Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
1.
PLoS One ; 19(10): e0307592, 2024.
Article in English | MEDLINE | ID: mdl-39356650

ABSTRACT

Many species are defined in the Musa section within its natural diversification area in Southeast Asia. However, their actual number remains debated as botanical characterisation, distribution and intraspecific variability are still poorly known, compromising their preservation and their exploitation as crop wild relatives of cultivated forms. To address the underexplored Musa diversity in mainland Southeast Asia, at the northern edge of the natural range, 208 specimens were collected in Vietnam, Laos and China, mainly belonging to Musa balbisiana, M. itinerans, M. acuminata and M. yunnanensis. Data on location, morphology, environment and local knowledge were recorded, and leaf samples collected for high-throughput genotyping. This study combines geographical, morphological, and genomic diversity to clarify the taxonomic classification. The collected species exhibit highly distinctive morphologies and genomes, just as they differ in ranges and life traits. Intraspecific genomic diversity was also observed, although not necessarily morphologically perceptible. Mainland Southeast Asia is confirmed as a primary diversification centre for the Musa section. The diversity observed is only partially represented in major international ex situ collections, calling for their urgent enrichment and the promotion of in situ management procedures, for the protection of these threatened species and to better harness their potential in breeding programmes. Although considered wild, the species studied are all affected to varying extents by human use. Musa yunnanensis and M. acuminata subsp. burmannica are the most strictly wild forms, with spontaneous interspecific hybrids first described in this study. Although gathered as fodder, they were only occasionally dispersed outside their endemic zones. Musa itinerans is not cultivated per se, but natural populations are widely exploited, leading to a geographically structured diversity. The diversity of M. balbisiana is widely distributed and geographically structured by human activities. This species should be regarded as domesticated. These various stages, from simple opportunistic gathering to true domestication, shed light on the evolutionary history of today's cultivated varieties.


Subject(s)
Musa , Asia, Southeastern , Musa/genetics , Musa/classification , Domestication , Genetic Variation , Phylogeny , Laos , Vietnam , Genome, Plant
2.
BMC Plant Biol ; 24(1): 890, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343895

ABSTRACT

BACKGROUND: Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS: The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS: This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .


Subject(s)
Crops, Agricultural , Fruit , Genomics , Crops, Agricultural/genetics , Fruit/genetics , Genomics/methods , Internet , Databases, Genetic , Persea/genetics , Carica/genetics , Musa/genetics , Transcriptome , Gene Expression Regulation, Plant
3.
Plant Physiol Biochem ; 215: 109025, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142014

ABSTRACT

Hemicellulose is key in determining the fate of plant cell wall in almost all growth and developmental stages. Nevertheless, there is limited knowledge regarding its involvement in the development and ripening of banana fruit. This study investigated changes in the temporal-spatial distribution of various hemicellulose components, hemicellulose content, activities of the main hydrolysis enzymes, and transcription level of the main hemicellulose-related gene families in banana peels. Both hemicellulose and xylan contents were positively correlated to the fruit firmness observed in our previous study. On the contrary, the xylanase activity was negatively correlated to xylan content and the fruit firmness. The vascular bundle cells, phloem, and cortex of bananas are abundant in xyloglucan, xylan, and mannan contents. Interestingly, the changes in the signal intensity of the CCRC-M104 antibody recognizing non-XXXG type xyloglucan are positively correlated to hemicellulose content. According to RNA-Seq analysis, xyloglucan and xylan-related genes were highly active in the early stages of growth, and the expression of MaMANs and MaXYNs increased as the fruit ripened. The abundance of plant hormonal and growth-responsive cis-acting elements was detected in the 2 kb upstream region of hemicellulose-related gene families. Interaction between hemicellulose and cell wall-specific proteins and MaKCBP1/2, MaCKG1, and MaHKL1 was found. The findings shed light on cell wall hemicellulose's role in banana fruit development and ripening, which could improve nutrition, flavor, and reduce postharvest fruit losses.


Subject(s)
Fruit , Musa , Polysaccharides , Musa/metabolism , Musa/genetics , Musa/growth & development , Polysaccharides/metabolism , Fruit/metabolism , Fruit/growth & development , Fruit/genetics , Xylans/metabolism , Gene Expression Regulation, Plant , Glucans/metabolism , Cell Wall/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
4.
Sci Rep ; 14(1): 16578, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39020014

ABSTRACT

Banana (Musa spp.) is the most widely consumed fruit globally. Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is a highly threatening disease to banana production. Resistance genes to Foc exist in wild Musa genotypes such as Musa acuminata subsp. burmannicoides var. Calcutta 4. Whilst real-time PCR (RT-qPCR) is appropriate for accurate analysis of gene expression in pathways involved in host defence responses, reference genes with stable expression under specific biotic stress conditions and host tissue types are necessary for normalization of sample variation. In this context, the stability in potential host reference genes ACT1, APT, EF1α, GAPDH, αTUB, RAN, UBIQ1, UBIQ2, ßTUB1, ßTUB3, L2 and ACTA1 was evaluated in total RNA samples from root tissues in Calcutta 4 (resistant) and Musa sp. cultivar Prata-anã (susceptible) extracted during interaction with Foc subtropical race 4 (STR4). Expression stability was calculated using the algorithms geNorm, NormFinder and BestKeeper. ßTUB3 and L2 were identified as the most stable in Calcutta 4, with ACTA1 and GAPDH the most stable in Prata-anã. These reference genes for analysis of gene expression modulation in the Musa-Foc STR4 pathosystem are fundamental for advancing understanding of host defence responses to this important pathogen.


Subject(s)
Disease Resistance , Fusarium , Genotype , Musa , Plant Diseases , Real-Time Polymerase Chain Reaction , Fusarium/genetics , Musa/microbiology , Musa/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Real-Time Polymerase Chain Reaction/methods , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genes, Plant , Reference Standards , Gene Expression Profiling/methods
5.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063074

ABSTRACT

Alpha-amylase (AMY) plays a significant role in regulating the growth, development, and postharvest quality formation in plants. Nevertheless, little is known about the genome-wide features, expression patterns, subcellular localization, and functional regulation of AMY genes (MaAMYs) in the common starchy banana (Musa acuminata). Twelve MaAMY proteins from the banana genome database were clustered into two groups and contained a conserved catalytic domain. These MaAMYs formed collinear pairs with the AMYs of maize and rice. Three tandem gene pairs were found within the MaAMYs and are indicative of putative gene duplication events. Cis-acting elements of the MaAMY promoters were found to be involved in phytohormone, development, and stress responses. Furthermore, MaAMY02, 08, 09, and 11 were actively expressed during fruit development and ripening. Specifically, MaAMY11 showed the highest expression level at the middle and later stages of banana ripening. Subcellular localization showed that MaAMY02 and 11 were predominately found in the chloroplast, whereas MaAMY08 and 09 were primarily localized in the cytoplasm. Notably, transient attenuation of MaAMY11 expression resulted in an obvious increase in the starch content of banana fruit, while a significant decrease in starch content was confirmed through the transient overexpression of MaAMY11. Together, these results reveal new insights into the structure, evolution, and expression patterns of the MaAMY family, affirming the functional role of MaAMY11 in the starch degradation of banana fruit.


Subject(s)
Gene Expression Regulation, Plant , Musa , Phylogeny , Plant Proteins , alpha-Amylases , Musa/genetics , Musa/enzymology , Musa/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , alpha-Amylases/genetics , alpha-Amylases/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Promoter Regions, Genetic , Starch/metabolism , Oryza/genetics , Oryza/enzymology , Oryza/growth & development
6.
PLoS One ; 19(6): e0303065, 2024.
Article in English | MEDLINE | ID: mdl-38843276

ABSTRACT

The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Musa , Phylogeny , Plant Proteins , Musa/genetics , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891986

ABSTRACT

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Subject(s)
Actinidia , Allergens , Cross Reactions , Food Hypersensitivity , Immunoglobulin E , Latex , Musa , Humans , Cross Reactions/immunology , Food Hypersensitivity/immunology , Allergens/immunology , Allergens/genetics , Musa/immunology , Musa/genetics , Immunoglobulin E/immunology , Actinidia/immunology , Female , Latex/immunology , Male , Plant Proteins/immunology , Plant Proteins/genetics , Adult , Antigens, Plant/immunology , Antigens, Plant/genetics , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , Middle Aged , Adolescent , Child , Young Adult
8.
Database (Oxford) ; 20242024 May 22.
Article in English | MEDLINE | ID: mdl-38776381

ABSTRACT

The Musa Germplasm Information System (MGIS) stands as a pivotal database for managing global banana genetic resources information. In our latest effort, we have expanded MGIS to incorporate in situ observations. We thus incorporated more than 3000 in situ observations from 133 countries primarily sourced from iNaturalist, GBIF, Flickr, Pl@ntNet, Google Street view and expert curation of the literature. This addition provides a more comprehensive and detailed view of banana diversity and its distribution. Additional graphical interfaces, supported by new Drupal modules, were developed, allowing users to compare banana accessions and explore them based on various filters including taxonomy and geographic location. The integrated maps present a unified view, showcasing both in situ observations and the collecting locations of accessions held in germplasm collections. This enhancement not only broadens the scope of MGIS but also promotes a collaborative and open approach in documenting banana diversity, to allow more effective conservation and use of banana germplasm. Furthermore, this work documents a citizen-science approach that could be relevant for other communities. Database URL: https://www.crop-diversity.org/mgis/musa-in-situ.


Subject(s)
Musa , Musa/genetics , Databases, Genetic , Citizen Science , Internet
9.
PeerJ ; 12: e17285, 2024.
Article in English | MEDLINE | ID: mdl-38708359

ABSTRACT

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Subject(s)
Musa , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Gene Expression Regulation, Plant , Musa/genetics , Musa/growth & development , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
10.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38775627

ABSTRACT

Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.


Subject(s)
Fruit , Genome-Wide Association Study , Musa , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Musa/genetics , Fruit/genetics , Genome, Plant , Phenotype , Linkage Disequilibrium , Genes, Plant , Quantitative Trait, Heritable
11.
BMC Plant Biol ; 24(1): 342, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671368

ABSTRACT

BACKGROUND: The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS: We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS: This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.


Subject(s)
Gene Expression Regulation, Plant , Metabolome , Musa , Transcriptome , Triazoles , Musa/genetics , Musa/drug effects , Musa/physiology , Musa/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Triazoles/pharmacology , Plant Growth Regulators/metabolism , Cold-Shock Response/genetics , Cold-Shock Response/drug effects , Cold Temperature , Gene Expression Profiling , Gibberellins/metabolism
12.
Methods Mol Biol ; 2787: 141-152, 2024.
Article in English | MEDLINE | ID: mdl-38656487

ABSTRACT

Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.


Subject(s)
DNA Copy Number Variations , Genome, Plant , Musa/genetics , Mutation , High-Throughput Nucleotide Sequencing/methods , Mutagens , Plant Breeding/methods , Sequence Analysis, DNA/methods
13.
J Biotechnol ; 387: 69-78, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38582406

ABSTRACT

Banana, a globally popular fruit, is widely cultivated in tropical and sub-tropical regions. After fruit harvest, remaining banana plant materials are low-value byproducts, mostly composted or used as fibre or for food packaging. As an aim to potentially increase farmer income, this study explored underutilised banana biomass as a novel plant tissue for production of a high-value product. Protein scFvTG130 used in this study, is an anti-toxoplasma single chain variable fragment antibody that can be used in diagnostics and neutralising the Toxoplasma gondii pathogen. Using detached banana leaves, we investigated the factors influencing the efficacy of a transient expression system using reporter genes and recombinant protein, scFvTG130. Transient expression was optimal at 2 days after detached banana leaves were vacuum infiltrated at 0.08 MPa vacuum pressure for a duration of 3 min with 0.01% (v/v) Tween20 using Agrobacterium strain GV3101 harbouring disarmed virus-based vector pIR-GFPscFvTG130. The highest concentration of anti-toxoplasma scFvTG130 antibody obtained using detached banana leaves was 22.8 µg/g fresh leaf tissue. This first study using detached banana leaf tissue for the transient expression of a recombinant protein, successfully demonstrated anti-toxoplasma scFvTG130 antibody expression, supporting the potential application for other related proteins using an underutilised detached banana leaf tissue.


Subject(s)
Musa , Plant Leaves , Single-Chain Antibodies , Musa/genetics , Musa/immunology , Plant Leaves/metabolism , Plant Leaves/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Recombinant Proteins/genetics , Toxoplasma/genetics , Agrobacterium/genetics , Plants, Genetically Modified/genetics , Agriculture/methods
14.
Transgenic Res ; 33(3): 89-97, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600337

ABSTRACT

Banana is a premier fruit crop in many parts of the world especially Southeast Asia. The demand for banana has contributed to significant national income to primary banana producers in the SEA region such as the Philippines, Indonesia, Thailand, Vietnam, and Malaysia. However, the widely traded banana industry is plagued by numerous threats including pests and diseases, post-harvest issues and extreme climate vulnerability. To address these challenges, new breeding techniques such as gene editing have been explored for breeding programs to develop improved banana varieties. The first gene-edited non-browning banana has been deregulated in the Philippines recently, and more regulatory applications are expected to submit for approvals soon. Hence, it is timely to review the policy options for gene editing that have been adopted and discussed in the Southeast Asian countries and highlight the implications of differing regulatory approaches to gene editing for trading activities. Positive stakeholders' perceptions and public acceptance are key factors in allowing the benefits of gene editing and thus appropriate outreach strategies are important to gain acceptance and avoid the "GMO stigma" that may be associated with gene-edited products.


Subject(s)
Gene Editing , Musa , Asia, Southeastern , Crops, Agricultural/genetics , Musa/genetics , Musa/growth & development , Plant Breeding/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
15.
Food Funct ; 15(7): 3433-3445, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38436090

ABSTRACT

Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.


Subject(s)
Musa , Musa/genetics , Carotenoids , Biofortification , Fruit/genetics , Genotype , Ethylenes , Plant Proteins/genetics
16.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542394

ABSTRACT

Modern plant breeding relies heavily on the deployment of susceptibility and resistance genes to defend crops against diseases. The expression of these genes is usually regulated by transcription factors including members of the AP2/ERF family. While these factors are a vital component of the plant immune response, little is known of their specific roles in defense against Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) in banana plants. In this study, we discovered that MaERF12, a pathogen-induced ERF in bananas, acts as a resistance gene against Foc TR4. The yeast two-hybrid assays and protein-protein docking analyses verified the interaction between this gene and MaSMG7, which plays a role in nonsense-mediated RNA decay. The transient expression of MaERF12 in Nicotiana benthamiana was found to induce strong cell death, which could be inhibited by MaSMG7 during co-expression. Furthermore, the immunoblot analyses have revealed the potential degradation of MaERF12 by MaSMG7 through the 26S proteasome pathway. These findings demonstrate that MaSMG7 acts as a susceptibility factor and interferes with MaERF12 to facilitate Foc TR4 infection in banana plants. Our study provides novel insights into the biological functions of the MaERF12 as a resistance gene and MaSMG7 as a susceptibility gene in banana plants. Furthermore, the first discovery of interactions between MaERF12 and MaSMG7 could facilitate future research on disease resistance or susceptibility genes for the genetic improvement of bananas.


Subject(s)
Fusarium , Musa , Gene Expression Profiling , Musa/genetics , Plant Diseases/genetics , Plant Roots/genetics , Plant Breeding , Fusarium/genetics
17.
Plant J ; 118(6): 1937-1954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491870

ABSTRACT

Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.


Subject(s)
Cold-Shock Response , Fruit , Gene Expression Regulation, Plant , Musa , Plant Proteins , Musa/genetics , Musa/metabolism , Musa/physiology , Fruit/genetics , Fruit/metabolism , Fruit/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Cell Wall/metabolism , Starch/metabolism
18.
J Basic Microbiol ; 64(4): e2300310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358951

ABSTRACT

Banana Fusarium oxysporum f. sp. cubense tropical race 4 (Foc-TR4) is a highly destructive pathogen that infects nearly all major banana cultivars and has a tendency to spread further. Secreted proteins play a crucial role in the process of Fusarium wilt infection in bananas. In this study, we analyzed the codon usage bias (CUB) of the Foc-TR4 classical secretory protein genome for the first time and observed a strong bias toward codons ending with C. We found that 572 out of the 14,543 amino acid sequences in the Foc-TR4 genome exhibited characteristics of classical secretory proteins. The CUB was largely influenced by selection optimization pressure, as indicated by the ENC value and neutral plot analysis. Among the identified codons, such as UCC and CCC, 11 were found to be optimal for Foc-TR4 gene expression. Codons with higher GC content and a C base in the third position showed greater selectivity. The CUB in the secretory proteins encoded by Foc-TR4 provides insights into their evolutionary patterns, contributing to the development and screening of novel and effective antifungal drugs.


Subject(s)
Fusarium , Musa , Gene Expression Profiling , Fusarium/genetics , Codon Usage , Musa/genetics , Musa/microbiology
19.
Mol Biol Rep ; 51(1): 362, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38403791

ABSTRACT

BACKGROUND: Pathogen-related proteins (PR) are pivotal in plant defense, combating diverse biotic and abiotic stresses. While multiple gene families contribute to banana resistance against Fusarium oxysporum f sp. cubense (Foc), Pseudocercospora eumusae, and Pratylenchus coffeae, the significance of PR-1 genes in defense is paramount. METHODS: Three PR-1 genes, up-regulated under diverse biotic stresses, were cloned from both resistant and susceptible cultivars of Foc, P. eumusae, and P. coffeae. Molecular characterization, phylogenetic analysis, and docking studies with the Foc TR4 CP gene were conducted. RESULTS: Through transcriptomic and real-time studies, three PR-1 genes (Ma02_g15050, Ma02_g15060, and Ma04_g34800) from Musa spp. were identified. These genes exhibited significant up-regulation in resistant cultivars when exposed to Foc, P. eumusae, and P. coffeae. Cloning of these genes was successfully performed from both resistant and susceptible cultivars of Foc race 1 and TR4, P. eumusae, and P. coffeae. Distinct characteristics were observed among the PR-1 genes, with groups 1 and 2 being acidic with signal peptides, and group 3 being basic without signal peptides. All cloned PR-1 proteins belonged to the CAP superfamily (PF00188). Phylogenetic analysis revealed clustering patterns for acidic PR-1 proteins, and KEGG orthology showed associations with vital pathways, including MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction. Secondary and tertiary structure analyses confirmed sequence conservation across studied species. Docking studies explored interactions between the cerato-platanin (CP) gene from Foc TR4 and Ma02_g15060 from banana, suggesting the potential hindrance of PR-1 antifungal activity through direct interaction. CONCLUSIONS: The findings underscore the crucial role of cloned PR-1 genes in banana plant defense mechanisms against a broad spectrum of biotic stresses. These genes, especially those in groups 1 and 2, hold promise as candidates for developing stress-tolerant banana cultivars. The study provides valuable insights into the molecular aspects of banana defense strategies, emphasizing the potential applications of PR-1 genes in enhancing banana resilience.


Subject(s)
Fusarium , Musa , Musa/genetics , Phylogeny , Fusarium/genetics , Cloning, Molecular , Protein Sorting Signals/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
20.
Physiol Plant ; 176(2): e14231, 2024.
Article in English | MEDLINE | ID: mdl-38419576

ABSTRACT

Banana (Musa spp.) production is seriously threatened by low temperature (LT) in tropical and subtropical regions. Xyloglucan endotransglycosylase/hydrolases (XTHs) are considered chief enzymes in cell wall remodelling and play a central role in stress responses. However, whether MaXTHs are involved in the low temperature stress tolerance in banana is not clear. Here, the identification and characterization of MaXTHs were carried out, followed by prediction of their cis-acting elements and protein-protein interactions. In addition, candidate MaXTHs involved in banana tolerance to LT were screened through a comparison of their responses to LT between tolerant and sensitive cultivars using RNA-Seq analysis. Moreover, immunofluorescence (IF) labelling was employed to compare changes in the temporal and spatial distribution of different types of xyloglucan components between these two cultivars upon stress. In total, 53 MaXTHs have been identified, and all were predicted to be located in the cell wall, 14 of them also in the cytoplasm. Only 11 MaXTHs have been found to interact with other proteins. Among 16 MaXTHs with LT responsiveness elements, MaXTH26/29/32/35/50 (Group I/II members) and MaXTH7/8 (Group IIIB members) might be involved in banana tolerance to LT stress. IF results suggested that the content of xyloglucan components recognized by CCRC-M87/103/104/106 antibodies might be negatively related to banana chilling tolerance. In conclusion, we have identified the MaXTH gene family and assessed cell wall re-modelling under LT stress. These results will be beneficial for banana breeding against stresses and enrich the cell wall-mediated resistance mechanism in plants to stresses.


Subject(s)
Musa , Xylans , Musa/genetics , Temperature , Genome, Plant , Glucans , Phylogeny , Gene Expression Regulation, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL