Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
J Biochem Mol Toxicol ; 38(9): e23813, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39148253

ABSTRACT

The rupture of intracranial aneurysm (IA) is the primary reason contributing to the occurrence of life-threatening subarachnoid hemorrhages. The oxidative stress-induced phenotypic transformation from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (VSMCs) plays a pivotal role in IA formation and rupture. Our study aimed to figure out the role of phoenixin-14 in VSMC phenotypic switching during the pathogenesis of IA by using both cellular and animal models. Primary rat VSMCs were isolated from the Willis circle of male Sprague-Dawley rats. VSMCs were stimulated by hydrogen peroxide (H2O2) to establish a cell oxidative damage model. After pretreatment with phoenixin-14 and exposure to H2O2, VSMC viability, migration, and invasion were examined through cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Intracellular reactive oxygen species (ROS) production in VSMCs was evaluated by using 2',7'-Dichlorofluorescin diacetate (DCFH-DA) fluorescence probes and flow cytometry. Rat IA models were established by ligation of the left common carotid arteries and posterior branches of both renal arteries. The histopathological changes of rat intracranial blood vessels were observed through hematoxylin and eosin staining. The levels of contractile phenotype markers (alpha-smooth muscle actin [α-SMA] and smooth muscle 22 alpha [SM22α]) in VSMCs and rat arterial rings were determined through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results showed that H2O2 stimulated the production of intracellular ROS and induced oxidative stress in VSMCs, while phoenixin-14 pretreatment attenuated intracellular ROS levels in H2O2-exposed VSMCs. H2O2 exposure promoted VSMC migration and invasion, which, however, was reversed by phoenixin-14 pretreatment. Besides, phoenixin-14 administration inhibited IA formation and rupture in rat models. The decrease in α-SMA and SM22α levels in H2O2-exposed VSMCs and IA rat models was antagonized by phoenixin-14. Collectively, phoenixin-14 ameliorates the progression of IA through preventing the loss of the contractile phenotype of VSMCs.


Subject(s)
Intracranial Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Rats , Male , Intracranial Aneurysm/pathology , Intracranial Aneurysm/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Hydrogen Peroxide/pharmacology , Muscle Contraction/drug effects
2.
Physiol Rep ; 12(16): e16156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175041

ABSTRACT

Pulmonary hypertension (PH) arises from increased pulmonary vascular resistance due to contraction and remodeling of the pulmonary arteries. The structural changes include thickening of the smooth muscle layer from increased proliferation and resistance to apoptosis. The mechanisms underlying apoptosis resistance in PH are not fully understood. In cancer cells, high expression of aquaporin 1 (AQP1), a water channel, is associated with apoptosis resistance. We showed AQP1 protein was expressed in pulmonary arterial smooth muscle cells (PASMCs) and upregulated in preclinical PH models. In this study, we used PASMCs isolated from control male rats and the SU5416 plus hypoxia (SuHx) model to test the role of AQP1 in modulating susceptibility to apoptosis. We found the elevated level of AQP1 in PASMCs from SuHx rats was necessary for resistance to apoptosis and that apoptosis resistance could be conferred by increasing AQP1 in control PASMCs. In exploring the downstream pathways involved, we found AQP1 levels influence the expression of Bcl-2, with enhanced AQP1 levels corresponding to increased Bcl-2 expression, reducing the ratio of BAX to Bcl-2, consistent with apoptosis resistance. These results provide a mechanism by which AQP1 can regulate PASMC fate.


Subject(s)
Apoptosis , Aquaporin 1 , Hypoxia , Indoles , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Pulmonary Artery , Pyrroles , Animals , Aquaporin 1/metabolism , Aquaporin 1/genetics , Male , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/cytology , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Pyrroles/pharmacology , Indoles/pharmacology , Hypoxia/metabolism , Rats, Sprague-Dawley , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Cells, Cultured , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Disease Models, Animal
3.
Respir Res ; 25(1): 313, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154161

ABSTRACT

BACKGROUND: Due to a special hemodynamic feature, pulmonary vascular disease in pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) has two stages: reversible and irreversible. So far, the mechanism involved in the transition from reversible to irreversible stage is elusive. Moreover, no recognized and reliable assessments to distinguish these two stages are available. Furthermore, we found that compared with control and reversible PAH, thrombospondin-4 (THBS4) was significantly upregulated in irreversible group by bioinformatic analysis. Hence, we further verify and investigate the expression and role of THBS4 in PAH-CHD. METHODS: We established the monocrotaline plus aorto-cava shunt-induced (MCT-AV) rat model. We measured the expression of THBS4 in lung tissues from MCT-AV rats. Double immunofluorescence staining of lung tissue for THBS4 and α-SMA (biomarker of smooth muscle cells) or vWF (biomarker of endothelial cells) to identify the location of THBS4 in the pulmonary artery. Primary pulmonary artery smooth muscle cells (PASMCs) were cultivated, identified, and used in this study. THBS4 was inhibited and overexpressed by siRNA and plasmid, respectively, to explore the effect of THBS4 on phenotype transformation, proliferation, apoptosis, and migration of PASMCs. The effect of THBS4 on pulmonary vascular remodeling was evaluated in vivo by adeno-associated virus which suppressed THBS4 expression. Circulating level of THBS4 in patients with PAH-CHD was measured by ELISA. RESULTS: THBS4 was upregulated in the lung tissues of MCT-AV rats, and was further upregulated in severe pulmonary vascular lesions. And THBS4 was expressed mainly in PASMCs. When THBS4 was inhibited, contractile markers α-SMA and MYH11 were upregulated, while the proliferative marker PCNA was decreased, the endothelial-mensenchymal transition marker N-cad was downregulated, proapototic marker BAX was increased. Additionally, proliferation and migration of PASMCs was inhibited and apoptosis was increased. Conversely, THBS4 overexpression resulted in opposite effects. And the impact of THBS4 on PASMCs was probably achieved through the regulation of the PI3K/AKT pathway. THBS4 suppression attenuated pulmonary vascular remodeling. Furthermore, compared with patients with simple congenital heart disease and mild PAH-CHD, the circulating level of THBS4 was higher in patients with severe PAH-CHD. CONCLUSIONS: THBS4 is a promising biomarker to distinguish reversible from irreversible PAH-CHD before repairing the shunt. THBS4 is a potential treatment target in PAH-CHD, especially in irreversible stage.


Subject(s)
Heart Defects, Congenital , Pulmonary Arterial Hypertension , Rats, Sprague-Dawley , Thrombospondins , Animals , Humans , Male , Rats , Cells, Cultured , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/complications , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Thrombospondins/metabolism , Thrombospondins/biosynthesis , Thrombospondins/genetics
4.
Cardiovasc Toxicol ; 24(9): 889-903, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138741

ABSTRACT

Aortic aneurysm and dissection (AAD) is a cardiovascular disease that poses a severe threat to life and has high morbidity and mortality rates. Clinical and animal-based studies have irrefutably shown that fluoroquinolones, a commonly prescribed antibiotic for treating infections, significantly increase the risk of AAD. Despite this, the precise mechanism by which fluoroquinolones cause AAD remains unclear. Therefore, this study aims to investigate the molecular mechanism and role of Ciprofloxacin definitively-a type of fluoroquinolone antibiotic-in the progression of AAD. Aortic transcriptome data were collected from GEO datasets to detect the genes and pathways expressed differently between healthy donors and AAD patients. Human primary Vascular Smooth Muscle Cells (VSMCs) were isolated from the aorta. After 72 h of exposure to 110ug/ml Ciprofloxacin or 100 nmol/L AngII, either or combined, the senescent cells were identified through SA-ß-gal staining. MitoTracker staining was used to examine the morphology of mitochondria in each group. Cellular Reactive Oxygen Species (ROS) levels were measured using MitoSox and DCFH-DA staining. Western blot assay was performed to detect the protein expression level. We conducted an analysis of transcriptome data from both healthy donors and patients with AAD and found that there were significant changes in cellular senescence-related signaling pathways in the latter group. We then isolated and identified human primary VSMCs from healthy donors (control-VSMCs) and patients' (AAD-VSMCs) aortic tissue, respectively. We found that VSMCs from patients exhibited senescent phenotype as compared to control-VSMCs. The higher levels of p21 and p16 and elevated SA-ß-gal activity demonstrated this. We also found that pretreatment with Ciprofloxacin promoted angiotensin-II-induced cellular senescence in control-VSMCs. This was evidenced by increased SA-ß-gal activity, decreased cell proliferation, and elevation of p21 and p16 protein levels. Additionally, we found that Angiotensin-II (AngII) induced VSMC senescence by promoting ROS generation. We used DCFH-DA and mitoSOX staining to identify that Ciprofloxacin and AngII pretreatment further elevated ROS levels than the vehicle or alone group. Furthermore, JC-1 staining showed that mitochondrial membrane potential significantly declined in the Ciprofloxacin and AngII combination group compared to others. Compared to the other three groups, pretreatment of Ciprofloxacin plus AngII could further induce mitochondrial fission, demonstrated by mitoTracker staining and western blotting assay. Mechanistically, we found that Ciprofloxacin impaired the balance of mitochondrial fission and fusion dynamics in VSMCs by suppressing the phosphorylation of AMPK signaling. This caused mitochondrial dysfunction and ROS generation, thereby elevating AngII-induced cellular senescence. However, treatment with the AMPK activator partially alleviated those effects. Our data indicate that Ciprofloxacin may accelerate AngII-induced VSMC senescence through modulating AMPK/ROS signaling and, subsequently, hasten the progression of AAD.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin II , Aortic Dissection , Cellular Senescence , Ciprofloxacin , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Reactive Oxygen Species , Signal Transduction , Humans , Cellular Senescence/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/enzymology , Aortic Dissection/chemically induced , Aortic Dissection/pathology , Aortic Dissection/enzymology , Aortic Dissection/metabolism , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/metabolism , Angiotensin II/toxicity , Cells, Cultured , Ciprofloxacin/pharmacology , AMP-Activated Protein Kinases/metabolism , Case-Control Studies , Aortic Aneurysm/chemically induced , Aortic Aneurysm/pathology , Aortic Aneurysm/metabolism , Aortic Aneurysm/enzymology , Male , Middle Aged , Oxidative Stress/drug effects
5.
J Clin Invest ; 134(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145443

ABSTRACT

The phenotypic switch of vascular smooth cells (VSMCs) from a contractile to a synthetic state is associated with the development and progression of aortic aneurysm (AA). However, the mechanism underlying this process remains unclear. In this issue of the JCI, Song et al. identified SLC44A2 as a regulator of the phenotypic switch in VSMCs. Inhibition of SLC44A2 facilitated the switch to the synthetic state, contributing to the development of AA. Mechanistically, SLC44A2 interacted with NRP1 and ITGB3 to activate the TGF-ß/SMAD signaling pathway, resulting in VSMCs with a contractile phenotype. Furthermore, VSMC-specific SLC44A2 overexpression by genetic or pharmacological manipulation reduced AA in mouse models. These findings suggest the potential of targeting the SLC44A2 signaling pathway for AA prevention and treatment.


Subject(s)
Aortic Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Signal Transduction , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Phenotype , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Integrin beta3/metabolism , Integrin beta3/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics
6.
Gene ; 929: 148820, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39103059

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a complex vascular disorder characterized by the progressive dilation of the abdominal aorta, with a high risk of rupture and mortality. Understanding the cellular interactions and molecular mechanisms underlying AAA development is critical for identifying potential therapeutic targets. METHODS: This study utilized datasets GSE197748, GSE164678 and GSE183464 from the GEO database, encompassing bulk and single-cell RNA sequencing data from AAA and control samples. We performed principal component analysis, differential expression analysis, and functional enrichment analysis to identify key pathways involved in AAA. Cell-cell interactions were investigated using CellPhoneDB, focusing on fibroblasts, vascular smooth muscle cells (VSMCs), and macrophages. We further validated our findings using a mouse model of AAA induced by porcine pancreatic enzyme infusion, followed by gene expression analysis and co-immunoprecipitation experiments. RESULTS: Our analysis revealed significant alterations in gene expression profiles between AAA and control samples, with a pronounced immune response and cell adhesion pathways being implicated. Single-cell RNA sequencing data highlighted an increased proportion of pro-inflammatory macrophages, along with changes in the composition of fibroblasts and VSMCs in AAA. CellPhoneDB analysis identified critical ligand-receptor interactions, notably collagen type I alpha 1 chain (COL1A1)/COL1A2-CD18 and thrombospondin 1 (THBS1)-CD3, suggesting complex communication networks between fibroblasts and VSMCs. In vivo experiments confirmed the upregulation of these genes in AAA mice and demonstrated the functional interaction between COL1A1/COL1A2 and CD18. CONCLUSION: The interaction between fibroblasts and VSMCs, mediated by specific ligand-receptor pairs such as COL1A1/COL1A2-CD18 and THBS1-CD3, plays a pivotal role in AAA pathogenesis.


Subject(s)
Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Sequence Analysis, RNA , Single-Cell Analysis , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Animals , Mice , Single-Cell Analysis/methods , Humans , Sequence Analysis, RNA/methods , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Macrophages/metabolism , Disease Progression , Fibroblasts/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Disease Models, Animal , Male , Mice, Inbred C57BL , Gene Expression Profiling/methods , Cell Communication/genetics , Collagen Type I/genetics , Collagen Type I/metabolism
7.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39091212

ABSTRACT

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Subject(s)
Ferroptosis , Muscle, Smooth, Vascular , Plaque, Atherosclerotic , YAP-Signaling Proteins , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , YAP-Signaling Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice, Knockout , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phenylenediamines/pharmacology , Cyclohexylamines/pharmacology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics
8.
J Cardiovasc Pharmacol ; 84(2): 125-135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39115715

ABSTRACT

ABSTRACT: Aneurysms are localized dilations of blood vessels, which can expand to 50% of the original diameter. They are more common in cardiovascular and cerebrovascular vessels. Rupture is one of the most dangerous complications. The pathophysiology of aneurysms is complex and diverse, often associated with progressive vessel wall dysfunction resulting from vascular smooth muscle cell death and abnormal extracellular matrix synthesis and degradation. Multiple studies have shown that long noncoding RNAs (lncRNAs) play a significant role in the progression of cardiovascular and cerebrovascular diseases. Therefore, it is necessary to find and summarize them. LncRNAs control gene expression and disease progression by regulating target mRNA or miRNA and are biomarkers for the diagnosis and prognosis of aneurysmal cardiovascular and cerebrovascular diseases. This review explores the role, mechanism, and clinical value of lncRNAs in aneurysms, providing new insights for a deeper understanding of the pathogenesis of cardiovascular and cerebrovascular aneurysms.


Subject(s)
Intracranial Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , RNA, Long Noncoding , Humans , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Intracranial Aneurysm/genetics , Intracranial Aneurysm/pathology , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Animals , Gene Expression Regulation , Aneurysm/genetics , Aneurysm/pathology , Aneurysm/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Signal Transduction
9.
J Transl Med ; 22(1): 738, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103838

ABSTRACT

BACKGROUND: High levels of lactate are positively associated with prognosis and mortality in pulmonary hypertension (PH). Lactate dehydrogenase A (LDHA) is a key enzyme for the production of lactate. This study is undertaken to investigate the role and molecular mechanisms of lactate and LDHA in PH. METHODS: Lactate levels were measured by a lactate assay kit. LDHA expression and localization were detected by western blot and Immunofluorescence. Proliferation and migration were determined by CCK8, western blot, EdU assay and scratch-wound assay. The right heart catheterization and right heart ultrasound were measured to evaluate cardiopulmonary function. RESULTS: In vitro, we found that lactate promoted proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) in an LDHA-dependent manner. In vivo, we found that LDHA knockdown reduced lactate overaccumulation in the lungs of mice exposed to hypoxia. Furthermore, LDHA knockdown ameliorated hypoxia-induced vascular remodeling and right ventricular dysfunction. In addition, the activation of Akt signaling by hypoxia was suppressed by LDHA knockdown both in vivo and in vitro. The overexpression of Akt reversed the inhibitory effect of LDHA knockdown on proliferation in PASMCs under hypoxia. Finally, LDHA inhibitor attenuated vascular remodeling and right ventricular dysfunction in Sugen/hypoxia mouse PH model, Monocrotaline (MCT)-induced rat PH model and chronic hypoxia-induced mouse PH model. CONCLUSIONS: Thus, LDHA-mediated lactate production promotes pulmonary vascular remodeling in PH by activating Akt signaling pathway, suggesting the potential role of LDHA in regulating the metabolic reprogramming and vascular remodeling in PH.


Subject(s)
Cell Proliferation , Hypertension, Pulmonary , L-Lactate Dehydrogenase , Lactate Dehydrogenase 5 , Lactic Acid , Mice, Inbred C57BL , Pulmonary Artery , Vascular Remodeling , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Lactate Dehydrogenase 5/metabolism , Male , Lactic Acid/metabolism , L-Lactate Dehydrogenase/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Hypoxia/complications , Hypoxia/metabolism , Signal Transduction , Gene Knockdown Techniques , Mice , Cell Hypoxia , Rats, Sprague-Dawley , Rats , Humans , Lung/pathology , Lung/blood supply
10.
Cells ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39120288

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience.


Subject(s)
Adenosine Deaminase , Homeostasis , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Aorta/metabolism , Aorta/pathology , Apoptosis/genetics , Fibrillin-1/genetics , Fibrillin-1/metabolism , Elastin/metabolism , Mice, Knockout , Mice, Inbred C57BL , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
11.
Int J Med Sci ; 21(10): 1840-1851, 2024.
Article in English | MEDLINE | ID: mdl-39113898

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe pulmonary vascular disease characterized by increased pulmonary vascular resistance because of vascular remodeling and vasoconstriction. Subsequently, PAH leads to right ventricular hypertrophy and heart failure. Cell death mechanisms play a significant role in development and tissue homeostasis, and regulate the balance between cell proliferation and differentiation. Several basic and clinical studies have demonstrated that multiple mechanisms of cell death, including pyroptosis, apoptosis, autophagy, ferroptosis, anoikis, parthanatos, and senescence, are closely linked with the pathogenesis of PAH. This review summarizes different cell death mechanisms involved in the death of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), the primary target cells in PAH. This review summarizes the role of these cell death mechanisms, associated signaling pathways, unique effector molecules, and various pro-survival or reprogramming mechanisms. The aim of this review is to summarize the currently known molecular mechanisms underlying PAH. Further investigations of the cell death mechanisms may unravel new avenues for the prevention and treatment of PAH.


Subject(s)
Endothelial Cells , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Pulmonary Artery , Signal Transduction , Humans , Endothelial Cells/pathology , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Cell Death , Animals , Apoptosis , Autophagy/physiology , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology
12.
PLoS One ; 19(8): e0308273, 2024.
Article in English | MEDLINE | ID: mdl-39088551

ABSTRACT

BACKGROUND: Exposure to ionizing radiation has been linked to cardiovascular diseases. However, the impact of moderate doses of radiation on abdominal aortic aneurysm (AAA) remains unknown. METHODS: Angiotensin II-infused Apoe-/- mice were irradiated (acute, 1 Gray) either 3 days before (Day-3) or 1 day after (Day+1) pomp implantation. Isolated primary aortic vascular smooth muscle cells (VSMCs) were irradiated (acute 1 Gray) for mechanistic studies and functional testing in vitro. RESULTS: Day-3 and Day+1 irradiation resulted in a significant reduction in aorta dilation (Control: 1.39+/-0.12; Day-3: 1.12+/-0.11; Day+1: 1.15+/-0.08 mm, P<0.001) and AAA incidence (Control: 81.0%; Day-3: 33.3%, Day+1: 53.3%) compared to the non-irradiated group. Day-3 and Day+1 irradiation led to an increase in collagen content in the adventitia (Thickness control: 23.64+/-2.9; Day-3: 54.39+/-15.5; Day+1 37.55+/-10.8 mm, P = 0.006). However, the underlying protective mechanisms were different between Day-3 and Day+1 groups. Irradiation before Angiotensin II (AngII) infusion mainly modulated vascular smooth muscle cell (VSMC) phenotype with a decrease in contractile profile and enhanced proliferative and migratory activity. Irradiation after AngII infusion led to an increase in macrophage content with a local anti-inflammatory phenotype characterized by the upregulation of M2-like gene and IL-10 expression. CONCLUSION: Moderate doses of ionizing radiation mitigate AAA either through VSCM phenotype or inflammation modulation, depending on the time of irradiation.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Radiation, Ionizing , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/etiology , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/radiation effects , Muscle, Smooth, Vascular/pathology , Angiotensin II/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/radiation effects , Myocytes, Smooth Muscle/pathology , Male , Disease Models, Animal , Interleukin-10/metabolism , Interleukin-10/genetics , Collagen/metabolism , Cell Proliferation/radiation effects
13.
Cell Stem Cell ; 31(8): 1099-1100, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094540

ABSTRACT

Yang et al.1 generate tissue engineered blood vessels from hiPSC-derived smooth muscle cells harboring a mutation found in Loeys-Dietz syndrome. In vitro and in vivo data from these vessels provide new insight into the molecular physiology of aortic aneurysms and may create a paradigm for understanding a suite of vascular diseases.


Subject(s)
Aortic Aneurysm , Blood Vessel Prosthesis , Tissue Engineering , Humans , Aortic Aneurysm/pathology , Aortic Aneurysm/physiopathology , Animals , Induced Pluripotent Stem Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Loeys-Dietz Syndrome/genetics , Loeys-Dietz Syndrome/pathology
14.
J Cell Mol Med ; 28(13): e18454, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010253

ABSTRACT

Studies have demonstrated a close correlation between MicroRNA and the occurrence of aortic dissection (AD). However, the molecular mechanisms underlying this relationship have not been fully elucidated and further exploration is still required. In this study, we found that miR-485-3p was significantly upregulated in human aortic dissection tissues. Meanwhile, we constructed in vitro AD models in HAVSMCs, HAECs and HAFs and found that the expression of miR-485-3p was increased only in HAVSMCs. Overexpression or knockdown of miR-485-3p in HAVSMCs could regulate the expression of inflammatory cytokines IL1ß, IL6, TNF-α, and NLRP3, as well as the expression of apoptosis-related proteins BAX/BCL2 and Cleaved caspase3/Caspase3. In the in vivo AD model, we have observed that miR-485-3p regulates vascular inflammation and apoptosis, thereby participating in the modulation of AD development in mice. Based on target gene prediction, we have validated that SIRT1 is a downstream target gene of miR-485-3p. Furthermore, by administering SIRT1 agonists and inhibitors to mice, we observed that the activation of SIRT1 alleviates vascular inflammation and apoptosis, subsequently reducing the incidence of AD. Additionally, functional reversal experiments revealed that overexpression of SIRT1 in HAVSMCs could reverse the cell inflammation and apoptosis mediated by miR-485-3p. Therefore, our research suggests that miR-485-3p can aggravate inflammation and apoptosis in vascular smooth muscle cells by suppressing the expression of SIRT1, thereby promoting the progression of aortic dissection.


Subject(s)
Aortic Dissection , Apoptosis , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Sirtuin 1 , Animals , Humans , Male , Mice , Aortic Dissection/genetics , Aortic Dissection/metabolism , Aortic Dissection/pathology , Apoptosis/genetics , Disease Models, Animal , Gene Expression Regulation , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Sirtuin 1/metabolism , Sirtuin 1/genetics
15.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38995239

ABSTRACT

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Subject(s)
Aortic Aneurysm, Abdominal , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , NF-E2-Related Factor 2 , Phenotype , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Knockout , Single-Cell Analysis , Mice, Inbred C57BL , Angiotensin II/pharmacology , Sequence Analysis, RNA , Disease Models, Animal
16.
Ren Fail ; 46(2): 2367708, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38973391

ABSTRACT

BACKGROUND: Cellular senescence, macrophages infiltration, and vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation participate in the pathophysiology of vascular calcification in chronic kidney disease (CKD). Senescent macrophages are involved in the regulation of inflammation in pathological diseases. In addition, senescent cells spread senescence to neighboring cells via Interferon-induced transmembrane protein3 (IFITM3). However, the role of senescent macrophages and IFITM3 in VSMCs calcification remains unexplored. AIMS: To explore the hypothesis that senescent macrophages contribute to the calcification and senescence of VSMCs via IFITM3. METHODS: Here, the macrophage senescence model was established using Lipopolysaccharides (LPS). The VSMCs were subjected to supernatants from macrophages (MCFS) or LPS-induced macrophages (LPS-MCFS) in the presence or absence of calcifying media (CM). Senescence-associated ß-galactosidase (SA-ß-gal), Alizarin red (AR), immunofluorescent staining, and western blot were used to identify cell senescence and calcification. RESULTS: The expression of IFITM3 was significantly increased in LPS-induced macrophages and the supernatants. The VSMCs transdifferentiated into osteogenic phenotype, expressing higher osteogenic differentiation markers (RUNX2) and lower VSMCs constructive makers (SM22α) when cultured with senescent macrophages supernatants. Also, senescence markers (p16 and p21) in VSMCs were significantly increased by senescent macrophages supernatants treated. However, IFITM3 knockdown inhibited this process. CONCLUSIONS: Our study showed that LPS-induced senescence of macrophages accelerated the calcification of VSMCs via IFITM3. These data provide a new perspective linking VC and aging, which may provide clues for diagnosing and treating accelerated vascular aging in patients with CKD.


Subject(s)
Cellular Senescence , Lipopolysaccharides , Macrophages , Membrane Proteins , Muscle, Smooth, Vascular , RNA-Binding Proteins , Vascular Calcification , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Lipopolysaccharides/pharmacology , Vascular Calcification/pathology , Vascular Calcification/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , RNA-Binding Proteins/metabolism , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Cells, Cultured , Animals , Osteogenesis , Cell Transdifferentiation
19.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000533

ABSTRACT

Vascular calcification (VC) is a cardiovascular disease characterized by calcium salt deposition in vascular smooth muscle cells (VSMCs). Standard in vitro models used in VC investigations are based on VSMC monocultures under static conditions. Although these platforms are easy to use, the absence of interactions between different cell types and dynamic conditions makes these models insufficient to study key aspects of vascular pathophysiology. The present study aimed to develop a dynamic endothelial cell-VSMC co-culture that better mimics the in vivo vascular microenvironment. A double-flow bioreactor supported cellular interactions and reproduced the blood flow dynamic. VSMC calcification was stimulated with a DMEM high glucose calcification medium supplemented with 1.9 mM NaH2PO4/Na2HPO4 (1:1) for 7 days. Calcification, cell viability, inflammatory mediators, and molecular markers (SIRT-1, TGFß1) related to VSMC differentiation were evaluated. Our dynamic model was able to reproduce VSMC calcification and inflammation and evidenced differences in the modulation of effectors involved in the VSMC calcified phenotype compared with standard monocultures, highlighting the importance of the microenvironment in controlling cell behavior. Hence, our platform represents an advanced system to investigate the pathophysiologic mechanisms underlying VC, providing information not available with the standard cell monoculture.


Subject(s)
Cell Differentiation , Coculture Techniques , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification , Humans , Vascular Calcification/metabolism , Vascular Calcification/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , Cell Survival , Transforming Growth Factor beta1/metabolism , Sirtuin 1/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Bioreactors
20.
J Am Heart Assoc ; 13(15): e034203, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39023067

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS: Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS: Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.


Subject(s)
Cell Proliferation , Inositol 1,4,5-Trisphosphate Receptors , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Animals , Male , Mice , Becaplermin/pharmacology , Becaplermin/metabolism , Calcium/metabolism , Calcium Signaling , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/genetics , Cell Movement , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL