Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.683
Filter
1.
Cell Death Dis ; 15(7): 470, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956034

ABSTRACT

The present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres. The PF microspheres exhibited a spherical morphology with an average diameter of approximately 100 micrometers, and the Cripto protein was uniformly entrapped within them. The release rate of Cripto from the PF microspheres was controlled by tuning the crosslinking density of the hydrogel, which was varied by changing the concentration of poly(ethylene glycol) diacrylate (PEG-DA) crosslinker. In vitro experiments confirmed a sustained-release profile of Cripto from the PF microspheres for up to 27 days. The released Cripto was biologically active and promoted the in vitro proliferation of mouse myoblasts. The therapeutic effect of PF-mediated delivery of Cripto in vivo was tested in a cardiotoxin (CTX)-induced muscle injury model in mice. The Cripto caused an increase in the in vivo expression of the myogenic markers Pax7, the differentiation makers eMHC and Desmin, higher numbers of centro-nucleated myofibers and greater areas of regenerated muscle tissue. Collectively, these results establish the PF microspheres as a potential delivery system for the localized, sustained release of therapeutic proteins toward the accelerated repair of damaged muscle tissue following acute injuries.


Subject(s)
Delayed-Action Preparations , Muscle, Skeletal , Polyethylene Glycols , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/drug effects , Mice , Polyethylene Glycols/chemistry , Microspheres , Fibrinogen/metabolism , Hydrogels/chemistry , Regeneration/drug effects , Myoblasts/metabolism , Myoblasts/drug effects , Humans , Cell Proliferation/drug effects , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Muscular Diseases/drug therapy , Muscular Diseases/pathology , Muscular Diseases/metabolism
2.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38994637

ABSTRACT

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , RNA, Circular , Animals , Muscle Development/physiology , Mice , Myoblasts/metabolism , Myoblasts/cytology , RNA, Circular/genetics , RNA, Circular/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Mice, Inbred C57BL , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Male , Cell Line
3.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963344

ABSTRACT

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Chaperone BiP , Muscle, Skeletal , Myoblasts , Receptor, IGF Type 1 , Signal Transduction , Tunicamycin , Animals , Mice , Glycosylation , Myoblasts/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Tunicamycin/pharmacology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Muscle, Skeletal/metabolism , Muscle Development/physiology , Cell Line , Mice, Transgenic , Endoplasmic Reticulum Stress , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics
4.
Sci Rep ; 14(1): 15696, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977909

ABSTRACT

As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.


Subject(s)
Autophagy , Cell Differentiation , Cysteine Endopeptidases , Ferroptosis , Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Ferroptosis/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Ubiquitination , Humans , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
5.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000437

ABSTRACT

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme originally found in the brain. Our previous work revealed that UCHL1 was also expressed in skeletal muscle and affected myoblast differentiation and metabolism. In this study, we further tested the role of UCHL1 in myogenesis and muscle regeneration following muscle ischemia-reperfusion (IR) injury. In the C2C12 myoblast, UCHL1 knockdown upregulated MyoD and myogenin and promoted myotube formation. The skeletal muscle-specific knockout (smKO) of UCHL1 increased muscle fiber sizes in young mice (1 to 2 months old) but not in adult mice (3 months old). In IR-injured hindlimb muscle, UCHL1 was upregulated. UCHL1 smKO ameliorated tissue damage and injury-induced inflammation. UCHL1 smKO also upregulated myogenic factors and promoted functional recovery in IR injury muscle. Moreover, UCHL1 smKO increased Akt and Pink1/Parkin activities. The overall results suggest that skeletal muscle UCHL1 is a negative factor in skeletal muscle development and recovery following IR injury and therefore is a potential therapeutic target to improve muscle regeneration and functional recovery following injuries.


Subject(s)
Mice, Knockout , Muscle Development , Muscle, Skeletal , Ubiquitin Thiolesterase , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/injuries , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Muscle Development/genetics , Regeneration , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Cell Line , Male , Mice, Inbred C57BL , Myoblasts/metabolism , Cell Differentiation
6.
Biomed Res ; 45(4): 173-177, 2024.
Article in English | MEDLINE | ID: mdl-39010193

ABSTRACT

Sarcopenia is a common complication of chronic kidney disease (CKD) and has a detrimental effect on prognosis. Previous studies have explored the role of secondary calciprotein particles (CPP2) in determining the progression of complications and poor outcomes in patients with CKD. However, no study has demonstrated that CPP2 impairs skeletal myogenesis. Our study revealed that CPP2 exposure inhibits skeletal myogenesis by suppressing myotube formation and expression of skeletal muscle-specific myosin heavy chain and actin in human primary myoblasts. Moreover, CPP2 exposure altered the expression patterns of lineage-determinative transcription factors responsible for regulating myotube differentiation marker genes. This study first demonstrated that CPP2 interferes with myoblast differentiation and myotube formation in vitro.


Subject(s)
Cell Differentiation , Muscle Development , Myoblasts , Humans , Myoblasts/metabolism , Myoblasts/cytology , Cells, Cultured , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Gene Expression Regulation
7.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995013

ABSTRACT

Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.


Subject(s)
Cell Proliferation , Myoblasts , Signal Transduction , Tumor Necrosis Factor-alpha , Myoblasts/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cell Proliferation/drug effects , Animals , Mice , Cell Line , Chemokines/metabolism , Chemokines/genetics , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation/drug effects
8.
Nat Cell Biol ; 26(7): 1212-1224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961283

ABSTRACT

Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.


Subject(s)
CRISPR-Cas Systems , G-Quadruplexes , Nucleolin , RNA-Binding Proteins , Humans , Ligands , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Picolinic Acids/pharmacology , Picolinic Acids/chemistry , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Animals , Cellular Senescence/drug effects , Cellular Senescence/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Promoter Regions, Genetic , Telomere/metabolism , Telomere/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/pharmacology , Pyridines/chemistry , DNA/metabolism , DNA/genetics , Mice , Clustered Regularly Interspaced Short Palindromic Repeats , HEK293 Cells , Myoblasts/metabolism , Myoblasts/cytology , Aminoquinolines
9.
J Agric Food Chem ; 72(28): 15530-15540, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963795

ABSTRACT

The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.


Subject(s)
Cell Differentiation , Cell Proliferation , Chickens , MicroRNAs , Muscle Development , Muscle, Skeletal , Myoblasts , RNA, Circular , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Chickens/genetics , Chickens/growth & development , Chickens/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Myoblasts/metabolism , Myoblasts/cytology
10.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38865203

ABSTRACT

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Subject(s)
Glycine Hydroxymethyltransferase , MELAS Syndrome , Serine , Humans , MELAS Syndrome/metabolism , MELAS Syndrome/genetics , MELAS Syndrome/pathology , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Serine/metabolism , Myoblasts/metabolism , NAD/metabolism , Male , Proteomics/methods , Female , Transcriptome , Multiomics
11.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837439

ABSTRACT

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Subject(s)
Cell Differentiation , Histones , Myoblasts , Pyruvate Kinase , Animals , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mice , Phosphorylation , Histones/metabolism , Histones/genetics , Myoblasts/metabolism , Myoblasts/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Thyroid Hormone-Binding Proteins , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Isoenzymes/metabolism , Isoenzymes/genetics
12.
Ecotoxicol Environ Saf ; 281: 116607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908055

ABSTRACT

Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.


Subject(s)
Apoptosis , Myoblasts , Trichothecenes , Animals , Trichothecenes/toxicity , Apoptosis/drug effects , Mice , Myoblasts/drug effects , Cell Line , Mitosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Extracellular Matrix/drug effects
13.
Nat Commun ; 15(1): 5403, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926363

ABSTRACT

Idiopathic inflammatory myopathies (IIMs) are severe autoimmune diseases with poorly understood pathogenesis and unmet medical needs. Here, we examine the role of interferon γ (IFNγ) using NOD female mice deficient in the inducible T cell co-stimulator (Icos), which have previously been shown to develop spontaneous IFNγ-driven myositis mimicking human disease. Using muscle proteomic and spatial transcriptomic analyses we reveal profound myofiber metabolic dysregulation in these mice. In addition, we report muscle mitochondrial abnormalities and oxidative stress in diseased mice. Supporting a pathogenic role for oxidative stress, treatment with a reactive oxygen species (ROS) buffer compound alleviated myositis, preserved muscle mitochondrial ultrastructure and respiration, and reduced inflammation. Mitochondrial anomalies and oxidative stress were diminished following anti-IFNγ treatment. Further transcriptomic analysis in IIMs patients and human myoblast in vitro studies supported the link between IFNγ and mitochondrial dysfunction observed in mice. These results suggest that mitochondrial dysfunction, ROS and inflammation are interconnected in a self-maintenance loop, opening perspectives for mitochondria therapy and/or ROS targeting drugs in myositis.


Subject(s)
Interferon-gamma , Myositis , Oxidative Stress , Reactive Oxygen Species , Animals , Interferon-gamma/metabolism , Myositis/metabolism , Myositis/pathology , Myositis/genetics , Humans , Female , Reactive Oxygen Species/metabolism , Mice , Mice, Inbred NOD , Mitochondria/metabolism , Mitochondria/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Disease Models, Animal , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mice, Knockout , Myoblasts/metabolism
14.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928510

ABSTRACT

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.


Subject(s)
Dexamethasone , Muscle Development , Muscular Atrophy , Plant Extracts , Animals , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Muscle Development/drug effects , Mice , Plant Extracts/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Cell Differentiation/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Cell Line , Muscle Proteins/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Mice, Inbred C57BL , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rhodophyta
15.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892515

ABSTRACT

Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS: C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS: Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION: Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.


Subject(s)
Amino Acids, Branched-Chain , Fructose , Insulin Resistance , Muscle Fibers, Skeletal , Animals , Fructose/pharmacology , Amino Acids, Branched-Chain/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Oxygen Consumption/drug effects
16.
Int J Med Sci ; 21(8): 1461-1471, 2024.
Article in English | MEDLINE | ID: mdl-38903922

ABSTRACT

Dasatinib is one of the second-generation tyrosine kinase inhibitors used to treat chronic myeloid leukemia and has a broad target spectrum, including KIT, PDGFR, and SRC family kinases. Due to its broad drug spectrum, dasatinib has been reported at the basic research level to improve athletic performance by eliminating senescent cell removal and to have an effect on muscle diseases such as Duchenne muscular dystrophy, but its effect on myoblasts has not been investigated. In this study, we evaluated the effects of dasatinib on skeletal muscle both under normal conditions and in the regenerating state. Dasatinib suppressed the proliferation and promoted the fusion of C2C12 myoblasts. During muscle regeneration, dasatinib increased the gene expressions of myogenic-related genes (Myod, Myog, and Mymx), and caused abnormally thin muscle fibers on the CTX-induced muscle injury mouse model. From these results, dasatinib changes the closely regulated gene expression pattern of myogenic regulatory factors during muscle differentiation and disrupts normal muscle regeneration. Our data suggest that when using dasatinib, its effects on skeletal muscle should be considered, particularly at regenerating stages.


Subject(s)
Cell Differentiation , Dasatinib , Muscle Development , Muscle, Skeletal , Myoblasts , Regeneration , Dasatinib/pharmacology , Animals , Mice , Regeneration/drug effects , Cell Differentiation/drug effects , Muscle Development/drug effects , Muscle Development/genetics , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/cytology , Cell Proliferation/drug effects , Humans , Cell Line , Protein Kinase Inhibitors/pharmacology
17.
Sci Adv ; 10(18): eadl1922, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691604

ABSTRACT

The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.


Subject(s)
Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 4 , Genotype , Homeodomain Proteins , Muscular Dystrophy, Facioscapulohumeral , Phenotype , Telomere , Humans , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 4/genetics , CRISPR-Cas Systems , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Telomere/genetics , Telomere/metabolism , Translocation, Genetic
18.
Sci Adv ; 10(18): eadj8042, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691608

ABSTRACT

Overactivation of the transforming growth factor-ß (TGFß) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFß induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFß signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFß target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFß-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.


Subject(s)
Histone-Lysine N-Methyltransferase , Muscle Fibers, Skeletal , Muscular Dystrophy, Duchenne , Signal Transduction , Transforming Growth Factor beta , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Transforming Growth Factor beta/metabolism , Humans , Animals , Cell Differentiation , Mice , Myoblasts/metabolism , Fibrosis , Gene Expression Regulation
19.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38764183

ABSTRACT

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Subject(s)
Alternative Splicing , Chickens , LIM Domain Proteins , Muscle Development , Muscle, Skeletal , Animals , Chickens/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/growth & development , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Myoblasts/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Avian Proteins/chemistry , Cell Differentiation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry
20.
Anim Biotechnol ; 35(1): 2345238, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38775564

ABSTRACT

Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.


Subject(s)
Cell Differentiation , Cell Proliferation , Cloning, Molecular , Myoblasts , Tropomyosin , Animals , Cattle/genetics , Tropomyosin/genetics , Tropomyosin/metabolism , Tropomyosin/chemistry , Cell Differentiation/genetics , Myoblasts/metabolism , Myoblasts/cytology , Muscle, Skeletal , Amino Acid Sequence , Muscle Development/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...