Ecosystem
12.
Int J Biol Macromol ; 271(Pt 1): 132627, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797290

ABSTRACT

Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.


Subject(s)
Gene Expression Regulation, Plant , Melanins , Monophenol Monooxygenase , Raphanus , Raphanus/genetics , Raphanus/metabolism , Melanins/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Transcriptome , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/chemistry , Coumaric Acids/metabolism
13.
Int J Biol Macromol ; 271(Pt 2): 132717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815940

ABSTRACT

The efficacy of nanoencapsulation as a technology for enhancing the solubility of active substances has been demonstrated. In this particular investigation, Ganoderic acid DM (GA-DM) was encapsulated within sodium alginate nanoparticles (NPs) using the ionic crosslinking method. The confirmation of the successful loading of GA-DM was ascertained through the analysis of Fourier transform infrared spectrum (FTIR). Empirical evidence derived from the examination of scanning electron microscope (SEM) images, transmission electron microscope (TEM) images, atomic force microscope (AFM) images, and dynamic light scattering (DLS) demonstrated a regular distribution and spherical morphology, with an average particle size of approximately 133 nm. The investigation yielded an encapsulation efficiency of 95.27 ± 0.11 % and a drug loading efficiency of 21.17 ± 0.02 % for the prepared sample. The release kinetics of SGPN was fitted with the Korsmeyer-Peppas kinetic model corresponding to diffusion-controlled release. The incorporation of GA-DM into sodium alginate nanocarriers exhibited a mitigating effect on the cytotoxicity of HaCat and B16, while also demonstrating inhibitory properties against tyrosinase activity and melanin formation.


Subject(s)
Alginates , Melanins , Monophenol Monooxygenase , Nanoparticles , Triterpenes , Alginates/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Nanoparticles/chemistry , Humans , Triterpenes/chemistry , Triterpenes/pharmacology , Particle Size , Drug Liberation , Animals , Mice , Drug Carriers/chemistry , Kinetics , Drug Compounding , Spectroscopy, Fourier Transform Infrared
14.
J Food Sci ; 89(6): 3469-3483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720586

ABSTRACT

Pyracantha fortuneana (P. fortuneana) fruit is a wild fruit that is popular because of its delicious taste and numerous nutrients, and phenolic compounds are considered to be the main bioactive components in P. fortuneana fruits. However, the relationship between phenolic compounds and their antioxidant and tyrosinase (TYR) inhibitory activities during the ripening process is still unclear. The study compared the influence of the five developmental stages on the accumulation of phenolic compounds, antioxidant activity, and TYR inhibitory activity in the fruits of P. fortuneana. The compounds were identified by offline two-dimensional liquid chromatography-electrochemical detection (2D-LC-ECD) combined with liquid chromatography-tandem mass spectrometry, and the main active ingredients were quantified. The results showed that stage II had higher total phenolic and flavonoid content, as well as higher antioxidant and TYR inhibitory activity, but the total anthocyanin content was lowest at this stage. A total of 30 compounds were identified by 2D-LC-ECD. Orthogonal partial least squares discriminant analysis screened out six major potential markers, including phenolic acids, procyanidins, and flavonoids. In addition, it was found that caffeoylquinic acids, procyanidins, and flavonoids were higher in stage II than in stages I, III, IV, and V, whereas anthocyanins accumulated gradually from stages III to V. Therefore, this study suggests that the changes in antioxidant and TYR inhibitory activities of P. fortuneana during the five developmental stages may be due to the transformation of procyanidins, caffeoylquinic acids, and phenolic glycosides into other forms during the fruit maturation process. Practical Application: Differences in chemical constituents, antioxidant, and tyrosinase inhibitory activities in fruit maturity stages of P. fortuneana were elucidated to provide reference for rational harvesting and utilization of the fruits and their bioactive components. These findings are expected to provide a comprehensive assessment of the bioactive profile and guide the food industrial production.


Subject(s)
Antioxidants , Fruit , Monophenol Monooxygenase , Phenols , Pyracantha , Fruit/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Phenols/analysis , Pyracantha/chemistry , Flavonoids/analysis , Tandem Mass Spectrometry/methods , Enzyme Inhibitors/pharmacology , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Anthocyanins/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, Liquid/methods
15.
Chem Biol Drug Des ; 103(5): e14539, 2024 May.
Article in English | MEDLINE | ID: mdl-38760181

ABSTRACT

Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused 'mixed' type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Kinetics , Humans , Methoxsalen/pharmacology , Methoxsalen/chemistry , Enzyme Activators/chemistry , Enzyme Activators/pharmacology
16.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731413

ABSTRACT

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Subject(s)
Arbutin , Skin Aging , Ultraviolet Rays , Arbutin/pharmacology , Ultraviolet Rays/adverse effects , Animals , Skin Aging/drug effects , Skin Aging/radiation effects , Mice , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Humans , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Skin/pathology
17.
Exp Dermatol ; 33(5): e15101, 2024 May.
Article in English | MEDLINE | ID: mdl-38770555

ABSTRACT

Skin hyperpigmentation is mainly caused by excessive synthesis of melanin; however, there is still no safe and effective therapy for its removal. Here, we found that the dermal freezer was able to improve UVB-induced hyperpigmentation of guinea pigs without causing obvious epidermal damage. We also mimic freezing stimulation at the cellular level by rapid freezing and observed that freezing treatments <2.5 min could not decrease cell viability or induce cell apoptosis in B16F10 and Melan-A cells. Critically, melanin content and tyrosinase activity in two cells were greatly reduced after freezing treatments. The dramatic decrease in tyrosinase activity was associated with the downregulation of MITF, TYR, TRP-1 and TRP-2 protein expression in response to freezing treatments for two cells. Furthermore, our results first demonstrated that freezing treatments significantly reduced the levels of p-GSK3ß and ß-catenin and the nuclear accumulation of ß-catenin in B16F10 and Melan-A cells. Together, these data suggest that fast freezing treatments can inhibit melanogenesis-related gene expression in melanocytes by regulating the Wnt/ß-catenin signalling pathway. The inhibition of melanin production eventually contributed to the improvement in skin hyperpigmentation induced by UVB. Therefore, fast freezing treatments may be a new alternative of skin whitening in the clinic in the future.


Subject(s)
Freezing , Hyperpigmentation , Melanins , Melanocytes , Monophenol Monooxygenase , Ultraviolet Rays , Wnt Signaling Pathway , beta Catenin , Animals , Melanins/biosynthesis , Melanins/metabolism , Melanocytes/metabolism , Mice , Hyperpigmentation/metabolism , beta Catenin/metabolism , Monophenol Monooxygenase/metabolism , Guinea Pigs , Microphthalmia-Associated Transcription Factor/metabolism , Cell Survival , Intramolecular Oxidoreductases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Apoptosis , Oxidoreductases/metabolism , Interferon Type I , Pregnancy Proteins
18.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786597

ABSTRACT

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Subject(s)
Melanins , Melanoma, Experimental , Monophenol Monooxygenase , Takifugu , Zebrafish , Animals , Melanins/biosynthesis , Takifugu/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , Muscles/drug effects , Muscles/metabolism , Intramolecular Oxidoreductases/metabolism , Receptor, Melanocortin, Type 1/metabolism , Molecular Dynamics Simulation , Cyclic AMP Response Element-Binding Protein/metabolism
19.
J Agric Food Chem ; 72(19): 10958-10969, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703118

ABSTRACT

Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.


Subject(s)
Ailanthus , Coumarins , Insecticides , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Animals , Coumarins/pharmacology , Coumarins/chemistry , Ailanthus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Molecular Structure , Larva/drug effects , Larva/growth & development , Moths/drug effects , Moths/growth & development , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Biological Assay , Monoterpenes/pharmacology , Monoterpenes/chemistry , Feeding Behavior/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
20.
Bioorg Chem ; 147: 107397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691905

ABSTRACT

Phenolics, abundant in plants, constitute a significant portion of phytoconstituents consumed in the human diet. The phytochemical screening of the aerial parts of Centaurium spicatum led to the isolation of five phenolics. The anti-tyrosinase activities of the isolated compounds were assessed through a combination of in vitro experiments and multiple in silico approaches. Docking and molecular dynamics (MD) simulation techniques were utilized to figure out the binding interactions of the isolated phytochemicals with tyrosinase. The findings from molecular docking analysis revealed that the isolated phenolics were able to bind effectively to tyrosinase and potentially inhibit substrate binding, consequently diminishing the catalytic activity of tyrosinase. Among isolated compounds, cichoric acid displayed the lowest binding energy and the highest extent of polar interactions with the target enzyme. Analysis of MD simulation trajectories indicated that equilibrium was reached within 30 ns for all complexes of tyrosinase with the isolated phenolics. Among the five ligands studied, cichoric acid exhibited the lowest interaction energies, rendering its complex with tyrosinase the most stable. Considering these collective findings, cichoric acid emerges as a promising candidate for the design and development of a potential tyrosinase inhibitor. Furthermore, the in vitro anti-tyrosinase activity assay unveiled significant variations among the isolated compounds. Notably, cichoric acid exhibited the most potent inhibitory effect, as evidenced by the lowest IC50 value (7.92 ± 1.32 µg/ml), followed by isorhamnetin and gentiopicrin. In contrast, sinapic acid demonstrated the least inhibitory activity against tyrosinase, with the highest IC50 value. Moreover, cichoric acid exhibited a mixed inhibition mode against the hydrolysis of l-DOPA catalyzed by tyrosinase, with Ki value of 1.64. Remarkably, these experimental findings align well with the outcomes of docking and MD simulations, underscoring the consistency and reliability of our computational predictions with the actual inhibitory potential observed in vitro.


Subject(s)
Enzyme Inhibitors , Molecular Docking Simulation , Monophenol Monooxygenase , Phenols , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Molecular Dynamics Simulation , Agaricales/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...