Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.554
Filter
1.
Neurotox Res ; 42(4): 33, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963434

ABSTRACT

The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase , Oligodendroglia , White Matter , Oligodendroglia/metabolism , Oligodendroglia/pathology , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Animals , White Matter/pathology , White Matter/metabolism , Brain Diseases, Metabolic/pathology , Brain Diseases, Metabolic/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathology
2.
Science ; 385(6704): 37, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963840

ABSTRACT

A microbial metabolite influences myelination in the brain.


Subject(s)
Brain , Myelin Sheath , Myelin Sheath/metabolism , Animals , Humans , Brain/metabolism , Mice
3.
Neuron ; 112(13): 2081-2083, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964282

ABSTRACT

Preterm infants can face lasting neurodevelopmental challenges due to hypoxia-induced injury of the cerebral white matter. In this issue of Neuron, Ren et al.1 identify microvascular pericytes as unexpected targets for growth hormone signaling, which enhances angiogenesis and remyelination after hypoxic injury in the developing mouse brain.


Subject(s)
Hypoxia, Brain , Myelin Sheath , Pericytes , Pericytes/metabolism , Myelin Sheath/metabolism , Animals , Hypoxia, Brain/metabolism , Mice , Humans , Animals, Newborn , Brain/metabolism
4.
Sci Signal ; 17(843): eadr3505, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954639

ABSTRACT

Opioids trigger myelin insulation of reward circuit axons in a feedforward loop of addiction.


Subject(s)
Analgesics, Opioid , Humans , Analgesics, Opioid/pharmacology , Animals , Axons/metabolism , Axons/physiology , Myelin Sheath/metabolism , Reward , Opioid-Related Disorders
5.
Commun Biol ; 7(1): 813, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965401

ABSTRACT

Strategies for treating progressive multiple sclerosis (MS) remain limited. Here, we found that miR-145-5p is overabundant uniquely in chronic lesion tissues from secondary progressive MS patients. We induced both acute and chronic demyelination in miR-145 knockout mice to determine its contributions to remyelination failure. Following acute demyelination, no advantage to miR-145 loss could be detected. However, after chronic demyelination, animals with miR-145 loss demonstrated increased remyelination and functional recovery, coincident with altered presence of astrocytes and microglia within the corpus callosum relative to wild-type animals. This improved response in miR-145 knockout animals coincided with a pathological upregulation of miR-145-5p in wild-type animals with chronic cuprizone exposure, paralleling human chronic lesions. Furthermore, miR-145 overexpression specifically in oligodendrocytes (OLs) severely stunted differentiation and negatively impacted survival. RNAseq analysis showed altered transcriptome in these cells with downregulated major pathways involved in myelination. Our data suggest that pathological accumulation of miR-145-5p is a distinctive feature of chronic demyelination and is strongly implicated in the failure of remyelination, possibly due to the inhibition of OL differentiation together with alterations in other glial cells. This is mirrored in chronic MS lesions, and thus miR-145-5p serves as a potential relevant therapeutic target in progressive forms of MS.


Subject(s)
Demyelinating Diseases , Disease Models, Animal , Mice, Knockout , MicroRNAs , Remyelination , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Remyelination/genetics , Mice , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Recovery of Function , Male , Mice, Inbred C57BL , Cuprizone/toxicity , Female , Chronic Disease , Myelin Sheath/metabolism
6.
Cells ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38920654

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.


Subject(s)
Cicatrix , Neuroglia , Oligodendrocyte Precursor Cells , Remyelination , Humans , Animals , Oligodendrocyte Precursor Cells/metabolism , Cicatrix/pathology , Neuroglia/metabolism , Neuroglia/pathology , Oligodendroglia/metabolism , Oligodendroglia/cytology , Myelin Sheath/metabolism , Cell Differentiation
7.
Nat Commun ; 15(1): 5404, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926356

ABSTRACT

B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.


Subject(s)
Autoimmunity , B-Lymphocytes , CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Interleukin-23 , Myelin-Oligodendrocyte Glycoprotein , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , B-Lymphocytes/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Mice , Autoimmunity/immunology , Interleukin-23/immunology , Interleukin-23/metabolism , CD4-Positive T-Lymphocytes/immunology , Th17 Cells/immunology , Central Nervous System/immunology , Mice, Inbred C57BL , Female , Myelin Sheath/immunology , Myelin Sheath/metabolism , Meninges/immunology , Meninges/pathology , Multiple Sclerosis/immunology
8.
Immunity ; 57(6): 1189-1191, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865964

ABSTRACT

Phagocytic microglia such as proliferative region-associated microglia and disease-associated microglia appear in the brain transiently during development and across various brain pathologies, but their function and degree of plasticity remain unclear. In this issue of Immunity, Barclay et al. established a novel Clec7a-CreERT2 mouse line to uncover the plasticity of this cell state and its role in a model of myelin injury.


Subject(s)
Cell Plasticity , Microglia , Phagocytosis , Microglia/immunology , Microglia/physiology , Animals , Mice , Cell Plasticity/immunology , Myelin Sheath/immunology , Myelin Sheath/metabolism , Humans , Brain/immunology
9.
Sci Rep ; 14(1): 13988, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38886527

ABSTRACT

Demyelination is generated in several nervous system illnesses. Developing strategies for effective clinical treatments requires the discovery of promyelinating drugs. Increased GABAergic signaling through γ-aminobutyric acid type A receptor (GABAAR) activation in oligodendrocytes has been proposed as a promyelinating condition. GABAAR expressed in oligodendroglia is strongly potentiated by n-butyl-ß-carboline-3-carboxylate (ß-CCB) compared to that in neurons. Here, mice were subjected to 0.3% cuprizone (CPZ) added in the food to induce central nervous system demyelination, a well-known model for multiple sclerosis. Then ß-CCB (1 mg/Kg) was systemically administered to analyze the remyelination status in white and gray matter areas. Myelin content was evaluated using Black-Gold II (BGII) staining, immunofluorescence (IF), and magnetic resonance imaging (MRI). Evidence indicates that ß-CCB treatment of CPZ-demyelinated animals promoted remyelination in several white matter structures, such as the fimbria, corpus callosum, internal capsule, and cerebellar peduncles. Moreover, using IF, it was observed that CPZ intake induced an increase in NG2+ and a decrease in CC1+ cell populations, alterations that were importantly retrieved by ß-CCB treatment. Thus, the promyelinating character of ß-CCB was confirmed in a generalized demyelination model, strengthening the idea that it has clinical potential as a therapeutic drug.


Subject(s)
Carbolines , Cuprizone , Demyelinating Diseases , Disease Models, Animal , Remyelination , Animals , Cuprizone/toxicity , Remyelination/drug effects , Mice , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Demyelinating Diseases/metabolism , Carbolines/pharmacology , Carbolines/administration & dosage , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Male , Mice, Inbred C57BL , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/chemically induced , Multiple Sclerosis/pathology , White Matter/drug effects , White Matter/metabolism , White Matter/pathology , Magnetic Resonance Imaging
10.
Nature ; 630(8017): 677-685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839962

ABSTRACT

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Subject(s)
Dopaminergic Neurons , GABAergic Neurons , Morphine , Myelin Sheath , Neuronal Plasticity , Nucleus Accumbens , Oligodendroglia , Optogenetics , Reward , Ventral Tegmental Area , Ventral Tegmental Area/physiology , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Mice , Myelin Sheath/metabolism , Morphine/pharmacology , Male , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Nucleus Accumbens/drug effects , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Oligodendroglia/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Analgesics, Opioid/pharmacology , Dopamine/metabolism , Female , Mice, Inbred C57BL
11.
Hum Brain Mapp ; 45(9): e26688, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38896001

ABSTRACT

Quantitative susceptibility mapping (QSM) is an MRI modality used to non-invasively measure iron content in the brain. Iron exhibits a specific anatomically varying pattern of accumulation in the brain across individuals. The highest regions of accumulation are the deep grey nuclei, where iron is stored in paramagnetic molecule ferritin. This form of iron is considered to be what largely contributes to the signal measured by QSM in the deep grey nuclei. It is also known that QSM is affected by diamagnetic myelin contents. Here, we investigate spatial gene expression of iron and myelin related genes, as measured by the Allen Human Brain Atlas, in relation to QSM images of age-matched subjects. We performed multiple linear regressions between gene expression and the average QSM signal within 34 distinct deep grey nuclei regions. Our results show a positive correlation (p < .05, corrected) between expression of ferritin and the QSM signal in deep grey nuclei regions. We repeated the analysis for other genes that encode proteins thought to be involved in the transport and storage of iron in the brain, as well as myelination. In addition to ferritin, our findings demonstrate a positive correlation (p < .05, corrected) between the expression of ferroportin, transferrin, divalent metal transporter 1, several gene markers of myelinating oligodendrocytes, and the QSM signal in deep grey nuclei regions. Our results suggest that the QSM signal reflects both the storage and active transport of iron in the deep grey nuclei regions of the brain.


Subject(s)
Ferritins , Homeostasis , Iron , Magnetic Resonance Imaging , Myelin Sheath , Humans , Iron/metabolism , Male , Female , Myelin Sheath/metabolism , Myelin Sheath/genetics , Adult , Homeostasis/physiology , Ferritins/metabolism , Ferritins/genetics , Brain/metabolism , Brain/diagnostic imaging , Gene Expression , Middle Aged , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Young Adult , Brain Mapping/methods
12.
Nat Commun ; 15(1): 5173, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890352

ABSTRACT

Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.


Subject(s)
Disease Models, Animal , Myelin Sheath , Oligodendroglia , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/virology , Zika Virus Infection/pathology , Oligodendroglia/virology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Female , Myelin Sheath/metabolism , Pregnancy , Zika Virus/pathogenicity , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/pathology , Macaca nemestrina , Brain/virology , Brain/pathology , Brain/metabolism , Humans , Myelin Basic Protein/metabolism , Myelin Basic Protein/genetics
13.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38834299

ABSTRACT

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.


Subject(s)
COVID-19 , Myelin Sheath , Olfactory Bulb , Olfactory Mucosa , SARS-CoV-2 , Animals , COVID-19/pathology , COVID-19/complications , Mice , Olfactory Mucosa/pathology , Olfactory Mucosa/virology , Olfactory Bulb/pathology , Olfactory Bulb/virology , Myelin Sheath/pathology , Myelin Sheath/metabolism , Microglia/pathology , Microglia/metabolism , Microglia/virology , Mice, Transgenic , Angiotensin-Converting Enzyme 2/metabolism , Olfaction Disorders/pathology , Olfaction Disorders/virology , Disease Models, Animal , Male , Inflammation/pathology , Inflammation/virology , Macrophages/pathology , Female
14.
Glia ; 72(8): 1469-1483, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38771121

ABSTRACT

Myelination is the terminal step in a complex and precisely timed program that orchestrates the proliferation, migration and differentiation of oligodendroglial cells. It is thought that Sonic Hedgehog (Shh) acting on Smoothened (Smo) participates in regulating this process, but that these effects are highly context dependent. Here, we investigate oligodendroglial development and remyelination from three specific transgenic lines: NG2-CreERT2 (control), Smofl/fl/NG2-CreERT2 (loss of function), and SmoM2/NG2-CreERT2 (gain of function), as well as pharmacological manipulation that enhance or inhibit the Smo pathway (Smoothened Agonist (SAG) or cyclopamine treatment, respectively). To explore the effects of Shh/Smo on differentiation and myelination in vivo, we developed a highly quantifiable model by transplanting oligodendrocyte precursor cells (OPCs) in the retina. We find that myelination is greatly enhanced upon cyclopamine treatment and hypothesize that Shh/Smo could promote OPC proliferation to subsequently inhibit differentiation. Consistent with this hypothesis, we find that the genetic activation of Smo significantly increased numbers of OPCs and decreased oligodendrocyte differentiation when we examined the corpus callosum during development and after cuprizone demyelination and remyelination. However, upon loss of function with the conditional ablation of Smo, myelination in the same scenarios are unchanged. Taken together, our present findings suggest that the Shh pathway is sufficient to maintain OPCs in an undifferentiated state, but is not necessary for myelination and remyelination.


Subject(s)
Cell Differentiation , Hedgehog Proteins , Mice, Transgenic , Myelin Sheath , Oligodendrocyte Precursor Cells , Smoothened Receptor , Animals , Hedgehog Proteins/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/drug effects , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Myelin Sheath/metabolism , Cell Differentiation/physiology , Cell Differentiation/drug effects , Veratrum Alkaloids/pharmacology , Mice , Remyelination/physiology , Remyelination/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Oligodendroglia/physiology , Mice, Inbred C57BL , Signal Transduction/physiology , Signal Transduction/drug effects
15.
Glia ; 72(8): 1518-1540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38794866

ABSTRACT

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.


Subject(s)
Myelin Sheath , Oligodendroglia , p21-Activated Kinases , p21-Activated Kinases/metabolism , Oligodendroglia/metabolism , Animals , Myelin Sheath/metabolism , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Rats , Actins/metabolism , Cells, Cultured , Mice , Mice, Inbred C57BL , Actin Cytoskeleton/metabolism
16.
Neuropeptides ; 106: 102436, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733728

ABSTRACT

Microglial phagocytosis of myelin debris is a crucial process for promoting myelin regeneration in conditions such as multiple sclerosis (MS). Vacuolar-ATPase B2 (V-ATPase B2) has been implicated in various cellular processes, but its role in microglial phagocytosis and its potential impact on MS-related responses remain unclear. In this study, we employed BV-2 murine microglial cells to investigate the influence of V-ATPase B2 on the phagocytosis of myelin debris by microglia. The results revealed that V-ATPase B2 expression increased in response to myelin debris exposure. Overexpression of V-ATPase B2 significantly enhanced BV-2 phagocytosis of myelin debris. Additionally, V-ATPase B2 overexpression shifted microglial polarization towards an anti-inflammatory M2 phenotype, coupled with decreased lysosomal pH and enhanced lysosome degradation capacity. Moreover, endoplasmic reticulum (ER) stress inhibitor, 4-PBA, reversed the effects of V-ATPase B2 silencing on ER stress, M2 polarization, and lysosomal degradation of BV-2 cells. The MAPK pathway was inhibited upon V-ATPase B2 overexpression, contributing to heightened myelin debris clearance by BV-2 cells. Notably, MAPK pathway inhibition partially attenuated the inhibitory effects of V-ATPase B2 knockdown on myelin debris clearance. In conclusion, our findings reveal a pivotal role for V-ATPase B2 in promoting microglial phagocytosis of myelin debris by regulating microglial polarization and lysosomal function via the MAPK signaling pathway, suggesting that targeting V-ATPase B2 may hold therapeutic potential for enhancing myelin debris clearance and modulating microglial responses in MS and related neuroinflammatory disorders.


Subject(s)
MAP Kinase Signaling System , Microglia , Myelin Sheath , Phagocytosis , Vacuolar Proton-Translocating ATPases , Microglia/metabolism , Animals , Mice , Myelin Sheath/metabolism , MAP Kinase Signaling System/physiology , Vacuolar Proton-Translocating ATPases/metabolism , Cell Line , Endoplasmic Reticulum Stress/physiology
18.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38721692

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Subject(s)
Mice, Inbred mdx , Muscular Dystrophy, Duchenne , Myelin Sheath , Oligodendroglia , Animals , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Cell Proliferation , Dystrophin/metabolism , Dystrophin/deficiency , Dystrophin/genetics , Corpus Callosum/pathology , Corpus Callosum/metabolism , Mice, Inbred C57BL , Mice , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology , Lateral Ventricles/pathology , Lateral Ventricles/metabolism , Disease Models, Animal , Cell Differentiation , Male
19.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727956

ABSTRACT

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Subject(s)
Brain-Derived Neurotrophic Factor , Neurotrophin 3 , Olfactory Bulb , Remyelination , Animals , Rats , Neurotrophin 3/metabolism , Humans , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Remyelination/physiology , Olfactory Bulb/cytology , Cell Proliferation , Spinal Cord/metabolism , Myelin Sheath/metabolism , Myelin Sheath/physiology , Cells, Cultured , Cell Movement , Cysts/pathology , Female , Central Nervous System Cysts/surgery , Central Nervous System Cysts/pathology
20.
Bull Exp Biol Med ; 176(5): 631-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733477

ABSTRACT

We studied the influence of DMSO administered ad libitum with drinking water in concentrations of 0.01, 0.1, and 1% for 4 and 6 weeks on pain sensitivity, motor coordination, and myelin content in the corpus callosum of C57BL/6 mice. After 6-week administration, DMSO in all studied concentrations decreased myelin content in the corpus callosum. Moreover, 4-week administration of 0.1% DMSO and 6-week administration of 1% DMSO increased the latency to fall in the rotarod test by 3.1 (p<0.05) and 5.1 (p<0.001) times, respectively. After 4-week administration of DMSO in concentrations of 0.01 and 0.1%, the latency of the tail flick response increased by 2.1 (p<0.05) and 1.8 times (p<0.001), respectively. Administration of DMSO in concentrations of 0.01 and 1% for 6 weeks led to a decrease of this parameter by 2.7 (p<0.05) and 3.8 times (p<0.01), respectively. Thus, DMSO in all studied concentrations decreased myelin content in the corpus callosum of C57BL/6 mice and modified motor coordination and pain sensitivity of animals.


Subject(s)
Corpus Callosum , Dimethyl Sulfoxide , Mice, Inbred C57BL , Myelin Sheath , Animals , Dimethyl Sulfoxide/administration & dosage , Dimethyl Sulfoxide/toxicity , Corpus Callosum/drug effects , Corpus Callosum/pathology , Mice , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Male , Rotarod Performance Test , Pain Threshold/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...