Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.298
Filter
1.
Methods Mol Biol ; 2833: 11-21, 2024.
Article in English | MEDLINE | ID: mdl-38949696

ABSTRACT

In vitro biofilm models have allowed researchers to investigate the role biofilms play in the pathogenesis, virulence, and antimicrobial drug susceptibility of a wide range of bacterial pathogens. Rotary cell culture systems create three-dimensional cellular structures, primarily applied to eukaryotic organoids, that better capture characteristics of the cells in vivo. Here, we describe how to apply a low-shear, detergent-free rotary cell culture system to generate biofilms of Mycobacterium bovis BCG. The three-dimensional biofilm model forms mycobacterial cell aggregates in suspension as surface-detached biomass, without severe nutrient starvation or environmental stress, that can be harvested for downstream experiments. Mycobacterium bovis BCG derived from cell clusters display antimicrobial drug tolerance, presence of an extracellular matrix, and evidence of cell wall remodeling, all features of biofilm-associated bacteria that may be relevant to the treatment of tuberculosis.


Subject(s)
Biofilms , Mycobacterium bovis , Biofilms/drug effects , Biofilms/growth & development , Mycobacterium bovis/growth & development , Mycobacterium bovis/drug effects , Mycobacterium bovis/physiology , Cell Culture Techniques/methods , Cell Culture Techniques, Three Dimensional/methods
2.
Sci Rep ; 14(1): 14974, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38951667

ABSTRACT

Bovine alveolar macrophages (AMs) defend the lungs against pathogens such as Mycobacterium bovis (M. bovis), the causative agent of bovine tuberculosis. However, little is known about the surface molecules expressed by bovine AMs and whether there is heterogeneity within the population. The purpose of this study was to characterise the bovine AM cell surface phenotype using flow cytometry. Bronchoalveolar lavage samples from four different calves were stained with a combination of antibodies against immune cell molecules prior to flow cytometric analysis. To assess the degree of expression, we considered the distribution and relative intensities of stained and unstained cells. We demonstrated that bovine AMs have high expression of CD172a, ADGRE1, CD206, and CD14, moderate expression of CD80, MHC II, CD1b, and CD40, low expression of CX3CR1 and CD86, and little or no expression of CD16 and CD26. Two distinct subsets of bovine AMs were identified based on CD163 expression. Subsequent analysis showed that the CD163+ subset had greater expression of other typical macrophage molecules compared to the CD163- subset, suggesting that these cells may perform different roles during infection. The characterisation of the uninfected bovine AM phenotype will provide a foundation for the examination of M. bovis-infected AMs.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Macrophages, Alveolar , Receptors, Cell Surface , Animals , Cattle , Macrophages, Alveolar/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Receptors, Cell Surface/metabolism , Phenotype , Mycobacterium bovis/immunology , Flow Cytometry , Tuberculosis, Bovine/metabolism , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Immunophenotyping , Bronchoalveolar Lavage Fluid
4.
Int J Mycobacteriol ; 13(2): 213-217, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38916394

ABSTRACT

Bacille Calmette-Guérin (BCG) is a live-attenuated vaccine routinely administered to newborns to prevent severe forms of tuberculosis (TB) in TB-endemic countries. Disseminated BCG vaccine disease is a classic feature of children with human immunodeficiency virus (HIV) or primary immunodeficiency disorders (PIDs) and is associated with high mortality. We report a case of a 6-month-old infant with disseminated BCG disease and hemophagocytic lymphohistiocytosis mimicking juvenile myelomonocytic leukemia with no demonstrable features of HIV or PID even after extensive laboratory work-up and succumbed to progressive disease. Disseminated BCG disease is a rare and potentially fatal complication of BCG vaccine, and prompt immunological evaluation complemented by initiation of 4-drug antitubercular therapy and definitive treatment with antiretroviral therapy or hematopoietic stem cell transplant is warranted.


Subject(s)
BCG Vaccine , Leukemia, Myelomonocytic, Juvenile , Lymphohistiocytosis, Hemophagocytic , Tuberculosis , Humans , Leukemia, Myelomonocytic, Juvenile/diagnosis , Leukemia, Myelomonocytic, Juvenile/complications , Infant , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/etiology , BCG Vaccine/adverse effects , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/complications , Diagnosis, Differential , Fatal Outcome , Male , Mycobacterium bovis , Antitubercular Agents/therapeutic use
5.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892353

ABSTRACT

Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNÉ£) and its use in bovine selective breeding programs have not been explored. In the current study, IFNÉ£ production was measured using a specific IFNÉ£ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNÉ£ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNÉ£ in response to Mb.


Subject(s)
Genome-Wide Association Study , Interferon-gamma , Mycobacterium bovis , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Tuberculosis, Bovine , Animals , Cattle , Mycobacterium bovis/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Phenotype , Genotype
6.
Front Immunol ; 15: 1380069, 2024.
Article in English | MEDLINE | ID: mdl-38835781

ABSTRACT

Bacillus Calmette-Guérin (BCG) is the first line treatment for bladder cancer and it is also proposed for melanoma immunotherapy. BCG modulates the tumor microenvironment (TME) inducing an antitumor effective response, but the immune mechanisms involved still poorly understood. The immune profile of B16-F10 murine melanoma cells was assessed by infecting these cells with BCG or stimulating them with agonists for different innate immune pathways such as TLRs, inflammasome, cGAS-STING and type I IFN. B16-F10 did not respond to any of those stimuli, except for type I IFN agonists, contrasting with bone marrow-derived macrophages (BMDMs) that showed high production of proinflammatory cytokines. Additionally, we confirmed that BCG is able to infect B16-F10, which in turn can activate macrophages and spleen cells from mice in co-culture experiments. Furthermore, we established a subcutaneous B16-F10 melanoma model for intratumoral BCG treatment and compared wild type mice to TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR3/7/9-/-, caspase 1-/-, caspase 11-/-, IL-1R-/-, cGAS-/-, STING-/-, IFNAR-/-, MyD88-/-deficient animals. These results in vivo demonstrate that MyD88 signaling is important for BCG immunotherapy to control melanoma in mice. Also, BCG fails to induce cytokine production in the co-culture experiments using B16-F10 and BMDMs or spleen cells derived from MyD88-/- compared to wild-type (WT) animals. Immunotherapy with BCG was not able to induce the recruitment of inflammatory cells in the TME from MyD88-/- mice, impairing tumor control and IFN-γ production by T cells. In conclusion, MyD88 impacts on both innate and adaptive responses to BCG leading to an efficient antitumor response against melanoma.


Subject(s)
BCG Vaccine , Immunotherapy , Melanoma, Experimental , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88 , Signal Transduction , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , BCG Vaccine/immunology , BCG Vaccine/therapeutic use , Immunotherapy/methods , Tumor Microenvironment/immunology , Cell Line, Tumor , Macrophages/immunology , Macrophages/metabolism , Mycobacterium bovis/immunology , Cytokines/metabolism
7.
Sci Rep ; 14(1): 13133, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849432

ABSTRACT

The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.


Subject(s)
Cell Proliferation , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Cell Proliferation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , Mycobacterium bovis/immunology , Lymphocyte Activation/drug effects , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Interleukins/metabolism , CD56 Antigen/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism
8.
Sci Rep ; 14(1): 14298, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906922

ABSTRACT

Bovine tuberculosis (bTB) is endemic and has a substantial impact on the livestock sector in Ethiopia and other low and middle-income countries (LMICs). With a national emphasis on dairy farm intensification to boost milk production and spur economic growth, the incidence of bTB is anticipated to rise. However, Ethiopia, like other LMICs, lacks a comprehensive national bTB control strategy due to the economic and social infeasibility of traditional test-and-cull (TC) approaches. To inform the development of such a strategy, we evaluated the effectiveness and feasibility of TC and test-and-segregation (TSg) strategies for bTB control on Ethiopian dairy farms. A TC approach was used at Farm A [N = 62; comparative cervical test (CCT) > 4 mm, starting prevalence 11.3%] while TSg was implemented at Farm B (N = 45; CCT > 4 mm, prevalence 22.2%), with testing intervals of 2-4 months. Both strategies achieved a reduction in bTB prevalence to 0%, requiring seven rounds of TC over 18 months at Farm A, and five rounds of TSg over 12 months at Farm B's negative herd. The results show that adopting more sensitive thresholds [CCT > 0 mm or single cervical test (SCT) > 2 mm] during later rounds was pivotal in identifying and managing previously undetected infections, emphasizing the critical need for optimized diagnostic thresholds. Cost analysis revealed that TC was approximately twice as expensive as TSg, primarily due to testing, labor, and cow losses in TC, versus construction of new facilities and additional labor for TSg. This underscores the economic and logistical challenges of bTB management in resource-limited settings. Taken together, our study highlights an urgent need for the exploration of alternative approaches including TSg and or vaccination to mitigate within herd transmission and enable implementation of bTB control in regions where TC is not feasible.


Subject(s)
Dairying , Feasibility Studies , Tuberculosis, Bovine , Cattle , Animals , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/prevention & control , Tuberculosis, Bovine/diagnosis , Ethiopia/epidemiology , Dairying/methods , Prevalence , Farms , Female , Mycobacterium bovis
9.
Vet Immunol Immunopathol ; 273: 110788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838485

ABSTRACT

Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide. Therefore, developing effective tools to control this disease is crucial. Using a computational tool, we identified proteins in the M. bovis proteome that carry predictive binding peptides to BoLADRB3.2 and selected Mb0309, Mb1090, Mb1810 and Mb3810 from all the identified proteins. The expression of these proteins in a baculovirus-insect cell expression system was successful only for Mb0309 and Mb3810. In parallel, we expressed the ESAT-6 family proteins EsxG and EsxH in this system. Among the recombinant proteins, Mb0309 and EsxG exhibited moderate performance in distinguishing between cattle that test positive and negative to bTB using the official test, the intradermal tuberculin test (IDT), when used to stimulate interferon-gamma production in blood samples from cattle. However, when combined as a protein cocktail, Mb0309 and EsxG were reactive in 50 % of positive cattle. Further assessments in cattle that evade the IDT (false negative) and cattle infected with Mycobacterium avium paratuberculosis are necessary to determine the potential utility of this cocktail as an additional tool to assist the accurate diagnosis of bTB.


Subject(s)
Antigens, Bacterial , Mycobacterium bovis , Tuberculosis, Bovine , Mycobacterium bovis/immunology , Animals , Cattle , Antigens, Bacterial/immunology , Tuberculosis, Bovine/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Tuberculin Test/veterinary , Recombinant Proteins/immunology , Recombinant Proteins/genetics
10.
Cells ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38920649

ABSTRACT

Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette-Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1ß, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines.


Subject(s)
Cytokines , Mycobacterium tuberculosis , Cytokines/metabolism , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium bovis , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Humans , NF-kappa B/metabolism , Microbial Viability , Bacterial Adhesion
11.
Microbiol Spectr ; 12(7): e0425923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757975

ABSTRACT

Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE: The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.


Subject(s)
BCG Vaccine , Genome, Bacterial , Mycobacterium bovis , Polymorphism, Single Nucleotide , Whole Genome Sequencing , BCG Vaccine/genetics , BCG Vaccine/immunology , Mycobacterium bovis/genetics , Mycobacterium bovis/classification , Poland , Humans , Tuberculosis/prevention & control , Tuberculosis/microbiology , INDEL Mutation , Mutation
12.
Microbiol Spectr ; 12(7): e0382923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38771094

ABSTRACT

Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE: Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.


Subject(s)
Animals, Wild , Mycobacterium bovis , Phylogeny , Portugal/epidemiology , Animals , Mycobacterium bovis/genetics , Mycobacterium bovis/classification , Mycobacterium bovis/isolation & purification , Cattle , Animals, Wild/microbiology , Livestock/microbiology , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/epidemiology , Deer/microbiology , Sus scrofa/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Tuberculosis/epidemiology , Tuberculosis/veterinary
13.
PLoS Negl Trop Dis ; 18(5): e0012223, 2024 May.
Article in English | MEDLINE | ID: mdl-38805568

ABSTRACT

Bovine tuberculosis (bTB) is a chronic zoonotic disease affecting cattle of all age groups including wild animals. It poses a significant threat to public health and high economic losses to dairy farmers. While the disease has been eradicated from most of the developed countries through extensive surveillance, testing and culling strategy, it is endemic in Africa, Asia, and the Middle East countries. Currently, there is limited research regarding the prevalence of bTB in cattle in Bhutan. This study aimed to determine the seroprevalence of bTB in cattle in six districts of eastern Bhutan. A two-stage probability proportional to size (PPS) sampling strategy was used to determine the number of animals from which serum samples needed to be collected in each district and sub-district. All farms and cattle for sampling were randomly selected from the data in the annual livestock census of 2020. The samples were tested using bTB ELISA test kit. The seroprevalence and their 95% confidence intervals were calculated. Logistic regression models were constructed to assess the influence of various individual animal and environmental risk factors (breed, age, sex, source of animal, body condition scores of animals, respiratory system status) associated with sero-positivity in animals. The study revealed an apparent seroprevalence of 2.57% (25/971 cattle; 95% CI:1.58-3.57), with an estimated true seroprevalence of 0.91% (95% CI: 0.0-2.81). However, none of the variables were found to be significantly associated with bTB seroprevalence in cattle. We recommend, further sampling and employment of confirmatory testing to fully ascertain the extent of bTB in the cattle herds in eastern Bhutan for prevention and control.


Subject(s)
Tuberculosis, Bovine , Animals , Cattle , Bhutan/epidemiology , Seroepidemiologic Studies , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology , Risk Factors , Female , Male , Mycobacterium bovis/immunology , Prevalence , Antibodies, Bacterial/blood
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790096

ABSTRACT

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Subject(s)
Dual-Specificity Phosphatases , Macrophages , NF-kappa B , Signal Transduction , Animals , Mice , RAW 264.7 Cells , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Knockdown Techniques , Mycobacterium bovis/immunology , Cytokines/metabolism , Cytokines/genetics
15.
Acta Trop ; 256: 107257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761833

ABSTRACT

Bovine tuberculosis (bTB) is a chronic infectious-contagious disease with worldwide distribution, caused by the zoonotic pathogen Mycobacterium bovis. It is believed that the existence of wild cycles may hamper the success of bTB control strategies worldwide, where wildlife species could be reservoirs of this bacterial agent across their native (e.g., European badgers, wild boars) or non-indigenous (e.g., brushtail possum in New Zealand) ranges. However, further studies are required to understand the potential risk posed by non-native wildlife in becoming carriers of M. bovis in other neglected latitudes, such as the Southern Cone of South America. In this study, we performed a specific M. bovis-RD4 real-time PCR (qPCR) assay to detect bacterial DNA in tissues from the invasive American mink (Neogale vison) in Los Ríos region, Chile. We detected M. bovis DNA in blood samples collected from 13 out of 186 (7 %) minks with known sex and age. We did not find any significant differences in bacterial DNA detection according to mink sex and age. We found that 92 % (12/13) of specimens were positive in lung, 39 % (5/13) in mediastinal lymph node, and 15 % (2/13) in mesenteric lymph node, which suggest that both respiratory and digestive pathways as possible routes of transmission between infected hosts and minks. Our study is the first report on M. bovis molecular detection in invasive minks in an area where the largest cattle population in the country is located. Furthermore, this area is characterized by a low within-herd prevalence of M. bovis infection in cattle, with a relatively low number of infected herds, and so far, no attempts at eradicating the disease have been successful.


Subject(s)
Mink , Mycobacterium bovis , Real-Time Polymerase Chain Reaction , Tuberculosis , Animals , Mycobacterium bovis/genetics , Mycobacterium bovis/isolation & purification , Mink/microbiology , Chile/epidemiology , Female , Male , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis/epidemiology , Tuberculosis/transmission , DNA, Bacterial/genetics , Carrier State/veterinary , Carrier State/microbiology , Carrier State/epidemiology , Disease Reservoirs/microbiology , Lung/microbiology
16.
Microb Pathog ; 192: 106681, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754565

ABSTRACT

Tuberculosis (TB) is a major fatal infectious disease globally, exhibiting high morbidity rates and impacting public health and other socio-economic factors. However, some individuals are resistant to TB infection and are referred to as "Resisters". Resisters remain uninfected even after exposure to high load of Mycobacterium tuberculosis (Mtb). To delineate this further, this study aimed to investigate the factors and mechanisms influencing the Mtb resistance phenotype. We assayed the phagocytic capacity of peripheral blood mononuclear cells (PBMCs) collected from Resisters, patients with latent TB infection (LTBI), and patients with active TB (ATB), following infection with fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Phagocytosis was stronger in PBMCs from ATB patients, and comparable in LTBI patients and Resisters. Subsequently, phagocytes were isolated and subjected to whole transcriptome sequencing and small RNA sequencing to analyze transcriptional expression profiles and identify potential targets associated with the resistance phenotype. The results revealed that a total of 277 mRNAs, 589 long non-coding RNAs, 523 circular RNAs, and 35 microRNAs were differentially expressed in Resisters and LTBI patients. Further, the endogenous competitive RNA (ceRNA) network was constructed from differentially expressed genes after screening. Bioinformatics, statistical analysis, and quantitative real-time polymerase chain reaction were used for the identification and validation of potential crucial targets in the ceRNA network. As a result, we obtained a ceRNA network that contributes to the resistance phenotype. TCONS_00034796-F3, ENST00000629441-DDX43, hsa-ATAD3A_0003-CYP17A1, and XR_932996.2-CERS1 may be crucial association pairs for resistance to TB infection. Overall, this study demonstrated that the phagocytic capacity of PBMCs was not a determinant of the resistance phenotype and that some non-coding RNAs could be involved in the natural resistance to TB infection through a ceRNA mechanism.


Subject(s)
Leukocytes, Mononuclear , MicroRNAs , Mycobacterium tuberculosis , Phagocytes , Phagocytosis , Tuberculosis , Humans , Phagocytes/metabolism , Phagocytes/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis/immunology , Phagocytosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Male , Adult , Gene Expression Profiling , Gene Regulatory Networks , Female , Transcriptome/genetics , Latent Tuberculosis/genetics , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Disease Resistance/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mycobacterium bovis/immunology , Middle Aged , Computational Biology/methods , Young Adult , RNA, Competitive Endogenous
17.
Anal Methods ; 16(20): 3220-3230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717230

ABSTRACT

Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.


Subject(s)
CRISPR-Cas Systems , Colorimetry , G-Quadruplexes , Mycobacterium bovis , Mycobacterium bovis/genetics , CRISPR-Cas Systems/genetics , Colorimetry/methods , Nucleic Acid Hybridization/methods , Limit of Detection , Animals , DNA, Catalytic/chemistry , Biosensing Techniques/methods , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics
18.
Sci Rep ; 14(1): 11898, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789479

ABSTRACT

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.


Subject(s)
BCG Vaccine , Biofilms , Cyclic GMP , Lipidomics , Macrophages , Mycobacterium bovis , Myeloid Differentiation Factor 88 , Transcriptome , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , BCG Vaccine/immunology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Biofilms/growth & development , Cytokines/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gene Expression Profiling , Lectins, C-Type
19.
J Hazard Mater ; 472: 134473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703681

ABSTRACT

Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.


Subject(s)
Mycobacterium bovis , Phylogeny , Whole Genome Sequencing , Mycobacterium bovis/genetics , Animals , Genome, Bacterial , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Cattle , Environmental Microbiology , Animals, Wild/microbiology
20.
Vet Immunol Immunopathol ; 272: 110757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723459

ABSTRACT

The dynamics that develop between cells and molecules in the host against infection by Mycobacterium bovis, leads to the formation of granulomas mainly present in the lungs and regional lymph nodes in cattle. Cell death is one of the main features in granuloma organization, however, it has not been characterized in granulomatous lesions caused by M. bovis. In this study we aimed to identify the profiles of cell death in the granuloma stages and its relationship with the accumulation of bacteria. We identified necrosis, activated caspase-3, LC3B/p62 using immunohistochemistry and digital pathology analysis on 484 granulomatous lesions in mediastinal lymph nodes from 23 naturally infected cattle. Conclusions: greater amounts of mycobacterial antigens were identified in granulomas from calves compared with adult cattle. The highest percentage of necrosis and quantity of mycobacterial antigens were identified in granuloma stages (III/IV) from adults. The LC3B/p62 profile was heterogeneous in granulomas between adults and calves. Our data suggest that necrosis is associated with a higher amount of mycobacterial antigens in the late stages of granuloma and the development of autophagy appears to play an heterogeneous effector response against infection in adults and calves. These results represent one of the first approaches in the identification of cell death in the four stages of granulomas in bovine tuberculosis.


Subject(s)
Antigens, Bacterial , Granuloma , Mycobacterium bovis , Necrosis , Tuberculosis, Bovine , Animals , Cattle , Granuloma/veterinary , Granuloma/immunology , Granuloma/microbiology , Granuloma/pathology , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Necrosis/veterinary , Necrosis/immunology , Necrosis/microbiology , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/pathology , Antigens, Bacterial/immunology , Lymph Nodes/microbiology , Lymph Nodes/immunology , Lymph Nodes/pathology , Caspase 3/immunology , Immunohistochemistry/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...