Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.188
Filter
1.
Dalton Trans ; 53(25): 10462-10474, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38873789

ABSTRACT

Physiological or pathophysiological changes lead to posttranslational changes in the sialic acid content of human serum transferrin (hTf), an essential mediator of iron transport in the human body, resulting in a significantly increased concentration of desialylated hTf. The intrinsic fluorescence quenching upon binding of iron to hTf was successfully modeled using the binding polynomial for two iron-binding sites, allowing measurements in a high-throughput format. Removal of sialic acid residues resulted in a 3-fold increase in iron binding affinity for both sites of hTf at pH 7.4. The pH-dependence of iron binding showed significant differences in equilibrium constants, resulting in a 10-fold increase in binding affinity for desialylated hTf at pH 5.9. The changes in hTf sialylation apparently result in tuning of the stability of the conformational state, which in turn contributes to the stability of the diferric hTf. The observed differences in the conditional thermodynamic equilibrium constants suggest that the desialylated protein has a higher preference for diferric hTf over monoferric hTf species down to pH 6.5, which may also influence the interaction with transferrin receptors that preferentially bind to diferric hTf. The results suggest a link between changes in hTf glycan structure and alterations in iron binding equilibrium associated with tissue acidosis.


Subject(s)
Protein Binding , Transferrin , Transferrin/metabolism , Transferrin/chemistry , Humans , Hydrogen-Ion Concentration , Iron/metabolism , Iron/chemistry , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Binding Sites , Thermodynamics
2.
Org Lett ; 26(24): 5215-5219, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861677

ABSTRACT

Bacterial nonulosonic acids (NulOs), which feature a nine-carbon backbone, are associated with the biological functions of bacterial glycans. Here, an orthogonally protected 5-amino-7-azido-3,5,7,9-tetradeoxy-d-glycero-l-gluco-2-nonulosonic acid related to Fusobacterium nucleatum ATCC 23726 NulO was synthesized from N-acetylneuraminic acid with sequential performance of C5,7 azidation, C9 deoxygenation, C4 epimerization, and N5,7 differentiation. The C5 azido group in the obtained 5,7-diazido-NulO can be regioselectively reduced to differentiate the two amino groups.


Subject(s)
N-Acetylneuraminic Acid , Sugar Acids , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/chemical synthesis , Molecular Structure , Sugar Acids/chemistry , Sugar Acids/chemical synthesis , Fusobacterium nucleatum/chemistry , Azides/chemistry
3.
AAPS PharmSciTech ; 25(5): 125, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834759

ABSTRACT

DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.


Subject(s)
Doxorubicin , Liposomes , N-Acetylneuraminic Acid , Phosphatidylserines , Tumor-Associated Macrophages , Animals , Mice , N-Acetylneuraminic Acid/chemistry , RAW 264.7 Cells , Phosphatidylserines/metabolism , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Phagocytosis/drug effects , Drug Delivery Systems/methods , Apoptosis/drug effects
4.
Nat Commun ; 15(1): 4386, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782953

ABSTRACT

Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Humans , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Lysosomes/metabolism , HEK293 Cells , Protein Conformation , Organic Anion Transporters/metabolism , Organic Anion Transporters/chemistry , Organic Anion Transporters/antagonists & inhibitors , Dipeptides/chemistry , Dipeptides/metabolism , Dipeptides/pharmacology , Symporters
5.
Int J Biol Macromol ; 269(Pt 1): 132022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697414

ABSTRACT

Edible bird's nest (EBN) is made up of sialylated-mucin glycoprotein with various health benefits due to its high antioxidative activity. However, as a macromolecule with distinct charged sialic acid and amino acids, fractions with different charges would have varied physicochemical properties and antioxidant activity, which have not been studied. Therefore, this study aimed to fractionate and purify the enzymatic hydrolysed of cleaned EBN (EBNhc) and EBN by-product (EBNhbyp) through anion exchange chromatography (AEC), and determine their molecular weights, physicochemical properties, and antioxidative activities. Overall, 26 fractionates were collected from enzymatic hydrolysate by AEC, which were classified into 5 fractions. It was found that the positively charged fraction of EBNhc (CF 1) and EBNhbyp (DF 1) showed the significantly highest (p < 0.05) soluble protein contents (22.86 and 18.40 mg/g), total peptide contents (511.13 and 800.47 mg/g) and ferric reducing antioxidant power (17.44 and 6.96 mg/g) among the fractionates. In conclusion, a positively charged fraction (CF 1 and DF 1) showed more desired physicochemical properties and antioxidative activities. This research suggests the potential of AEC fractionation as a technology to purify EBN and produce positively charged EBN fractionates with antioxidative potential that could be applied as food components to provide health benefits.


Subject(s)
Antioxidants , Birds , Glycoproteins , Animals , Chromatography, Ion Exchange/methods , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Glycoproteins/chemistry , Glycoproteins/isolation & purification , Hydrolysis , Molecular Weight , N-Acetylneuraminic Acid/chemistry , Chemical Fractionation/methods
6.
Anal Methods ; 16(22): 3475-3485, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38780482

ABSTRACT

Sialylation is an important modification of proteins, related to protein life and bioactivity. However, the evaluation of sialylation is only based on the average molecular composition by peptide mapping and glycan profiling because sialylated proteins are usually too heterogeneous to obtain good quality mass spectra by conventional intact mass analysis methods. In this study, a simple strong cation exchange-mass spectroscopy (SCX-MS) method was developed for intact mass analysis of sialylated glycoproteins. The developed SCX-MS method provided good separation for sialylated glycoproteins and had an inherent characteristic of native MS. Thus, the intact mass analysis of highly heterogeneous glycoprotein, which cannot be obtained by reversed-phase liquid chromatography (RPLC)-MS and size exclusion chromatography (SEC)-MS methods, can be well analyzed using the current SCX-MS method. First, the method was developed and optimized using the etanercept monomer. Conditions including MS parameters, flow rate, and gradient were investigated. Then, the developed method was used to analyze a new recombinant vaccine, protein 1. Similar to the etanercept monomer, the intact molecular information of protein 1, which cannot be obtained by RPLC-MS and SEC-MS, can be achieved using SCX-MS. Combined with information obtained on peptide mapping and glycan profiles obtained by LC-MS, the new vaccine was well characterized. Finally, the SCX-MS method was used to quickly evaluate the batch-to-batch reproducibility of protein 1. It was much faster than peptide mapping and glycan profiling methods and can provide information complementary to these strategies. It should be useful for many applications where speed and comprehensive characterization are required, such as recombinant sialylated vaccines and fusion proteins.


Subject(s)
Glycoproteins , Mass Spectrometry , Glycoproteins/chemistry , Glycoproteins/analysis , Mass Spectrometry/methods , Chromatography, Ion Exchange/methods , Etanercept/chemistry , Glycosylation , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/analysis , Humans , Animals , Cations/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/analysis
7.
J Am Chem Soc ; 146(22): 15366-15375, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768956

ABSTRACT

Inspired by the specificity of α-(2,9)-sialyl epitopes in bacterial capsular polysaccharides (CPS), a doubly fluorinated disaccharide has been validated as a vaccine lead against Neisseria meningitidis serogroups C and/or B. Emulating the importance of fluorine in drug discovery, this molecular editing approach serves a multitude of purposes, which range from controlling α-selective chemical sialylation to mitigating competing elimination. Conjugation of the disialoside with two carrier proteins (CRM197 and PorA) enabled a semisynthetic vaccine to be generated; this was then investigated in six groups of six mice. The individual levels of antibodies formed were compared and classified as highly glycan-specific and protective. All glycoconjugates induced a stable and long-term IgG response and binding to the native CPS epitope was achieved. The generated antibodies were protective against MenC and/or MenB; this was validated in vitro by SBA and OPKA assays. By merging the fluorinated glycan epitope of MenC with an outer cell membrane protein of MenB, a bivalent vaccine against both serogroups was created. It is envisaged that validation of this synthetic, fluorinated disialoside bioisostere as a potent antigen will open new therapeutic avenues.


Subject(s)
Halogenation , Animals , Mice , N-Acetylneuraminic Acid/chemistry , Meningococcal Vaccines/immunology , Meningococcal Vaccines/chemistry , Neisseria meningitidis, Serogroup B/immunology , Neisseria meningitidis, Serogroup B/chemistry , Meningitis, Meningococcal/prevention & control , Meningitis, Meningococcal/immunology
8.
Nat Biomed Eng ; 8(5): 499-512, 2024 May.
Article in English | MEDLINE | ID: mdl-38693431

ABSTRACT

Bispecific T-cell engagers (BiTEs) bring together tumour cells and cytotoxic T cells by binding to specific cell-surface tumour antigens and T-cell receptors, and have been clinically successful for the treatment of B-cell malignancies. Here we show that a BiTE-sialidase fusion protein enhances the susceptibility of solid tumours to BiTE-mediated cytolysis of tumour cells via targeted desialylation-that is, the removal of terminal sialic acid residues on glycans-at the BiTE-induced T-cell-tumour-cell interface. In xenograft and syngeneic mouse models of leukaemia and of melanoma and breast cancer, and compared with the parental BiTE molecules, targeted desialylation via the BiTE-sialidase fusion proteins enhanced the formation of immunological synapses, T-cell activation and T-cell-mediated tumour-cell cytolysis in the presence of the target antigen. The targeted desialylation of tumour cells may enhance the potency of therapies relying on T-cell engagers.


Subject(s)
Neuraminidase , Animals , Neuraminidase/metabolism , Humans , Mice , Cell Line, Tumor , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , T-Lymphocytes/immunology , Female , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Lymphocyte Activation , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Xenograft Model Antitumor Assays , T-Lymphocytes, Cytotoxic/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology
9.
Carbohydr Res ; 539: 109123, 2024 May.
Article in English | MEDLINE | ID: mdl-38669826

ABSTRACT

Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.


Subject(s)
N-Acetylneuraminic Acid , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Animals
10.
Langmuir ; 40(14): 7471-7478, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38554266

ABSTRACT

Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.


Subject(s)
Biosensing Techniques , Sialic Acids , Sialic Acids/chemistry , Neuraminidase/chemistry , Neuraminidase/metabolism , N-Acetylneuraminic Acid/chemistry , Bacteria
11.
Chemistry ; 30(31): e202400883, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38556469

ABSTRACT

We report on the syntheses of NeuAc and NeuGc-containing glycosides via the use of double carbonyl-protected N-acetyl sialyl donors. The 7-O,9-O-carbonyl protection of an N-acyl-5-N,4-O-carbonyl-protected sialyl donor markedly increased the α-selectivity during glycosylation, particularly when glycosylating the C-8 hydroxyl group of sialic acids. The N-acyl carbamates were selectively opened with ethanethiol under basic conditions to provide N-acyl amines. It is noteworthy that N-glycolyl carbamate was more reactive to nucleophiles by comparison with the N-acetyl carbamate due to the electron-withdrawing oxygen in the N-acyl group and however, allowed selective opening of the carbamates without the loss of N-glycolyl groups. To demonstrate the utility of the approach, we began by synthesizing α(2,3) and α(2,6) sialyl galactosides. Glycosylation of the hydroxy groups of galactosides at the C-6 position with the NeuAc and NeuGc donors provided the corresponding sialyl galactoses in good yields with excellent α-selectivity. However, glycosylation of the 2,3-diol galactosyl acceptor selectively provided Siaα(2,2)Gal. Next, we prepared a series of α(2,8) disialosides composed of NeuAc and NeuGc. Glycosylation of NeuGc and NeuAc acceptors at the C-8 hydroxyl group with NeuGc and NeuAc sialyl donors provided the corresponding α(2,8) disialosides, and no significant differences were detected in the reactivities of these acceptors.


Subject(s)
Sialic Acids , Glycosylation , Sialic Acids/chemistry , Sialic Acids/chemical synthesis , Carbamates/chemistry , Carbamates/chemical synthesis , Glycosides/chemistry , Glycosides/chemical synthesis , Galactosides/chemistry , Galactosides/chemical synthesis , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/chemical synthesis
12.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38439625

ABSTRACT

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Subject(s)
Galactose , N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/chemistry , Humans , Animals , Mice , Galactose/chemistry , Cell Line, Tumor , Dendrimers/chemistry , Dendrimers/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology
13.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470143

ABSTRACT

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Subject(s)
Chickens , Ducks , Horses , Influenza A virus , Influenza in Birds , Neuraminic Acids , Animals , Humans , Chickens/genetics , Chickens/metabolism , Chickens/virology , Ducks/genetics , Ducks/metabolism , Ducks/virology , Epitopes/chemistry , Epitopes/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Horses/genetics , Horses/metabolism , Horses/virology , Influenza A virus/chemistry , Influenza A virus/classification , Influenza A virus/metabolism , Influenza in Birds/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Mutation , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Swine/virology , Viral Zoonoses/metabolism , Viral Zoonoses/transmission , Viral Zoonoses/virology
14.
Microbiology (Reading) ; 170(3)2024 03.
Article in English | MEDLINE | ID: mdl-38488830

ABSTRACT

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Subject(s)
N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/analogs & derivatives , Organic Anion Transporters , Symporters , N-Acetylneuraminic Acid/chemistry , Symporters/genetics , Symporters/metabolism , Bacteria/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
15.
Elife ; 122024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349818

ABSTRACT

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Subject(s)
Haemophilus influenzae , N-Acetylneuraminic Acid , Haemophilus influenzae/metabolism , Cryoelectron Microscopy , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Membrane Transport Proteins/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism
16.
Mol Pharm ; 21(4): 1625-1638, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38403951

ABSTRACT

Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Liposomes/chemistry , N-Acetylneuraminic Acid/chemistry , Breast Neoplasms/drug therapy , COVID-19 Vaccines , Paclitaxel/therapeutic use , Lung Neoplasms/drug therapy , Lipids , Cations , Cell Line, Tumor
17.
Sensors (Basel) ; 24(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400238

ABSTRACT

An overexpression of sialic acid is an indicator of metastatic cancer, and selective detection of sialic acid shows potential for cancer diagnosis. Boronic acid is a promising candidate for this purpose because of its ability to specifically bind to sialic acid under acidic conditions. Notably, the binding strength can be easily modulated by adjusting the pH, which allows for a simple dissociation of the bound sialic acid. In this study, we developed 5-boronopicolinic acid (5-BPA)-modified magnetic particles (BMPs) to selectively capture sialic acid biomolecules. We successfully captured fetuin, a well-known sialoglycoprotein, on BMPs at >104 molecules/particle using an acetate buffer (pH 5.0). Facile dissociation then occurred when the system was changed to a pH 7.6 phosphate buffer. This capture-and-release process could be repeated at least five times. Moreover, this system could enrich fetuin by more than 20 times. In summary, BMPs are functional particles for facile purification and concentration through the selective capture of sialic acid proteins and can improve detection sensitivity compared with conventional methods. This technology shows potential for the detection of sialic acid overexpression by biological particles.


Subject(s)
N-Acetylneuraminic Acid , Neoplasms , Humans , N-Acetylneuraminic Acid/chemistry , Sialoglycoproteins/metabolism , Boronic Acids/chemistry , Fetuins
18.
Org Biomol Chem ; 22(8): 1639-1645, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38180439

ABSTRACT

Sialic acid (SA) is a naturally occurring monosaccharide found in glycoproteins and glycolipids. Changes in the expression of SA are associated with several diseases; thus, the detection of SA is of great significance for biological research, cancer diagnosis, and treatment. Boronic acid analogs have emerged as a promising tool for detecting sugars such as SA due to its reversible covalent bonding ability. In this study, 11 bis-boronic acid compounds and 2 mono-boronic acid compounds were synthesized via a highly efficient Ugi-4CR strategy. The synthesized compounds were subjected to affinity fluorescence binding experiments to evaluate their binding capability to SA. Compound A1 was shown to have a promising binding constant of 2602 ± 100 M-1 at pH = 6.0. Density Functional Theory (DFT) calculations examining the binding modes between A1 and SA indicated that the position of the boronic acid functional group was strongly correlated with its interaction with SA's α-hydroxy acid unit. The DFT calculations were consistent with the observations from the fluorescence experiments, demonstrating that the number and relative positions of the boronic acid functional groups are critical factors in enhancing the binding affinity to SA. DFT calculations of both S and R configuration of A1 indicated that the effect of the S/R configuration of A1 on its binding with ß-sialic acid was insignificant as the Ugi-4CR generated racemic products. A fluorine atom was incorporated into the R2 substituent of A1 as an electron-withdrawing group to produce A5, which possessed a significantly higher capability to bind to SA (Keq = 7015 ± 5 M-1 at pH = 6.0). Finally, A1 and A5 were shown to possess exceptional binding selectivity toward ß-sialic acid under pH of 6.0 and 6.5 while preferring to bind with glucose, fructose, and galactose under pH of 7.0 and 7.5.


Subject(s)
Boronic Acids , N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Boronic Acids/chemistry , Monosaccharides , Glucose , Galactose
19.
J Liposome Res ; 34(3): 464-474, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38196168

ABSTRACT

In different types of cancer treatments, cancer-specific T cells are required for effective anticancer immunity, which has a central role in cancer immunotherapy. However, due to the multiple inhibitions of CD8+ T cells by tumor-related immune cells, CD8+ T-cell mediated antitumor immunotherapy has not achieved breakthrough progress in the treatment of solid tumors. Receptors for sialic acid (SA) are highly expressed in tumor-associated immune cells, so SA-modified nanoparticles are a drug delivery nanoplatform using tumor-associated immune cells as vehicles. To relieve the multiple inhibitions of CD8+ T cells by tumor-associated immune cells, we prepared SA-modified doxorubicin liposomes (SL-DOX, Scheme 1A). In our study, free SA decreased the toxicity of SL-DOX to tumor-associated immune cells. Compared with common liposomes, SL-DOX could inhibit tumor growth more effectively. It is worth noting that SL-DOX could not only kill tumor-related neutrophils and monocytes to relieve the multiple inhibitions of CD8+ T cells but also induce immunogenic death of tumor cells to promote the infiltration and differentiation of CD8+ T cells (Scheme 1B). Therefore, SL-DOX has potential value for the clinical therapeutic effect of CD8+ T cells mediating anti-tumor immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Doxorubicin , Liposomes , N-Acetylneuraminic Acid , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/analogs & derivatives , CD8-Positive T-Lymphocytes/immunology , Animals , Mice , N-Acetylneuraminic Acid/chemistry , Liposomes/chemistry , Humans , Immunotherapy/methods , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Mice, Inbred C57BL , Particle Size , Female , Polyethylene Glycols
20.
Drug Deliv Transl Res ; 14(7): 1794-1809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38165530

ABSTRACT

Mice as a crucial tool for preclinical assessment of antineoplastic agents. The impact of physiological differences among mouse strains on the in vivo efficacy of antitumor drugs, however, has been significantly overlooked. Mononuclear phagocyte system (MPS) is the major player in clearance in vivo, and differences in MPS among different strains may potentially impact the effectiveness of antitumor preparations. Therefore, in this study, we employed conventional liposomes (CL-EPI) and SA-ODA modified liposomes (SAL-EPI) as model preparations to investigate the comprehensive tumor therapeutic effects of CL-EPI and SAL-EPI in KM, BALB/c, and C57BL/6 tumor-bearing mice. The results demonstrated significant variability in the efficacy of CL-EPI for tumor treatment across different mouse strains. Therefore, we should pay attention to the selection of animal models in the study of antitumor agents. SAL-EPI effectively targeted tumor sites by binding to Siglec-1 on the surface of peripheral blood monocytes (PBMs), and achieved good therapeutic effect in different mouse strains with little difference in treatment. The SA modified preparation is therefore expected to achieve a favorable therapeutic effect in tumor patients with different immune states through PBMs delivery (Siglec-1 was expressed in both mice and humans), thereby possessing clinical translational value and promising development prospects.


Subject(s)
Antineoplastic Agents , Liposomes , Mice, Inbred BALB C , Mice, Inbred C57BL , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/administration & dosage , Mice , Cell Line, Tumor , Sialic Acid Binding Ig-like Lectin 1 , Female , Disease Models, Animal , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...