Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 691
Filter
1.
Gut Microbes ; 16(1): 2390680, 2024.
Article in English | MEDLINE | ID: mdl-39244776

ABSTRACT

The mucus serves as a protective barrier in the gastrointestinal tract against microbial attacks. While its role extends beyond merely being a physical barrier, the extent of its active bactericidal properties remains unclear, and the mechanisms regulating these properties are not yet understood. We propose that inflammation induces epithelial cells to secrete antimicrobial peptides, transforming mucus into an active bactericidal agent. To investigate the properties of mucus, we previously developed mucosoid culture models that mimic the healthy human stomach epithelium. Similar to organoids, mucosoids are stem cell-driven cultures; however, the cells are cultivated on transwells at air-liquid interface. The epithelial cells of mucosoids form a polarized monolayer, allowing differentiation into all stomach lineages, including mucus-secreting cells. This setup facilitates the secretion and accumulation of mucus on the apical side of the mucosoids, enabling analysis of its bactericidal effects and protein composition, including antimicrobial peptides. Our findings show that TNFα, IL1ß, and IFNγ induce the secretion of antimicrobials such as lactotransferrin, lipocalin2, complement component 3, and CXCL9 into the mucus. This antimicrobial-enriched mucus can partially eliminate Helicobacter pylori, a key stomach pathogen. The bactericidal activity depends on the concentration of each antimicrobial and their gene expression is higher in patients with inflammation and H.pylori-associated chronic gastritis. However, we also find that H. pylori infection can reduce the expression of antimicrobial encoding genes promoted by inflammation. These findings suggest that controlling antimicrobial secretion in the mucus is a critical component of epithelial immunity. However, pathogens like H. pylori can overcome these defenses and survive in the mucosa.


Subject(s)
Antimicrobial Peptides , Gastric Mucosa , Helicobacter pylori , Inflammation , Mucus , Humans , Mucus/metabolism , Mucus/microbiology , Antimicrobial Peptides/metabolism , Gastric Mucosa/microbiology , Gastric Mucosa/metabolism , Gastric Mucosa/immunology , Inflammation/metabolism , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Helicobacter Infections/immunology , Stomach/microbiology , Organoids/metabolism , Organoids/microbiology
3.
Gut Microbes ; 16(1): 2387877, 2024.
Article in English | MEDLINE | ID: mdl-39133871

ABSTRACT

Colibactin is a recently characterized pro-carcinogenic genotoxin produced by pks+ Escherichia coli. We hypothesized that cystic fibrosis (CF)-associated dysfunctional mucus structure increases the vulnerability of host mucosa to colibactin-induced DNA damage. In this pilot study, we tested healthy-appearing mucosal biopsy samples obtained during screening and surveillance colonoscopies of adult CF and non-CF patients for the presence of pks+ E. coli, and we investigated the possibility of detecting a novel colibactin-specific DNA adduct that has not been yet been demonstrated in humans. While CF patients had a lower incidence of pks+ E. coli carriage (~8% vs 29%, p = 0.0015), colibactin-induced DNA adduct formation was detected, but only in CF patients and only in those who were not taking CFTR modulator medications. Moreover, the only patient found to have colon cancer during this study had CF, harbored pks+ E. coli, and had colibactin-induced DNA adducts in the mucosal samples. Larger studies with longitudinal follow-up should be done to extend these initial results and further support the development of colibactin-derived DNA adducts to stratify patients and their risk.


Subject(s)
Colon , Cystic Fibrosis , DNA Adducts , Escherichia coli , Intestinal Mucosa , Mucus , Peptides , Polyketides , Cystic Fibrosis/microbiology , Cystic Fibrosis/metabolism , Humans , Polyketides/metabolism , DNA Adducts/metabolism , Adult , Escherichia coli/genetics , Escherichia coli/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Peptides/metabolism , Male , Colon/microbiology , Colon/pathology , Colon/metabolism , Female , Pilot Projects , Mucus/metabolism , Mucus/microbiology , Middle Aged , Young Adult , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology
4.
Allergol Int ; 73(4): 515-523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39013753

ABSTRACT

BACKGROUND: Despite clinical implications, the pathogenesis of mucus plugging in asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO) remains unclear. We hypothesized that distinct airway microbiomes might affect mucus plugging differently among ACO, asthma, and COPD and among different extents of airway eosinophilic inflammation. METHODS: The sputum microbiome, sputum cell differential count, and mucus plug score on computed tomography were cross-sectionally evaluated in patients with chronic airflow limitation. RESULTS: Patients with ACO, asthma, or COPD were enrolled (n = 56, 10, and 25). Higher mucus plug scores were associated with a greater relative abundance of the phylum Proteobacteria (rho = 0.29) only in patients with ACO and a greater relative abundance of the phylum Actinobacteria (rho = 0.46) only in patients with COPD. In multivariable models including only patients with ACO, the presence of mucus plugs was associated with a greater relative abundance of the phylum Proteobacteria and the genus Haemophilus, independent of smoking status, airflow limitation, and emphysema severity. Moreover, the mucus score was associated with a greater relative abundance of the genus Streptococcus (rho = 0.46) in patients with a high sputum eosinophil count (n = 22) and with that of the genus Haemophilus (rho = 0.46) in those with a moderate sputum eosinophil count (n = 26). CONCLUSIONS: The associations between mucus plugging and the microbiome in ACO differed from those in COPD and asthma. Greater relative abundances of the phylum Proteobacteria and genus Haemophilus may be involved in mucus plugging in patients with ACO and moderate airway eosinophilic inflammation.


Subject(s)
Asthma , Microbiota , Mucus , Pulmonary Disease, Chronic Obstructive , Sputum , Tomography, X-Ray Computed , Humans , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/complications , Sputum/microbiology , Asthma/microbiology , Asthma/complications , Asthma/diagnosis , Male , Female , Middle Aged , Aged , Mucus/microbiology , Cross-Sectional Studies
6.
Gut Microbes ; 16(1): 2377570, 2024.
Article in English | MEDLINE | ID: mdl-39034613

ABSTRACT

Recent evidence indicates that repeated antibiotic usage lowers microbial diversity and ultimately changes the gut microbiota community. However, the physiological effects of repeated - but not recent - antibiotic usage on microbiota-mediated mucosal barrier function are largely unknown. By selecting human individuals from the deeply phenotyped Estonian Microbiome Cohort (EstMB), we here utilized human-to-mouse fecal microbiota transplantation to explore long-term impacts of repeated antibiotic use on intestinal mucus function. While a healthy mucus layer protects the intestinal epithelium against infection and inflammation, using ex vivo mucus function analyses of viable colonic tissue explants, we show that microbiota from humans with a history of repeated antibiotic use causes reduced mucus growth rate and increased mucus penetrability compared to healthy controls in the transplanted mice. Moreover, shotgun metagenomic sequencing identified a significantly altered microbiota composition in the antibiotic-shaped microbial community, with known mucus-utilizing bacteria, including Akkermansia muciniphila and Bacteroides fragilis, dominating in the gut. The altered microbiota composition was further characterized by a distinct metabolite profile, which may be caused by differential mucus degradation capacity. Consequently, our proof-of-concept study suggests that long-term antibiotic use in humans can result in an altered microbial community that has reduced capacity to maintain proper mucus function in the gut.


Subject(s)
Anti-Bacterial Agents , Bacteria , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Mucus , Humans , Gastrointestinal Microbiome/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Mice , Mucus/metabolism , Mucus/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Male , Female , Feces/microbiology , Adult , Middle Aged , Akkermansia , Mice, Inbred C57BL , Colon/microbiology , Bacteroides fragilis/drug effects
7.
J Invertebr Pathol ; 206: 108164, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960029

ABSTRACT

This study aims to investigate how bioactivities of the coral surface mucus layer (SML) respond to changes in mucus-associated bacterial communities between bleached and healthy Porites lobata corals in Nha Trang Bay, Vietnam. The findings suggested that significant shifts in the mucus-associated bacterial communities were related to changes in coral health states from bleached to healthy P. lobata colonies (p < 0.05), while bacterial compositions were not significantly different across seasons and locations (p > 0.05). Of which 8 genera, Shewanella, Fusibacter, Halodesulfovibrio, Marinifilum, Endozoicomonas, Litoribacillus, Algicola, and Vibrio were present only in the SML of bleached coral while absent in the SML of the healthy one. As compared with the bleached SML, the healthy SML demonstrated stronger antibacterial activity against a coral bleaching pathogen, V. coralliilyticus, higher antitumor activity against HCT116 cell accompanied with increased induction of cleaved PARP and accelerated cell nucleic apoptosis and cycle arrest at S and G2/M phases exhibiting several typical characteristics, cell shrinkage, lost cell contact, and apoptotic body formation. Moreover, putative compounds detected at 280 nm in the healthy SML were obviously higher than those in the bleached one, probably they could be bioactive molecules responsible for competitively exclusion of pathogens, Algicola and Vibrio, from the healthy SML.


Subject(s)
Anthozoa , Mucus , Animals , Anthozoa/microbiology , Mucus/microbiology , Humans , Vibrio/physiology , Vietnam , Bacteria/drug effects , Microbiota
8.
PeerJ ; 12: e17421, 2024.
Article in English | MEDLINE | ID: mdl-38827308

ABSTRACT

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Subject(s)
Anthozoa , Coral Reefs , Microbiota , Seasons , Animals , Anthozoa/microbiology , Microbiota/physiology , Microbiota/genetics , Mucus/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
9.
J Agric Food Chem ; 72(27): 15345-15356, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38932522

ABSTRACT

The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.


Subject(s)
Gastrointestinal Microbiome , Mucus , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Glycosylation , Humans , Tandem Mass Spectrometry/methods , Mucus/microbiology , Mucus/metabolism , Mucus/chemistry , Polysaccharides/metabolism , Polysaccharides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mucins/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , HT29 Cells , Chromatography, Liquid/methods , Bacteroides fragilis/metabolism , Bacteroides fragilis/chemistry , Bacteroides fragilis/physiology , Pasteurization , Akkermansia/metabolism , Liquid Chromatography-Mass Spectrometry
10.
Biophys J ; 123(13): 1838-1845, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38824388

ABSTRACT

The gastrointestinal tract is inhabited by a vast community of microorganisms, termed the gut microbiota. Large colonies can pose a health threat, but the gastrointestinal mucus system protects epithelial cells from microbiota invasion. The human colon features a bilayer of mucus lining. Due to imbalances in intestinal homeostasis, bacteria may successfully penetrate the inner mucus layer, which can lead to severe gut diseases. However, it is hard to tease apart the competing mechanisms that lead to this penetration. To probe the conditions that permit bacteria penetration into the inner mucus layer, we develop an agent-based model consisting of bacteria and an inner mucus layer subject to a constant flux of nutrient fields feeding the bacteria. We find that there are three important variables that determine bacterial invasion: the bacterial reproduction rate, the contact energy between bacteria and mucus, and the rate of bacteria degrading the mucus. Under healthy conditions, all bacteria are naturally eliminated by the constant removal of mucus. In diseased states, imbalances between the rates of bacterial degradation and mucus secretion lead to bacterial invasion at certain junctures. We conduct uncertainty quantification and sensitivity analysis to compare the relative impact between these parameters. The contact energy has the strongest influence on bacterial penetration, which, in combination with bacterial degradation rate and growth rate, greatly accelerates bacterial invasion of the human gut mucus lining. Our findings will serve as predictive indicators for the etiology of intestinal diseases and highlight important considerations when developing gut therapeutics.


Subject(s)
Colon , Models, Biological , Mucus , Humans , Colon/microbiology , Mucus/metabolism , Mucus/microbiology , Bacteria/metabolism , Gastrointestinal Microbiome
11.
mSphere ; 9(6): e0008124, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38837404

ABSTRACT

In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, Clostridioides difficile, independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota. Using a 2-D primary human intestinal epithelial cell model to generate physiologic mucus, we assessed C. difficile-mucus interactions through growth assays, RNA-Seq, biophysical characterization of mucus, and contextualized metabolic modeling. We found that host-derived mucus promotes C. difficile growth both in vitro and in an infection model. RNA-Seq revealed significant upregulation of genes related to central metabolism in response to mucus, including genes involved in sugar uptake, the Wood-Ljungdahl pathway, and the glycine cleavage system. In addition, we identified differential expression of genes related to sensing and transcriptional control. Analysis of mutants with deletions in highly upregulated genes reflected the complexity of C. difficile-mucus interactions, with potential interplay between sensing and growth. Mucus also stimulated biofilm formation in vitro, which may in turn alter the viscoelastic properties of mucus. Context-specific metabolic modeling confirmed differential metabolism and the predicted importance of enzymes related to serine and glycine catabolism with mucus. Subsequent growth experiments supported these findings, indicating mucus is an important source of serine. Our results better define responses of C. difficile to human gastrointestinal mucus and highlight flexibility in metabolism that may influence pathogenesis. IMPORTANCE: Clostridioides difficile results in upward of 250,000 infections and 12,000 deaths annually in the United States. Community-acquired infections continue to rise, and recurrent disease is common, emphasizing a vital need to understand C. difficile pathogenesis. C. difficile undoubtedly interacts with colonic mucus, but the extent to which the pathogen can independently respond to and take advantage of this niche has not been explored extensively. Moreover, the metabolic complexity of C. difficile remains poorly understood but likely impacts its capacity to grow and persist in the host. Here, we demonstrate that C. difficile uses native colonic mucus for growth, indicating C. difficile possesses mechanisms to exploit the mucosal niche. Furthermore, mucus induces metabolic shifts and biofilm formation in C. difficile, which has potential ramifications for intestinal colonization. Overall, our work is crucial to better understand the dynamics of C. difficile-mucus interactions in the context of the human gut.


Subject(s)
Biofilms , Clostridioides difficile , Gene Expression Regulation, Bacterial , Mucus , Clostridioides difficile/genetics , Clostridioides difficile/physiology , Clostridioides difficile/metabolism , Biofilms/growth & development , Humans , Mucus/microbiology , Mucus/metabolism , Epithelial Cells/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Clostridium Infections/microbiology
12.
Microbiol Spectr ; 12(8): e0352023, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38912817

ABSTRACT

Pseudomonas aeruginosa infections are getting increasingly serious as antimicrobial resistance spreads. Phage therapy may be a solution to the problem, especially if improved by current advances on phage-host studies. As a mucosal pathogen, we hypothesize that P. aeruginosa and its phages are linked to the bacteriophage adherence to mucus (BAM) model. This means that phage-host interactions could be influenced by mucin presence, impacting the success of phage infections on the P. aeruginosa host and consequently leading to the protection of the metazoan host. By using a group of four different phages, we tested three important phenotypes associated with the BAM model: phage binding to mucin, phage growth in mucin-exposed hosts, and the influence of mucin on CRISPR immunity of the bacterium. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. Improved phage growth was likely the result of phage exploitation of mucin-induced physiological changes in the host. We could not detect CRISPR activity in our system but identified two putative anti-CRISPR proteins coded by the phage. Overall, the differential responses seen for the phages tested show that the same bacterial species can be targeted by mucosal-associated phages or by phages not affected by mucus presence. In conclusion, the BAM model is relevant for phage-bacterium interactions in P. aeruginosa, opening new possibilities to improve phage therapy against this important pathogen by considering mucosal interaction dynamics.IMPORTANCESome bacteriophages are involved in a symbiotic relationship with animals, in which phages held in mucosal surfaces protect them from invading bacteria. Pseudomonas aeruginosa is one of the many bacterial pathogens threatening humankind during the current antimicrobial resistance crisis. Here, we have tested whether P. aeruginosa and its phages are affected by mucosal conditions. We discovered by using a collection of four phages that, indeed, mucosal interaction dynamics can be seen in this model. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. These results link P. aeruginosa and its phages to the bacteriophage adherence to the mucus model and open opportunities to explore this to improve phage therapy, be it by exploiting the phenotypes detected or by actively selecting mucosal-adapted phages for treatment.


Subject(s)
Mucins , Mucus , Pseudomonas Infections , Pseudomonas Phages , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/physiology , Mucus/microbiology , Mucus/virology , Pseudomonas Phages/physiology , Pseudomonas Phages/genetics , Mucins/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Humans , Phage Therapy , Animals , Virus Attachment , Clustered Regularly Interspaced Short Palindromic Repeats
13.
Fish Shellfish Immunol ; 151: 109700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876409

ABSTRACT

The impact of environmental factors on the health of the endangered Chinese sturgeon (Acipenser sinensis) and the potential hazards associated with sample collection for health monitoring pose urgent need to its conservation. In this study, Chinese sturgeons were selected from indoor and outdoor environments to evaluate metabolic and tissue damage indicators, along with a non-specific immune enzyme in fish mucus. Additionally, the microbiota of both water bodies and fish mucus were determined using 16S rRNA high-throughput sequencing. The correlation between the indicators and the microbiota was investigated, along with the measurement of multiple environmental factors. The results revealed significantly higher levels of two metabolic indicators, total protein (TP) and cortisol (COR) in indoor fish mucus compared to outdoor fish mucus (p < 0.05). The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), creatine kinase (CK), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were significantly higher in indoor fish, serving as indicators of tissue damage (p < 0.05). The activity of lysozyme (LZM) was significantly lower in indoor fish (p < 0.01). Biomarker analysis at the phylum and genus levels in outdoor samples revealed that microorganisms were primarily related to the catabolism of organic nutrients. In indoor environments, microorganisms displayed a broader spectrum of functions, including ecological niche establishment, host colonization, potential pathogenicity, and antagonism of pathogens. KEGG functional enrichment corroborated these findings. Dissolved oxygen (DO), electrical conductivity (EC), ammonia nitrogen (NH3-N), turbidity (TU), and chemical oxygen demand (COD) exerted effects on outdoor microbiota. Temperature (TEMP), nitrate (NO3-), total phosphorus (TP), and total nitrogen (TN) influenced indoor microbiota. Changes in mucus indicators, microbial structure, and function in both environments were highly correlated with these factors. Our study provides novel insights into the health impacts of different environments on Chinese sturgeon using a non-invasive method.


Subject(s)
Fishes , Microbiota , Mucus , Animals , Mucus/immunology , Mucus/microbiology , Fishes/immunology , Fishes/microbiology , RNA, Ribosomal, 16S/genetics , Biomarkers
14.
Microbiol Immunol ; 68(9): 331-338, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38923675

ABSTRACT

Agglutination of pathogenic microorganisms on the body surface is a significant phenomenon for the prevention of infection. In the present study, we show that an extract of the skin mucus from Japanese flounder (Paralichthys olivaceus) has agglutination activity against the yeast Saccharomyces cerevisiae. We purified this yeast-binding protein, which consists of an approximately 35-kDa homodimer, using affinity chromatography with yeast as a ligand. Multiple internal amino acid sequences of the protein, as determined using liquid chromatography with quadrupole time-of-flight tandem mass spectrometry, mapped to flounder glyceraldehyde 3-phosphate dehydrogenase (GAPDH). An anti-GAPDH antibody inhibited the yeast agglutination activity in the skin mucus extract and stained agglutinated yeast, indicating that flounder GAPDH could agglutinate yeast. The current study suggests that GAPDH, a well-known protein as the sixth enzyme in the glycolytic pathway, is a significant player in mucosal immunity in teleosts.


Subject(s)
Flounder , Glyceraldehyde-3-Phosphate Dehydrogenases , Mucus , Saccharomyces cerevisiae , Skin , Animals , Flounder/microbiology , Flounder/metabolism , Skin/microbiology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Saccharomyces cerevisiae/metabolism , Mucus/metabolism , Mucus/microbiology , Agglutination , Amino Acid Sequence , Fish Proteins/metabolism , Fish Proteins/immunology , Chromatography, Affinity
15.
Nat Commun ; 15(1): 4578, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811586

ABSTRACT

Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.


Subject(s)
Cervix Uteri , Host Microbial Interactions , Immunity, Innate , Microbiota , Humans , Female , Cervix Uteri/microbiology , Cervix Uteri/immunology , Microbiota/immunology , Host Microbial Interactions/immunology , Gardnerella vaginalis/immunology , Lactobacillus crispatus/immunology , Mucus/immunology , Mucus/microbiology , Mucus/metabolism , Lab-On-A-Chip Devices
16.
Fish Shellfish Immunol ; 149: 109527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561068

ABSTRACT

Skin mucus analysis has recently been used as a non-invasive method to evaluate for fish welfare. The present research study was conducted to examine the skin mucosal immunity and skin microbiota profiles of sturgeons infected with Citrobacter freundii. Our histology results showed that the thickness of the epidermal layer of skin remained thinner, and the number of mucous cells was significantly decreased in sturgeons after infection (p < 0.05). Total protein, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and creatine kinase levels in the mucus showed biphasic pattern (decrease and then increase). Lactate dehydrogenase, lysozyme, and acid phosphatase activities in the mucus showed an increasing trend after infection. Furthermore, 16S rRNA sequencing also revealed that C. freundii infection also affected the diversity and community structure of the skin mucus microbiota. An increase in microbial diversity (p > 0.05) and a decrease in microbial abundance (p < 0.05) after infection were noted. The predominant bacterial phyla in the skin mucus were Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Specifically, the relative abundance of Fusobacteria increased after infection. The predominant bacterial genera in the skin mucus were Cetobacterium, Pelomonas, Bradyrhizobium, Flavobacterium, and Pseudomonas. The relative abundance of Cetobacterium, Pseudomonas, and Flavobacterium increased after infection. Our current research findings will provide new insights into the theoretical basis for future research studies exploring the mechanism of sturgeon infection with C. freundii.


Subject(s)
Citrobacter freundii , Enterobacteriaceae Infections , Fish Diseases , Fishes , Immunity, Mucosal , Microbiota , Skin , Animals , Citrobacter freundii/immunology , Microbiota/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Skin/immunology , Skin/microbiology , Fishes/immunology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Mucus/immunology , Mucus/microbiology , RNA, Ribosomal, 16S/genetics
17.
mBio ; 15(6): e0345123, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38651896

ABSTRACT

The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE: Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.


Subject(s)
Anti-Bacterial Agents , Mucus , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mucus/microbiology , Mucus/metabolism , Humans , Mucins/metabolism , Drug Resistance, Bacterial , Polymers/metabolism , Persistent Infection/microbiology , Lung/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/drug therapy , Adaptation, Physiological
19.
Am J Respir Crit Care Med ; 210(3): 298-310, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38315959

ABSTRACT

Rationale: Progressive lung function loss is recognized in chronic obstructive pulmonary disease (COPD); however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. Objectives: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in patients COPD. Methods: This was a prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n = 30; accelerated decline; 156 ml/yr FEV1 loss) and with no FEV1 decline (n = 28; nondecline; 49 ml/yr FEV1 gain) over time. Lung microbiomes from paired sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. Measurements and Main Results: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, whereas biophysical mucus characteristics contributed to interindividual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC [mucin 5AC] and MUC5B [mucin 5B]) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia, and Prevotella (Global Initiative for Chronic Obstructive Lung Disease [GOLD] A and B) before transition to increased mucus viscosity, mucins, and DNA concentration together with the emergence of pathogenic microorganisms including Haemophilus, Moraxella, and Pseudomonas (GOLD E). Conclusions: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression, and exacerbations affording fresh therapeutic opportunities for early intervention.


Subject(s)
Microbiota , Mucus , Pulmonary Disease, Chronic Obstructive , Sputum , Humans , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Female , Aged , Middle Aged , Prospective Studies , Sputum/microbiology , Mucus/microbiology , Longitudinal Studies , Disease Progression , Mucin-5B/metabolism , Forced Expiratory Volume , Mucin 5AC/metabolism , London
20.
An Acad Bras Cienc ; 95(4): e20200325, 2023.
Article in English | MEDLINE | ID: mdl-38055606

ABSTRACT

Mucus, produced by Palythoa caribaeorum has been popularly reported due to healing, anti-inflammatory, and analgesic effects. However, biochemical and pharmacological properties of this mucus remains unexplored. Therefore, the present study aimed to study its proteome profile by 2DE electrophoresis and MALDI-TOF. Furthermore, it was evaluated the cytotoxic, antibacterial, and antioxidant activities of the mucus and from its protein extract (PE). Proteomics study identified14 proteins including proteins involved in the process of tissue regeneration and death of tumor cells. The PE exhibited cell viability below 50% in the MCF-7 and S-180 strains. It showed IC50 of 6.9 µg/mL for the J774 lineage, and also, favored the cellular growth of fibroblasts. Furthermore, PE revealed activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Staphylococcus epidermidis (MIC of 250 µg/mL). These findings revealed the mucus produced by Palythoa caribaeorum with biological activities, offering alternative therapies for the treatment of cancer and as a potential antibacterial agent.


Subject(s)
Anthozoa , Proteomics , Animals , Anthozoa/chemistry , Anti-Bacterial Agents/pharmacology , Proteins , Mucus/microbiology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL