Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.658
Filter
1.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39092954

ABSTRACT

The dynamics of lysozyme is probed by attaching -SCN to all alanine residues. The one-dimensional infrared spectra exhibit frequency shifts in the position of the maximum absorption of 4 cm-1, which is consistent with experiments in different solvents and indicates moderately strong interactions of the vibrational probe with its environment. Isotopic substitution 12C → 13C leads to a redshift by -47 cm-1, which agrees quantitatively with experiments for CN-substituted copper complexes in solution. The low-frequency, far-infrared part of the protein spectra contains label-specific information in the difference spectra when compared with the wild type protein. Depending on the position of the labels, local structural changes are observed. For example, introducing the -SCN label at Ala129 leads to breaking of the α-helical structure with concomitant change in the far-infrared spectrum. Finally, changes in the local hydration of SCN-labeled alanine residues as a function of time can be related to the reorientation of the label. It is concluded that -SCN is potentially useful for probing protein dynamics, both in the high-frequency part (CN-stretch) and in the far-infrared part of the spectrum.


Subject(s)
Muramidase , Muramidase/chemistry , Muramidase/metabolism , Alanine/chemistry , Spectrophotometry, Infrared , Protein Conformation
2.
Biomed Mater ; 19(5)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105245

ABSTRACT

Bioresorbable chitosan scaffolds have shown potential for osteochondral repair applications. Thein vivodegradation of chitosan, mediated by lysozyme and releasing glucosamine, enables progressive replacement by ingrowing tissue. Here the degradation process of a chitosan-nHA based bioresorbable scaffold was investigated for mass loss, mechanical properties and degradation products released from the scaffold when subjected to clinically relevant enzyme concentrations. The scaffold showed accelerated mass loss during the early stages of degradation but without substantial reduction in mechanical strength or structure deterioration. Although not cytotoxic, the medium in which the scaffold was degraded for over 2 weeks showed a transient decrease in mesenchymal stem cell viability, and the main degradation product (glucosamine) demonstrated a possible adverse effect on viability when added at its peak concentration. This study has implications for the design and biomedical application of chitosan scaffolds, underlining the importance of modelling degradation products to determine suitability for clinical translation.


Subject(s)
Cell Survival , Chitosan , Materials Testing , Mesenchymal Stem Cells , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Cell Survival/drug effects , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Animals , Tissue Engineering/methods , Biocompatible Materials/chemistry , Cells, Cultured , Glucosamine/chemistry , Humans , Muramidase/chemistry , Absorbable Implants
3.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39133851

ABSTRACT

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Subject(s)
Amyloid , Muramidase , Amyloid/chemistry , Amyloid/metabolism , Muramidase/chemistry , Muramidase/metabolism , Protein Folding , Temperature , Ultrasonic Waves , Molecular Dynamics Simulation
4.
J Phys Chem Lett ; 15(31): 8108-8113, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39087873

ABSTRACT

We experimentally studied the effects of an externally applied electric field on protein crystallization and liquid-liquid phase separation (LLPS) and its crystallization kinetics. For a surprisingly weak alternating current (AC) electric field, crystallization was found to occur in a wider region of the phase diagram, while nucleation induction times were reduced, and crystal growth rates were enhanced. LLPS on the contrary was suppressed, which diminishes the tendency for a two-step crystallization scenario. The effect of the electric field is ascribed to a change in the protein-protein interaction potential.


Subject(s)
Crystallization , Electricity , Kinetics , Proteins/chemistry , Phase Transition , Muramidase/chemistry
5.
Drug Deliv ; 31(1): 2381340, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39041383

ABSTRACT

Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.


Subject(s)
Lung , Muramidase , Particle Size , Powders , Silicon Dioxide , Silicon Dioxide/chemistry , Muramidase/administration & dosage , Muramidase/chemistry , Lung/metabolism , Lung/drug effects , Porosity , Powders/chemistry , Drug Carriers/chemistry , Administration, Inhalation , Drug Delivery Systems/methods , Nanoparticles/chemistry , Humans , Excipients/chemistry , Animals , Chemistry, Pharmaceutical/methods , Spectroscopy, Fourier Transform Infrared , Freeze Drying
6.
J Phys Chem Lett ; 15(31): 8032-8041, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39083215

ABSTRACT

Human lysozyme undergoes a phase-separation process to form insoluble amyloid-architects that cause several pathologies including systemic amyloidosis. Here we have tailored 6-gingerol by extending its molecular framework with active functional groups to specifically target lysozyme phase-transition events. Aggregation assay revealed that tailored 6-gingerol with 4-aromatic moieties (MTV4) substantially suppressed the conversion of the lysozyme low-density liquid phase (LDLP) to solid-phase structured amyloids. The data obtained from biophysical, computational, and microscopic imaging tools suggest direct intervention of MTV4 with the liquid-liquid phase separation. The CD data suggest that MTV4 was able to retain the native conformation of lysozyme. Both biomolecular and computational data reveal the interference of MTV4 with the aggregation-prone hydrophobic stretches within the lysozyme, thereby retaining the native structure and reversing the misfolded intermediates to active monomers. Also, MTV4 was able to induce rapid dissolution of preformed-toxic amyloid fibrils. These results reinforce the importance of the aromatic-aromatic interaction in preventing human lysozyme phase separation.


Subject(s)
Amyloid , Catechols , Fatty Alcohols , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Fatty Alcohols/chemistry , Humans , Catechols/chemistry , Amyloid/chemistry , Amyloid/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Phase Transition , Protein Aggregates , Phase Separation
7.
J Phys Chem B ; 128(29): 7199-7207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38992922

ABSTRACT

In this paper, we quantify weak protein-protein interactions in solution using cross-interaction chromatography (CIC) and surface plasmon resonance (SPR) and demonstrate that they can be modulated by the addition of millimolar concentrations of free amino acids. With CIC, we determined the second osmotic virial cross-interaction coefficient (B23) as a proxy for the interaction strength between two different proteins. We perform SPR experiments to establish the binding affinity between the same proteins. With CIC, we show that the amino acids proline, glutamine, and arginine render the protein cross-interactions more repulsive or equivalently less attractive. Specifically, we measured B23 between lysozyme (Lys) and bovine serum albumin (BSA) and between Lys and protein isolates (whey and canola). We find that B23 increases when amino acids are added to the solution even at millimolar concentrations, corresponding to protein/ligand stoichiometric ratios as low as 1:1. With SPR, we show that the binding affinity between proteins can change by 1 order of magnitude when 10 mM glutamine is added. In the case of Lys and one whey protein isolate (WPI), it changes from the mM to the M range, thus by 3 orders of magnitude. Interestingly, this efficient modulation of the protein cross-interactions does not alter the protein's secondary structure. The capacity of amino acids to modulate protein cross-interactions at mM concentrations is remarkable and may have an impact across fields in particular for specific applications in the food or pharmaceutical industries.


Subject(s)
Amino Acids , Muramidase , Protein Binding , Serum Albumin, Bovine , Surface Plasmon Resonance , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Muramidase/chemistry , Muramidase/metabolism , Animals , Cattle
8.
J Chromatogr A ; 1730: 465133, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38996515

ABSTRACT

The use of a ternary mobile-phase system comprising ammonium sulphate, sodium chloride, and phosphate buffer was explored to tune retention and enhance selectivity in hydrophobic interaction chromatography. The accuracy of the linear solvent-strength model to predict protein retention with the ternary mobile-phase system based on isocratic scouting runs is limited, as the extrapolated retention factor at aqueous buffer conditions (k0) cannot be reliably established. The Jandera retention model utilizing a salt concentration averaged retention factor (k¯0) in aqueous buffer for ternary systems overcomes this bottleneck. Gradient retention factors were derived based on isocratic scouting runs after numerical integration of the isocratic Jandera model, leading to retention-time prediction errors below 11 % for linear gradients. Furthermore, an analytical expression was formulated to predict HIC retention for both linear and segmented linear gradients, considering the linear solvent-strength (LSS) model within ternary salt systems, relying on a fixed k0. The approach involved conducting two gradient scouting runs for each of the two binary salt systems to determine model parameters. Retention-time prediction errors for linear gradients were below 12 % for lysozyme and 3 % for trypsinogen and α-chymotrypsinogen A. Finally, the analytical expression for a ternary mobile-phase system was used in combination with a genetic algorithm to tune the HIC selectivity. With an optimized segmented ternary gradient, a critical-pair separation for a mixture of 7 proteins was achieved within 15 min with retention-time prediction errors ranging between 0.7 and 15.7 %.


Subject(s)
Ammonium Sulfate , Hydrophobic and Hydrophilic Interactions , Muramidase , Muramidase/chemistry , Muramidase/analysis , Ammonium Sulfate/chemistry , Sodium Chloride/chemistry , Chromatography, Liquid/methods , Algorithms , Buffers , Phosphates/chemistry , Phosphates/analysis , Chymotrypsinogen/chemistry , Models, Chemical
9.
Langmuir ; 40(31): 16145-16150, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39054779

ABSTRACT

As a common pathological hallmark, protein aggregation into amyloids is a highly complicated phenomenon, attracting extensive research interest for elucidating its structural details and formation mechanisms. Membrane deposition and disulfide-driven protein misfolding play critical roles in amyloid-type aggregation, yet the underlying molecular process remains unclear. Here, we employed sum frequency generation (SFG) vibrational spectroscopy to comprehensively investigate the remodeling process of lysozyme, as the model protein, into amyloid-type aggregates at the cell membrane interface. It was discovered that disulfide reduction concurrently induced the transition of membrane-bound lysozyme from predominantly α-helical to antiparallel ß-sheet structures, under a mode switch of membrane interaction from electrostatic to hydrophobic, and subsequent oligomeric aggregation. These findings shed light on the systematic understanding of dynamic molecular mechanisms underlying membrane-interactive amyloid oligomer formation.


Subject(s)
Amyloid , Disulfides , Hydrophobic and Hydrophilic Interactions , Muramidase , Disulfides/chemistry , Muramidase/chemistry , Muramidase/metabolism , Amyloid/chemistry , Protein Aggregates , Animals , Static Electricity
10.
J Am Chem Soc ; 146(31): 21664-21676, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39058398

ABSTRACT

Inspired by the unique functionalities of biomolecular membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and nucleic acids, a great deal of effort has been devoted to devising phase-separated artificial subcellular dynamic compartments. These endeavors aim to unravel the molecular mechanism underlying the formation and intracellular delivery of susceptible macromolecular therapeutics. We report herein pyroglutamic acid (PGA)-based well-defined homopolymers featuring stimuli-tunable reversible self-coacervation ability. The polymer exhibits an upper critical solution temperature (UCST) transition in aqueous solutions and has the propensity to undergo cooling-induced LLPS, producing micrometer-sized liquid droplets. This phase separation phenomenon could be modulated by various factors, including polymer concentration, chain length, solution pH, and types and concentrations of different additives. These micrometer droplets are thermally reversible and encapsulate a wide variety of cargoes, including small hydrophobic fluorescent molecules, hydrophilic anticancer drugs, and fluorophore-labeled macromolecular proteins (bovine serum albumin and lysozyme). The payloads were released by exploiting the thermo/pH-mediated disassembly behavior of the coacervates, preserving the bioactivity of the sensitive therapeutics. This environmentally responsive, simple yet versatile artificial MLO model system will provide insights into the biomolecular nonionic condensates and pave the way for the de novo design of dynamic biomolecule depots.


Subject(s)
Hydrogen Bonding , Humans , Serum Albumin, Bovine/chemistry , Muramidase/chemistry , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives , Antineoplastic Agents/chemistry , Hydrogen-Ion Concentration , Drug Liberation , Temperature , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions
11.
Anal Chem ; 96(29): 12102-12111, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39001808

ABSTRACT

The development of abiotic protein affinity adsorbents remains challenging for the accurate acquisition and analysis of specific protein species. Inspired by bacterial cell walls, a hierarchical hybrid framework is fabricated through the oriented growth of an Fe-based metal organic framework (MOF) on V2C MXene for the efficient separation of lysozyme (Lys). After directed evolution of adsorptive materials, the MXene@MOF composite rich in hydroxyl groups (termed as MX@MOF-DH) is found exerting exceptional affinity for Lys. Benefiting from hydrogen-bonding, coordination, and electrostatic interaction-mediated multimodal and multivalent affinity, MX@MOF-DH reveals rapid adsorption rate (5 min), superb enrichment factor (83.1), and favorable binding capacity (609.7 mg g-1), which outperforms other latest adsorbents. Moreover, femtomolar sensitivity is achieved even in the presence of high-abundant interfering proteins, as confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis. This work not only provides an efficient approach for selective enrichment of lysozyme but also paves an avenue to construct the protein affinity reagents for specific biological medicine and analysis applications.


Subject(s)
Metal-Organic Frameworks , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Muramidase/isolation & purification , Metal-Organic Frameworks/chemistry , Adsorption , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
ACS Appl Mater Interfaces ; 16(28): 37248-37254, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957146

ABSTRACT

Gas cluster ion beam (GCIB)-assisted deposition is used to build multilayered protein-based structures. In this process, Ar3000-5000+ clusters bombard and sputter molecules from a reservoir (target) to a collector, an operation that can be sequentially repeated with multiple targets. The process occurs under a vacuum, making it adequate for further sample conservation in the dry state, since many proteins do not have long-term storage stability in the aqueous state. First of all, the stability in time and versatility in terms of molecule selection are demonstrated with the fabrication of peptide multilayers featuring a clear separation. Then, lysozyme and trypsin are used as protein models to show that the activity remaining on the collector after deposition is linearly proportional to the argon ion dose. The energy per atom (E/n) of the Ar clusters is a parameter that was also changed for lysozyme deposition, and its increase negatively affects activity. The intact detection of larger protein molecules by SDS-PAGE gel electrophoresis and a bioassay (trypsin at ≈25 kDa and glucose oxidase (GOx) at ≈80 kDa) is demonstrated. Finally, GOx and horseradish peroxidase, two proteins involved in the same enzymatic cascade, are successively deposited on ß-d-glucose to build an on-demand release material in which the enzymes and the substrate (ß-d-glucose) are combined in a dry trilayer, and the reaction occurs only upon reintroduction in aqueous medium.


Subject(s)
Glucose Oxidase , Horseradish Peroxidase , Muramidase , Trypsin , Muramidase/chemistry , Muramidase/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Trypsin/chemistry , Trypsin/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Peptides/chemistry , Animals , Glucose/chemistry
13.
J Phys Chem B ; 128(28): 6716-6729, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38975731

ABSTRACT

Reactive molecular dynamics (MD) simulations were conducted to investigate the soft and reactive landing of hyperthermal velocity proteins transferred to a vacuum using large argon clusters. Experimentally, the interaction of argon cluster ion beams (Ar1000-5000+) with a target biofilm was previously used in such a manner to transfer lysozymes onto a collector with the retention of their bioactivity, paving the way to a new solvent-free method for complex biosurface nanofabrication. However, the experiments did not give access to a microscopic view of the interactions needed for their full understanding, which can be provided by the MD model. Our reactive force field simulations clarify the landing mechanisms of the lysozymes and their fragments on collectors with different natures (gold- and hydrogen-terminated graphite). The results highlight the conditions of soft and reactive landing on rigid surfaces, the effects of the protein structure, energy, and incidence angle before landing, and the adhesion forces with the collector substrate. Many of the obtained results can be generalized to other soft and reactive landing approaches used for biomolecules such as electrospray ionization and matrix-assisted laser desorption ionization.


Subject(s)
Argon , Molecular Dynamics Simulation , Argon/chemistry , Muramidase/chemistry , Muramidase/metabolism , Graphite/chemistry , Gold/chemistry , Surface Properties
14.
Phys Chem Chem Phys ; 26(27): 18943-18952, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38952218

ABSTRACT

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.


Subject(s)
Amyloid , Circular Dichroism , Muramidase , Phospholipids , Muramidase/chemistry , Muramidase/metabolism , Amyloid/chemistry , Phospholipids/chemistry , Animals , Protein Structure, Secondary , Dimyristoylphosphatidylcholine/chemistry , Phosphatidylglycerols/chemistry , Liposomes/chemistry , Chickens , Vacuum
15.
Nat Commun ; 15(1): 5518, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951539

ABSTRACT

Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales. However, the methodology has been mostly applied to natural proteins/enzymes and limited to reactions promoted by synthetic molecules due to structure determination challenges. This work demonstrates the applicability of TR-SFX for investigations of chemical reaction mechanisms of synthetic metal complexes. We fix a light-induced CO-releasing Mn(CO)3 reaction center in porous hen egg white lysozyme (HEWL) microcrystals. By controlling light exposure and time, we capture the real-time formation of Mn-carbonyl intermediates during the CO release reaction. The asymmetric protein environment is found to influence the order of CO release. The experimentally-observed reaction path agrees with quantum mechanical calculations. Therefore, our demonstration offers a new approach to visualize atomic-level reactions of small molecules using TR-SFX with real-space structure determination. This advance holds the potential to facilitate design of artificial metalloenzymes with precise mechanisms, empowering design, control and development of innovative reactions.


Subject(s)
Manganese , Muramidase , Muramidase/chemistry , Manganese/chemistry , Crystallography, X-Ray , Porosity , Coordination Complexes/chemistry , Models, Molecular , Animals , Carbon Monoxide/chemistry , Time Factors , Chickens
16.
Biophys Chem ; 312: 107286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964115

ABSTRACT

1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17-0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds âˆ¼ Î·-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.


Subject(s)
Glycerol , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Glycerol/chemistry , Viscosity , Proton Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Diffusion , Animals , Chickens
17.
IUCrJ ; 11(Pt 5): 762-779, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38989800

ABSTRACT

Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile.


Subject(s)
Benchmarking , Scattering, Small Angle , X-Ray Diffraction , X-Ray Diffraction/methods , Likelihood Functions , Proteins/chemistry , Ribonuclease, Pancreatic/chemistry , Muramidase/chemistry , Protein Conformation , Urate Oxidase/chemistry , Urate Oxidase/metabolism , Aldose-Ketose Isomerases/chemistry
18.
Curr Microbiol ; 81(9): 264, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001894

ABSTRACT

One of the main interests in the food industry is the preservation of food from spoilage by microorganisms or lipid oxidation. A novel alternative is the development of additives of natural origin with dual activity. In the present study, a chemically modified lysozyme (Lys) with epigallocatechin gallate (EGCG) was developed to obtain a conjugate (Lys-EGCG) with antibacterial/antioxidant activity to improve its properties and increase its application potential. The modification reaction was carried out using a free radical grafting method for the Lys modification reaction, using ascorbic acid and hydrogen peroxide as radical initiators in an aqueous medium. The synthesis of Lys-EGCG conjugate was confirmed by spectroscopic (FT-IR, 1H-RMN, and XPS) and calorimetry differential scanning (DSC) analyses. The EGCG binding to the Lys biomolecule was quantified by the Folin-Ciocalteu method; the antibacterial activity was evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MCB) against Staphylococcus aureus and Pseudomonas fluorescens; the antioxidant activity was evaluated by ABTS, DPPH, and FRAP. The spectroscopic results showed that the Lys-EGCG conjugate was successfully obtained, and the DSC analysis revealed a 20 °C increase (P < 0.05) in the denaturation temperature of Lys due to EGCG modification. The EGCG concentration in Lys-EGCG was 97.97 ± 4.7 µmol of EGCG/g of sample. The antibacterial and antioxidant activity of the Lys-EGCG conjugate was higher (P < 0.05) than pure EGCG and Lys. The chemical modification of Lys with EGCG allows for the bioconjugate with a dual function (antibacterial/antioxidant), broadening the range of Lys and EGCG applications to different areas such as food, cosmetic, and pharmaceutical industries.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Microbial Sensitivity Tests , Muramidase , Pseudomonas fluorescens , Staphylococcus aureus , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Muramidase/pharmacology , Muramidase/chemistry , Muramidase/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Pseudomonas fluorescens/drug effects
19.
Phys Chem Chem Phys ; 26(31): 21040-21051, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39054918

ABSTRACT

In biomedical and biotechnological domains, liquid protein formulations are vital tools, offering versatility across various fields. However, maintaining protein stability in a liquid form presents challenges due to environmental factors, driving research to refine formulations for broader applications. In our recent study, we investigated the relationship between deep eutectic solvents (DESs) and the natural presence of osmolytes in specific combinations, showcasing the effectiveness of a bioinspired osmolyte-based DES in stabilizing a model protein. Recognizing the need for a more nuanced understanding of osmolyte-based DES stabilization capabilities under different storage conditions, here we broadened the scope of our osmolyte-based DES experimental screening, and delved deeper into structural changes in the enzyme under these conditions. We subjected lysozyme solutions in DESs based on various kosmotropic osmolytes (TMAO, betaine, sarcosine, DMSP, ectoine, GPC, proline, sorbitol and taurine) paired either with another kosmotropic (glycerol) or with chaotropic osmolyte urea to rigorous conditions: heat shock (at 80 °C) and repetitive freeze-thaw cycles (at -20 and -80 °C). Changes in enzyme activity, colloidal stability, and conformational alterations were then monitored using bioassays, aggregation tests, and spectroscopic techniques (FT-IR and CD). Our results demonstrate the remarkable effectiveness of osmolyte-based DES in stabilizing lysozyme under stress conditions, with sarcosine- and betaine-based DESs containing glycerol as a hydrogen bond donor showing the highest efficacy, even at high enzyme loadings up to 200 mg ml-1. Investigation of the individual and combined effects of the DES components on enzyme stability confirmed the synergistic behavior of the kosmotrope-urea mixtures and the cumulative effects in kosmotrope-glycerol mixtures. Additionally, we have shown that the interplay between the enzyme's active and stable (but inactive) states is highly influenced by the water content in DESs. Finally, toxicity assessments of osmolyte-based DESs using cell lines (Caco-2, HaCaT, and HeLa) revealed no risks to human health.


Subject(s)
Muramidase , Solvents , Muramidase/chemistry , Muramidase/metabolism , Solvents/chemistry , Humans , Hot Temperature , Glycerol/chemistry , Cold Temperature , Protein Stability , Enzyme Stability , Animals , Biocompatible Materials/chemistry
20.
Sci Total Environ ; 947: 174688, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992361

ABSTRACT

The concurrent environmental contamination by nanoplastics (NPs) and norfloxacin (NOR) is a burgeoning concern, with significant accumulations in various ecosystems and potential ingress into the human body via the food chain, posing threats to both public health and ecological balance. Despite the gravity of the situation, studies on the co-exposure contamination effects of these substances are limited. Moreover, the response mechanisms of key functional proteins to these pollutants are yet to be fully elucidated. In this work, we conducted a comprehensive assessment of the interaction mechanisms of NPs and NOR with lysozyme under both single and co-exposure condition, utilizing dynamic light scattering, ζ-potential measurements, multi-spectroscopy methods, enzyme activity assays and molecular docking, to obtain a relationship between the compound effects of NPs and NOR. Our results indicate that NPs adsorb NOR on their surface, forming more stable aggregates. These aggregates influence the conformation, secondary structure (α-Helix ratio decreased by 3.1 %) and amino acid residue microenvironment of lysozyme. And changes in structure affect the activity of lysozyme (reduced by 39.9 %) with the influence of composited pollutants exerting stronger changes. Molecular simulation indicated the key residues Asp 52 for protein function located near the docking site, suggesting pollutants preferentially binds to the active center of lysozyme. Through this study, we have found the effect of increased toxicity on lysozyme under the compounded conditions of NPs and NOR, confirming that the increased molecular toxicity of NPs and NOR is predominantly realized through the increase in particle size and stability of the aggregates under weak interactions, as well as induction of protein structural looseness. This study proposes a molecular perspective on the differential effects and mechanisms of NPs-NOR composite pollution, providing new insights into the assessment of in vitro responses to composite pollutant exposure.


Subject(s)
Molecular Docking Simulation , Muramidase , Norfloxacin , Muramidase/chemistry , Norfloxacin/toxicity , Environmental Pollutants/toxicity , Nanoparticles/toxicity , Anti-Bacterial Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL