Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139.273
Filter
1.
Biol Lett ; 20(7): 20240211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982848

ABSTRACT

Pyritization of soft tissues of invertebrates is rare in the fossil record. In New York State, it occurs in black shales of the Lorraine Group (Late Ordovician), the best-known example of which is Beecher's Trilobite Bed. Exceptional preservation at the quarry where this bed is exposed allowed detailed examination of trilobite and ostracod soft-tissue anatomy. Here, we present the first example of a eurypterid (sea scorpion) currently ascribed to Carcinosomatidae from this deposit that also preserves the first evidence for mesosomal musculature in eurypterids. This specimen demonstrates that eurypterid musculature can be preserved in pyrite and evidences the oldest example of euchelicerate muscles within the fossil record. Sulfur isotope data illustrate that pyrite rapidly replicated muscle tissue in the early burial environment, prior to the pyritization of biomineralized exoskeleton and cuticular trilobite limbs. This discovery therefore expands the limited fossil record of euchelicerate musculature, while extending the taphonomic scope for preservation of detailed internal structures, more broadly, within arthropods.


Subject(s)
Fossils , Iron , Sulfides , Animals , Fossils/anatomy & histology , Muscles/anatomy & histology , Scorpions/anatomy & histology , Sulfur Isotopes/analysis , New York
2.
Environ Monit Assess ; 196(8): 742, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017725

ABSTRACT

Fish is among the most affordable and readily available protein sources for communities residing near water bodies. However, the recent pollution status of aquatic ecosystems has rendered fish consumption risky for human health. The study evaluated metal levels in the liver, gill, and muscle tissues of Redbreast tilapia (Coptodon rendalli) from Inanda and Nagle dams in the uMgeni River system. Metals, Al, Sb, Cd, Cr, Fe, Mn, Mo, Pb, and Zn were analysed using ICP-OES. Fish size showed no significant difference between the two dams (p > 0.05) whereas a descending trend liver > gill > muscle was observed for most metal levels at both dams. Moreover, there was a clear separation for metal levels in the liver, gill, and muscle between the two dams (p < 0.001) and a similar trend was observed for organs in each dam (p < 0.001). No relationship was observed between fish length and metal levels and no definite trend was observed for inter-metal relationships. Antimony, Cr, and Pb showed THQs greater than 1 at both dams which suggests health risks for consumers. Molybdenum has also shown a concerning THQs with some individuals exhibiting values ranging from 0.5 - 0.9. These findings suggest that consuming C. rendalli from the Inanda and Nagle dams could result in adverse health effects from Sb, Cr and Pb.


Subject(s)
Environmental Monitoring , Liver , Metals , Rivers , Water Pollutants, Chemical , Animals , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Liver/chemistry , Liver/metabolism , Metals/analysis , Metallurgy , Tilapia/metabolism , Gills/metabolism , Gills/chemistry , Muscles/chemistry , Muscles/metabolism , Metals, Heavy/analysis
3.
Bull Environ Contam Toxicol ; 113(1): 10, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001943

ABSTRACT

The present study evaluated the cadmium (Cd) levels and temporal variation of Cd in dark muscle, white muscle, and liver of juvenile Thunnus albacares. 72 individuals (Standard length: 50-67 cm; weight: 0.8-2.5 kg) were collected from Indian Oceanic water around Sri Lanka during the period between April 2021 to May 2022. Total Cd levels were analyzed using an Inductively Coupled Plasma Mass Spectrophotometer. The mean Cd levels (mean ± SD mg kg-1 dry weight) in different tissues varied with significantly higher levels in the liver (13.62 ± 0.98, p < 0.05), compared to dark muscle (0.52 ± 0.05), and white muscle (0.42 ± 0.04). Cd levels in liver tissues were positively correlated (p < 0.05) with the fish weight. The Cd levels reported in dark muscles, white muscles, and liver tissues were significantly higher (p < 0.05) during 2nd inter-monsoon than in the other monsoonal regimes and exceeded the maximum permissible level (0.1 mg kg-1 wet weight) set by the European Union (EU). However, the measured Cd levels in white and dark muscles were below the maximum permissible level (0.2 mg kg-1 wet weight) set by FAO/WHO. The Cd levels in all the liver tissues were above the levels set by the EU and FAO/WHO. Accordingly, people should avoid the consumption of liver tissues of T. albacares from the Indian Ocean. A human with a body weight of 60 kg can consume white muscles up to 4.667 kg per week without exceeding the Provisional Tolerable Weekly Intake.


Subject(s)
Cadmium , Environmental Monitoring , Liver , Muscles , Tuna , Water Pollutants, Chemical , Animals , Liver/metabolism , Cadmium/metabolism , Indian Ocean , Water Pollutants, Chemical/metabolism , Muscles/metabolism , Tuna/metabolism , Bioaccumulation , Sri Lanka
4.
Environ Geochem Health ; 46(9): 305, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001968

ABSTRACT

Dimethoate (DMT) is one of the most harmful and commonly used organophosphate pesticides in agricultural lands to control different groups of parasitic insects. However, this pesticide is considered a dangerous pollutant for aquatic organisms following its infiltration in coastal ecosystems through leaching. Yet, our investigation aimed to gain new insights into the toxicity mechanism of DMT in the muscles of the green crab Carcinus aestuarii, regarding oxidative stress, neurotransmission impairment, histological aspects, and changes in lipid composition, assessed for the first time on the green crab's muscle. Specimens of C. aestuarii were exposed to 50, 100, and 200 µg DMT L-1 for 24 h. Compared to the negative control group, the higher the DMT concentration, the lower the saturated fatty acids (SFA), and the higher the monounsaturated fatty acids (MUFA). The significant increase in polyunsaturated fatty acid n-6 (PUFA n-6) was related to the high release, mainly, of linoleic acid (LA, C18: 2n6) and arachidonic acid (ARA, C20: 4n6) levels. Biochemical biomarkers showed that DMT exposure promoted oxidative stress, highlighted by increased levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), advanced oxidation protein product levels (AOPP), and protein carbonyl (PCO). Furthermore, the antioxidant defense system was activated, as demonstrated by the significant changes in the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) levels associated with an adaptation process of C. aestuarii to cope with the DMT exposure. This pesticide significantly impairs the neurotransmission process, as evidenced by the inhibition of acetylcholinesterase (AChE) activity. Finally, several histopathological changes were revealed in DMT-treated crabs, including vacuolation, and muscle bundle loss.This research offered new insights into the toxic mechanism of DMT, pointing to the usefulness of fatty acid (FA) composition as a sensitive biomarker in littoral crabs.


Subject(s)
Brachyura , Dimethoate , Muscles , Oxidative Stress , Water Pollutants, Chemical , Animals , Dimethoate/toxicity , Oxidative Stress/drug effects , Brachyura/drug effects , Water Pollutants, Chemical/toxicity , Muscles/drug effects , Muscles/metabolism , Fatty Acids/metabolism , Insecticides/toxicity , Biomarkers/metabolism , Malondialdehyde/metabolism
5.
Proc Natl Acad Sci U S A ; 121(30): e2319958121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39008673

ABSTRACT

Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.


Subject(s)
Drosophila melanogaster , FMRFamide , Glucose-6-Phosphatase , Glycogen , Neurons , Neuropeptides , Signal Transduction , Animals , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , FMRFamide/metabolism , Glucose/metabolism , Glucose-6-Phosphatase/metabolism , Glucose-6-Phosphatase/genetics , Glycogen/metabolism , Golgi Apparatus/metabolism , Homeostasis , Muscles/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics
6.
Isotopes Environ Health Stud ; 60(3): 251-271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833381

ABSTRACT

We studied δ13C, δ15N and δ18O values, and total mercury (THg) concentrations in muscle samples from deep-sea predators - five beaked whale species and sperm whales - stranded along the coast of Hokkaido, in the north of Japan in 2010 and 2019. The δ13C, δ15N and δ18O values, THg concentrations, and body length (BL) of Stejneger's beaked whales were similar to those of Hubbs' beaked whales, which belong to the same genus. In contrast, δ13C values, THg concentrations, and BL of Sato's beaked whales were markedly different from those of Baird's beaked whales, which belong to the same genus. Stejneger's and Hubbs' beaked whales living around Hokkaido may compete in their ecological niches, whereas Sato's and Baird's beaked whales may segregate their ecological niches. Although Cuvier's beaked whales and sperm whales belong to different genera and their BLs were significantly different, their δ13C and δ15N values were similar, probably because they can dive and stay in deeper waters than other beaked whale species. The δ13C values in combined samples from all whales increased with increasing BL, probably owing to the larger whale species' dietary preference for squid. The δ13C values in combined samples from all whales were positively correlated with THg concentrations, whereas the δ15N values in the combined samples were negatively correlated. The δ18O values in combined samples from most whales tended to be positively correlated with THg concentrations. These correlations may be explained by a higher THg load from deep-sea feeding than from pelagic feeding and by a feeding shift towards lower trophic levels.


Subject(s)
Carbon Isotopes , Mercury , Nitrogen Isotopes , Oxygen Isotopes , Sperm Whale , Whales , Animals , Mercury/analysis , Japan , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Whales/metabolism , Oxygen Isotopes/analysis , Muscles/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring
7.
J Hazard Mater ; 474: 134810, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850936

ABSTRACT

Feathers are regarded as important nondestructive biomonitoring tools for bird pollutants. However, external contamination of feathers by different pollutants in different bird species remains unclear. In the present study, the feathers of 16 bird species, including terrestrial, freshwater, and marine birds, were analyzed for persistent organic pollutants (POPs). Bird feathers from an abandoned e-waste recycling site had higher POP concentrations and were more correlated with the POP muscle concentrations than those from the less polluted areas. The significant and positive POP correlations between the feathers and muscles of different species indicate that feathers are a good indicator of inter-species and spatial pollution. For individual species, the most hydrophobic POPs in feathers, such as hepta- to deca-polybrominated diphenyl ethers, had higher proportions than in muscles and worse correlations with muscle POPs compared with other POPs. Results of the chemical mass balance (CMB) model revealed that the gaseous phase, internal pollution, and atmospheric particle phase were the main contributors to low-, medium-, and high-hydrophobicity POPs in feathers, respectively. Overall, this study provides a preliminary but meaningful framework for distinguishing between internal and external contamination in feathers and gives information concerning the fitness of feathers as POP indicators with specific physicochemical properties.


Subject(s)
Birds , Environmental Monitoring , Feathers , Persistent Organic Pollutants , Animals , Feathers/chemistry , Species Specificity , Muscles/chemistry , Electronic Waste/analysis
8.
Front Cell Infect Microbiol ; 14: 1415162, 2024.
Article in English | MEDLINE | ID: mdl-38919702

ABSTRACT

Taenia crassiceps has been used for decades as an experimental model for the study of human and porcine cysticercosis. Even though, its life cycle, tissue organization, ultrastructure and immune response elicited in the host, have been extensively described, there are many other biological questions remaining to be addressed. In the present study we revisited the muscle and neural architecture of cysticerci in two of the most frequently used strains (WFU and ORF), using conventional staining and confocal microscopy imaging, aiming to assemble an updated anatomy. Differences between both strains, including polarization processes during development of the young budding larvae, are emphasized. We also performed a search for genes that have been related to peptidergic neural processes in other related flatworms. These findings can help to understand the anatomical and molecular consequences of the scolex presence or absence in both strains.


Subject(s)
Cysticercus , Larva , Muscles , Taenia , Animals , Cysticercus/immunology , Muscles/parasitology , Taenia/physiology , Microscopy, Confocal , Cysticercosis/parasitology , Swine , Humans , Nervous System
9.
Mar Drugs ; 22(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921574

ABSTRACT

The addition of marine macroalgae to animal feed has garnered interest due to the demonstrated benefits of gut health in many livestock species. Most macroalgae have a higher mineral content than terrestrial vegetables, making them an attractive, sustainable source of minerals. However, some macroalgae contain elevated concentrations of iodine and arsenic, which may be transferred to the meat of livestock fed with macroalgae. This study evaluated the mineral profile of rabbit serum, muscle, liver, and kidney of rabbits fed diets supplemented with different marine macroalgae, with the goal of improving post-weaning gut health and reducing reliance on antibiotics. We found increased deposition of iodine in muscle, liver, and kidney due to macroalgae supplementation, which is particularly promising for regions with low iodine endemicity. Higher, though relatively low arsenic concentrations, compared to those in other animal meats and food sources, were also detected in the muscle, liver, and kidney of macroalgae-fed rabbits. The absence of apparent interactions with other micronutrients, particularly selenium, suggests that the inclusion of macroalgae in rabbit diets will not affect the overall mineral content. Enhanced bioavailability of elements such as phosphorus and iron may provide additional benefits, potentially reducing the need for mineral supplementation.


Subject(s)
Animal Feed , Dietary Supplements , Kidney , Liver , Seaweed , Animals , Rabbits , Seaweed/chemistry , Kidney/metabolism , Kidney/drug effects , Liver/metabolism , Animal Feed/analysis , Muscles/metabolism , Minerals , Iodine/administration & dosage , Male , Arsenic/blood , Diet/veterinary
10.
Nature ; 631(8020): 369-377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926579

ABSTRACT

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.


Subject(s)
Connectome , Drosophila melanogaster , Extremities , Motor Neurons , Neural Pathways , Synapses , Wings, Animal , Animals , Female , Male , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Extremities/innervation , Extremities/physiology , Motor Neurons/physiology , Movement/physiology , Muscles/innervation , Muscles/physiology , Nerve Net/anatomy & histology , Nerve Net/cytology , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Neural Pathways/physiology , Synapses/physiology , Wings, Animal/innervation , Wings, Animal/physiology
11.
Nature ; 631(8020): 360-368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926570

ABSTRACT

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.


Subject(s)
Connectome , Drosophila melanogaster , Motor Neurons , Nerve Tissue , Neural Pathways , Synapses , Animals , Female , Datasets as Topic , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Drosophila melanogaster/ultrastructure , Extremities/physiology , Extremities/innervation , Holography , Microscopy, Electron , Motor Neurons/cytology , Motor Neurons/physiology , Motor Neurons/ultrastructure , Movement , Muscles/innervation , Muscles/physiology , Nerve Tissue/anatomy & histology , Nerve Tissue/cytology , Nerve Tissue/physiology , Nerve Tissue/ultrastructure , Neural Pathways/cytology , Neural Pathways/physiology , Neural Pathways/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Tomography, X-Ray , Wings, Animal/innervation , Wings, Animal/physiology
12.
Nutrients ; 16(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38892556

ABSTRACT

Sphingosine-1-phosphate lyase (SPL) resides at the endpoint of the sphingolipid metabolic pathway, catalyzing the irreversible breakdown of sphingosine-1-phosphate. Depletion of SPL precipitates compromised muscle morphology and function; nevertheless, the precise mechanistic underpinnings remain elusive. Here, we elucidate a model of SPL functional deficiency in Caenorhabditis elegans using spl-1 RNA interference. Within these SPL-deficient nematodes, we observed diminished motility and perturbed muscle fiber organization, correlated with the accumulation of sphingoid bases, their phosphorylated forms, and ceramides (collectively referred to as the "sphingolipid rheostat"). The disturbance in mitochondrial morphology was also notable, as SPL functional loss resulted in heightened levels of reactive oxygen species. Remarkably, the administration of the antioxidant N-acetylcysteine (NAC) ameliorates locomotor impairment and rectifies muscle fiber disarray, underscoring its therapeutic promise for ceramide-accumulation-related muscle disorders. Our findings emphasize the pivotal role of SPL in preserving muscle integrity and advocate for exploring antioxidant interventions, such as NAC supplementation, as prospective therapeutic strategies for addressing muscle function decline associated with sphingolipid/ceramide metabolism disruption.


Subject(s)
Acetylcysteine , Aldehyde-Lyases , Caenorhabditis elegans , Ceramides , Sphingolipids , Animals , Caenorhabditis elegans/drug effects , Acetylcysteine/pharmacology , Ceramides/metabolism , Aldehyde-Lyases/metabolism , Sphingolipids/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Muscles/drug effects , Muscles/metabolism , RNA Interference , Sphingosine/analogs & derivatives , Sphingosine/metabolism
13.
Food Chem ; 455: 139840, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838621

ABSTRACT

Impact of high-pressure processing (HP-P) on microbial inactivation, protein oxidation, collagen fiber, and muscle structure of the edible portion (EP) of blood clams (BC) was investigated. Aerobic plate count, Vibrio parahaemolyticus, V. vulnificus, other Vibrio spp. and Shewanella algae counts were not detectable when HP-P pressure of ≥300 MPa was applied. Carbonyl, disulphide bond content, and surface hydrophobicity upsurged as HP-P with augmenting pressure was employed. Protein with ∼53 kDa appeared when HP-P at 100 and 200 MPa was implemented. Increased pressure enhanced gap formation and abnormal muscle cell structure arrangements. HP-P also affected connective tissue, causing size reduction and disruption of the collagen filament fibers. However, firmness and toughness of BC-EP with HP-P ≤ 300 MPa were comparable to those of the control. HP-P at 300 MPa was therefore appropriate for treatment of BC with maintained textural properties, while less protein oxidation, collagen fiber and muscle structure disruption occurred.


Subject(s)
Bivalvia , Collagen , Animals , Bivalvia/chemistry , Bivalvia/microbiology , Collagen/chemistry , Pressure , Shewanella/chemistry , Shewanella/metabolism , Food Handling , Shellfish/analysis , Shellfish/microbiology , Vibrio/chemistry , Muscles/chemistry
14.
J Zoo Wildl Med ; 55(2): 521-530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875210

ABSTRACT

Alabama (AL) is a hotspot in the Gulf of Mexico (GoM) for human interaction-related cetacean strandings, including harassment, vessel strikes, and fisheries interactions. We examined four bottlenose dolphins (Tursiops truncatus) stranded dead along the AL coast during 2012-2017 with severed peduncles suspected to be related to human interaction (HI). Evidence from each case, including photographs, gross necropsy results, and histopathologic findings when available, was reviewed to determine the mode of severance and whether it contributed to death. In each case, the severance site had smooth, clean edges on at least one side, indicating the use of a sharp instrument to remove the caudal peduncle and flukes. Three cases also had evidence of fisheries interactions, including linear impressions around the rostrum, fins and/or flukes, indicating that these animals may have been entangled in fisheries gear prior to death. Histopathology in one of these cases revealed that the severance occurred perimortem; speculatively, the caudal peduncle and flukes may have been cut off to facilitate removing the dolphin from its entanglement. Although cases of amputation and mutilation are not uncommon globally among stranding reports, few cases have been described and analyzed in the literature. This paper is the first to document and compare multiple cases of severed peduncles with evidence of HI, including fisheries, in the GoM. This case series enhances our understanding of the types of HI occurring in bottlenose dolphins and highlights the need for continued public education, policy, and management to address cases like these.


Subject(s)
Bottle-Nosed Dolphin , Muscles , Animals , Female , Male , Alabama , Muscles/injuries
15.
Rapid Commun Mass Spectrom ; 38(16): e9848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38890542

ABSTRACT

RATIONALE: Concerns exist over observed shifts in value and variance of nitrogen isotopes following physicochemical extraction of lipids from organic matter. The mechanisms behind these apparent changes in bulk tissue δ15N values are not fully understood yet have major implications for analytical costs and integrity of data interpretations. METHODS: Changes in proximate analysis, amino acid composition, C:N ratios, bulk tissue and amino acid δ13C and δ15N values, and resulting isotope-based food web metrics were compared between lipid-intact and lipid-extracted muscle tissue of fishes spanning <1% to >20% muscle fat content to identify mechanisms of nitrogen isotope fractionation associated with physicochemical lipid extraction. RESULTS: Bulk δ13C and δ15N values increased and %N, C:N ratios and crude protein content decreased following lipid extraction. Resulting bulk isotope niche spacing and overlap varied significantly between lipid-intact and lipid-extracted tissues. While amino acid composition significantly changed during lipid extraction, particularly for lipid-associated amino acids (e.g., Glu, Lys, Ser), individual amino acid δ13C and δ15N values, and their associated compound-specific isotope analysis of amino acids (CSIA-AA)-based food web metrics, did not. CONCLUSIONS: Physicochemical lipid extraction caused significant tissue composition changes (e.g., leaching of amino acids and 15N-deplete nitrogenous waste) that affected δ13C and δ15N values and tissue %C and %N beyond simply removing lipids. However, lipid extraction did not alter individual amino acid δ13C or δ15N values or their associated CSIA-AA-based food web metrics.


Subject(s)
Amino Acids , Carbon Isotopes , Fishes , Lipids , Nitrogen Isotopes , Nitrogen Isotopes/analysis , Amino Acids/analysis , Amino Acids/chemistry , Animals , Carbon Isotopes/analysis , Lipids/analysis , Lipids/chemistry , Fishes/metabolism , Mass Spectrometry/methods , Muscles/chemistry
16.
Ecol Evol Physiol ; 97(3): 144-156, 2024.
Article in English | MEDLINE | ID: mdl-38875138

ABSTRACT

AbstractThe common eastern bumble bee (Bombus impatiens) queens endure cold winter months by entering a diapause state. During this overwintering period, these animals use stored energy reserves while maintaining a low metabolic rate. This study investigates changes in the metabolic rate of bumble bee queens during diapause-like laboratory conditions and the potential reorganization of the flight muscle metabolic properties during this period. We first confirmed the hypometabolic state of queens during diapause in the laboratory, which lowered their resting metabolic rate to less than 5% of normal resting values. Body mass decreased during diapause, body composition changed where carbohydrates decreased initially, and later protein declined, with a similar trend for lipid content. Using cellular respirometry, we determined the capacity of the flight muscle cells of bumble bee queens to use various metabolic fuels and whether this capacity changes during the progression of diapause to favor stored lipid-derived substrates. Queens showed a low capacity to oxidize the amino acid proline, compared with workers, and their capacity to oxidize all metabolic substrates did not change during a 4-mo diapause period in the laboratory. We also show no detectable ability to oxidize fatty acid by flight muscle mitochondria in this species. The metabolic properties of flight muscle tissue were further characterized using metabolic enzyme activity profiles showing little change during diapause, indicating that profound metabolic suppression is induced without major changes in muscle metabolic phenotypes. Overall, B. impatiens queens undergo diapause while maintaining flight muscle capacity under the conditions used.


Subject(s)
Flight, Animal , Animals , Bees/physiology , Female , Flight, Animal/physiology , Diapause, Insect/physiology , Muscles/metabolism , Energy Metabolism/physiology , Basal Metabolism/physiology , Body Composition/physiology
17.
Food Res Int ; 189: 114559, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876608

ABSTRACT

Comprehensive lipid and volatile compound analyses were performed with squids collected from four varied geographical locations to discriminate the regional characteristics. A total of 1442 lipid molecules and 110 volatiles were detected in the squid muscle samples. There were significant differences in the lipid profiles between Argentine squid (Illex argentinus, AGT), North Pacific Ocean squid (Ommastrephes Bartram, NPO), Equatorial squid (Dosidicus gigas, EQ), and Peruvian squid (Dosidicus gigas, PR) muscle. Phosphatidylcholines (14.64%), triacylglycerols (12.42%), and ceramides (10.97%) were the main lipid components. The contents of polyunsaturated fatty acid in phospholipids and in glycerolipids were 30.35-52.05% and 18.11-25.15%, respectively. The volatiles in squids exhibited significant regional variation; 1-pentanol and 1-octanol, 2-ethyl-1-hexanol and terpinen-4-ol, 2,7-ethyl-1-hexanol, 3-methy-1-butanol and 2-propyl-1-pentanol were identified as characteristic flavor compounds in AGT, NPO, EQ, and PR, respectively. Sphingomyelin, phosphatidylserine, phosphatidylethanolamine, and ceramide were strongly correlated with volatiles in squid muscle. Our study is a reference for the lipid nutritional value and flavor compounds of squids.


Subject(s)
Decapodiformes , Gas Chromatography-Mass Spectrometry , Lipidomics , Volatile Organic Compounds , Animals , Decapodiformes/chemistry , Volatile Organic Compounds/analysis , Pacific Ocean , Lipidomics/methods , Gas Chromatography-Mass Spectrometry/methods , Argentina , Peru , Chromatography, High Pressure Liquid , Solid Phase Microextraction/methods , Triglycerides/analysis , Lipids/analysis , Phospholipids/analysis , Muscles/chemistry
18.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858388

ABSTRACT

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Dystrophin , Muscles , Wnt Signaling Pathway , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Dystrophin/metabolism , Dystrophin/genetics , Muscles/metabolism , Dishevelled Proteins/metabolism , Dishevelled Proteins/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Cell Membrane/metabolism , Dystrophin-Associated Protein Complex/metabolism , Dystrophin-Associated Protein Complex/genetics , Wnt Proteins/metabolism , Signal Transduction
19.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838134

ABSTRACT

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Subject(s)
Bone and Bones , Insulin-Like Growth Factor II , Animals , Female , Humans , Male , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Bone and Bones/metabolism , Insulin-Like Growth Factor II/metabolism , Muscle, Skeletal/metabolism , Muscles/metabolism , Osteoclasts/metabolism , Osteogenesis , Signal Transduction
20.
J Agric Food Chem ; 72(20): 11820-11835, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38710668

ABSTRACT

Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.


Subject(s)
Brachyura , Muscles , Proteomics , Animals , Brachyura/metabolism , Brachyura/chemistry , Muscles/metabolism , Muscles/chemistry , Transportation , Shellfish/analysis , Cold Temperature , Tandem Mass Spectrometry , Seafood/analysis
SELECTION OF CITATIONS
SEARCH DETAIL