Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.693
Filter
1.
Article in English | MEDLINE | ID: mdl-39091260

ABSTRACT

The recurrent nature of glioblastoma negatively impacts conventional treatment strategies leading to a growing need for nanomedicine. Nanotherapeutics, an approach designed to deliver drugs to specific sites, is experiencing rapid growth and gaining immense popularity. Having potential in reaching the hard-to-reach disease sites, this field has the potential to show high efficacy in combatting glioblastoma progression. The presence of glioblastoma stem cells (GSCs) is a major factor behind the poor prognosis of glioblastoma multiforme (GBM). Stemness potential, heterogeneity, and self-renewal capacity, are some of the properties that make GSCs invade across the distant regions of the brain. Despite advances in medical technology and MRI-guided maximal surgical resection, not all GSCs residing in the brain can be removed, leading to recurrent disease. The aggressiveness of GBM is often correlated with immune suppression, where the T-cells are unable to infiltrate the cancer initiating GSCs. Standard of care therapies, including surgery and chemotherapy in combination with radiation therapy, have failed to tackle all the challenges of the GSCs, making it increasingly important for researchers to develop strategies to tackle their growth and proliferation and reduce the recurrence of GBM. Here, we will focus on the advancements in the field of nanomedicine that has the potential to show positive impact in managing glioblastoma tumor microenvironment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanomedicine , Neoplastic Stem Cells , Glioblastoma/therapy , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Humans , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Animals , Neoplasm Recurrence, Local , Immunosuppression Therapy , Neoplasm Invasiveness , Mice
2.
AAPS PharmSciTech ; 25(6): 178, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095623

ABSTRACT

Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Dry Powder Inhalers/methods , Humans , Administration, Inhalation , Drug Delivery Systems/methods , Nanoparticles/chemistry , Lung/metabolism , Lung/drug effects , Nanomedicine/methods , Particle Size , Nanotechnology/methods
3.
Int J Nanomedicine ; 19: 8189-8210, 2024.
Article in English | MEDLINE | ID: mdl-39157732

ABSTRACT

Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.


Subject(s)
Ferroptosis , Nanomedicine , Ferroptosis/drug effects , Humans , Nanomedicine/methods , Animals , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Stress, Physiological/drug effects , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Lipid Peroxidation/drug effects , Metabolic Diseases/drug therapy
4.
ACS Appl Bio Mater ; 7(8): 5359-5368, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39102354

ABSTRACT

We have studied the endocytic mechanisms that determine subcellular localization for three carrier-free chemotherapeutic-photothermal (chemo-PTT) combination ionic nanomedicines (INMs) composed of doxorubicin (DOX) and an near-infrared (NIR) dye (ICG, IR820, or IR783). This study aims to understand the cellular basis for previously published enhanced toxicity results of these combination nanomedicines toward MCF-7 breast cancer cells. The active transport mechanism of INMs, unlike free DOX, which is known to employ passive transport, was validated by conducting temperature-dependent cellular uptake of the drug in MCF-7 cells using confocal microscopy. The internalization pathway of these INMs was further probed in the presence and absence of different endocytosis inhibitors. Detailed examination of the mode of entry of the carrier-free INMs in MCF-7 cells revealed that they are primarily internalized through clathrin-mediated endocytosis. In addition, time-dependent subcellular localization studies were also investigated. Examination of time-dependent confocal images indicated that the INMs targeted multiple organelles, in contrast to free DOX that primarily targets the nucleus. Collectively, the high cellular endocytic uptake in cancerous cells (EPR effect) and the multimode targeting ability demonstrated the main reason for the low half-maxima inhibitory concentration (IC50) value (the high cytotoxicity) of these carrier-free INMs as compared to their respective parent chemo and PTT drugs.


Subject(s)
Doxorubicin , Endocytosis , Nanomedicine , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Endocytosis/drug effects , MCF-7 Cells , Particle Size , Organelles/metabolism , Organelles/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Ions/chemistry
5.
ACS Nano ; 18(33): 22275-22297, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39105696

ABSTRACT

Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.


Subject(s)
Lung , Nanoparticles , Neutrophils , Animals , Neutrophils/metabolism , Neutrophils/immunology , Humans , Lung/immunology , Lung/metabolism , Mice , Nanoparticles/chemistry , Mononuclear Phagocyte System/metabolism , Endothelium/metabolism , Mice, Inbred C57BL , Nanomedicine
6.
Article in English | MEDLINE | ID: mdl-39140489

ABSTRACT

Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Inflammatory Bowel Diseases , Nanomedicine , Humans , Inflammatory Bowel Diseases/drug therapy , Animals , Extracellular Vesicles/metabolism , Drug Delivery Systems , Mice
7.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125610

ABSTRACT

All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on cells, tissues, and organs, to ensure both effectiveness and safety. To this aim, imaging techniques proved to be extremely valuable not only to visualize the nanoparticles in the biological environment but also to detect the morphological and molecular modifications they have induced. In particular, histochemistry is a long-established science able to provide molecular information on cell and tissue components in situ, bringing together the potential of biomolecular analysis and imaging. The present review article aims at offering an overview of the various histochemical techniques used to explore the impact of novel nanoproducts as therapeutic, reconstructive and diagnostic tools on biological systems. It is evident that histochemistry has been playing a leading role in nanomedical research, being largely applied to single cells, tissue slices and even living animals.


Subject(s)
Molecular Imaging , Nanomedicine , Humans , Animals , Molecular Imaging/methods , Nanomedicine/methods , Nanoparticles/chemistry , Histocytochemistry/methods
8.
J Am Chem Soc ; 146(32): 22747-22758, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39086108

ABSTRACT

Nanomedicine has promising applications in disease treatment, given the remarkable safety concerns (e.g., nanotoxicity and inflammation) of nanomaterials, and realizing the trade-off between the immune response and organ burden of NPs and deeply understanding the interactions of the organism-nano systems are crucial to facilitate the biological applications of NPs. Here, we propose an interpretable causal system optimization (ICSO) framework and construct the upstream and downstream tasks of accurate prediction and intelligent NP optimization. ICSO framework screens the key drivers (recovery duration, specific surface area, and nanomaterial size) and potential causal information for immune responses and organ burden, revealing the hidden priming/constraint effects in bionano interactions. ICSO can be used to quantify the thresholds of biological responses to multiple properties (e.g., the specific surface area, diameter, and zeta potential). ICSO provides quantitative information and constraint conditions for the design of highly biocompatible and targeted organ delivery nanomaterials. For example, negative inflammation is reduced by 36.19%, and positive lung accumulation is promoted by 40.14% by optimizing the specific surface areas and shape and increasing the diameter-to-length ratio. ICSO overcomes the limitations of experience-dependent approaches and provides powerful and automated solutions for decision-makers during nanomaterial design.


Subject(s)
Nanoparticles , Nanoparticles/chemistry , Nanomedicine , Humans , Particle Size , Surface Properties , Inflammation/drug therapy , Animals
9.
Drug Des Devel Ther ; 18: 3499-3521, 2024.
Article in English | MEDLINE | ID: mdl-39132625

ABSTRACT

Objective: Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods: The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results: Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion: Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.


Subject(s)
Drug Delivery Systems , Nanomedicine , Humans , Tissue Engineering
10.
Article in English | MEDLINE | ID: mdl-39109479

ABSTRACT

Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Subject(s)
Drug Carriers , Drug Delivery Systems , Polymers , Proteins , Humans , Polymers/chemistry , Proteins/chemistry , Animals , Drug Carriers/chemistry , Drug Design , Nanoparticles/chemistry , Nanomedicine
11.
Article in English | MEDLINE | ID: mdl-39109509

ABSTRACT

Radiotherapy is an invaluable tool in the treatment of cancer. However, when used as a monotherapy, it fails to provide curative outcomes. Chemotherapy drugs are often included to boost the effects of radiation. Key classes of radiosensitizing drugs include platinum compounds, anthracyclines, antimetabolites, taxanes, topoisomerase inhibitors, alkylating agents, and DNA damage repair inhibitors. Chemoradiotherapy suffers from not only systemic toxicities from chemotherapy drugs but also synergistic radiation toxicity as well. It is critical to deliver radiosensitizing molecules to tumor cells while avoiding adjacent healthy tissues. Currently, nanomedicine provides an avenue for tumor specific delivery of radiosensitizers. Nanoscale delivery vehicles can be synthesized from lipids, polymers, or inorganic materials. Additionally, nanomedicine encompasses stimuli responsive particles including prodrug formulation for tumor specific activation. Clinically, nanomedicine and radiotherapy are intertwined with approved formulation including DOXIL and Abraxane. Though many challenges remain, the ongoing progress evidences a promising future for both nanomedicine and chemoradiotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Chemoradiotherapy , Drug Delivery Systems , Nanomedicine , Neoplasms , Humans , Animals , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry
12.
Nanomedicine (Lond) ; 19(15): 1347-1368, 2024 06 20.
Article in English | MEDLINE | ID: mdl-39105753

ABSTRACT

The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.


[Box: see text].


Subject(s)
Colon , Colonic Neoplasms , Drug Delivery Systems , Inflammatory Bowel Diseases , Nanomedicine , Humans , Nanomedicine/methods , Inflammatory Bowel Diseases/drug therapy , Drug Delivery Systems/methods , Colonic Neoplasms/drug therapy , Colon/drug effects , Colon/metabolism , Colon/pathology , Animals
13.
Nanomedicine (Lond) ; 19(16): 1449-1469, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39121376

ABSTRACT

Aim: To identify hotspots in this field and provide insights into future research directions. Methods: Publications were retrieved from the Web of Science Core Collection database. R Bibliometrix software, VOSviewer and CiteSpace were used to perform the bibliometric and visualization analyses. Results: The analysis comprised 468 publications from 58 countries, with the United States, China and India being the leading contributors. 'Gene therapy', 'nanoparticles' and 'insulin therapy' are the primary focuses. 'Green synthesis', 'cytotoxicity', 'bioavailability' and 'diabetic foot ulcers' have gained prominence, signifying high-intensity areas of interest expected to persist as favored research topics in the future. Conclusion: This study delves into recent frontiers and topical research directions and provides valuable references for further research in this field.


Diabetes mellitus and its complications are substantial global public health concerns given their elevated mortality rates and economic impact. As an emerging technology of the 21st century, nanotechnology plays a crucial role in the diagnosis, monitoring and treatment of diabetes and its complications, offering advantages such as targeting specificity, excellent biocompatibility and high bioavailability. Bibliometrics can analyze the distribution and correlation of authors/countries/institutions in the published literature of a particular research field. It can also objectively and reliably analyze research hotspots, evolutionary trends and anticipate future developments in a given field. This marks the inaugural bibliometric study delving into the application of nanomedicines in diabetes mellitus and its complications from 2001 to 2023. Our results found that nanotechnology research on diabetes and its complications began in 2001 and is still in a continuous development phase. The United States, China and India being the leading contributors in this field. Zhejiang University has the most research in this area, and ACS Nano is the most popular journal. Zhang Y and Wang X are the most valuable authors. 'Gene therapy', 'nanoparticles' and 'insulin therapy' are the primary focus areas in this field. 'Green synthesis', 'cytotoxicity', 'bioavailability' and 'diabetic foot ulcers' will be the promising interests in the future. This study supplements the research data in this field, offering new perspectives and references for scholars focusing on diabetes and its complications.


Subject(s)
Bibliometrics , Diabetes Mellitus , Nanotechnology , Humans , Diabetes Mellitus/drug therapy , Nanotechnology/methods , Diabetes Complications , Nanoparticles , Genetic Therapy , Insulin , Nanomedicine/methods , Animals
14.
Nanomedicine (Lond) ; 19(16): 1487-1506, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39121377

ABSTRACT

Mortality from cardiovascular disease (CVD) accounts for over 30% of all deaths globally, necessitating reliable diagnostic tools. Prompt identification and precise diagnosis are critical for effective personalized treatment. Nanotechnology offers promising applications in diagnostics, biosensing and drug delivery for prevalent cardiovascular diseases. Its integration into cardiovascular care enhances diagnostic accuracy, enabling early intervention and tailored treatment plans. By leveraging nanoscale innovations, healthcare professionals can address the complexities of CVD progression and customize interventions based on individual patient needs. Ongoing advancements in nanotechnology continue to shape the landscape of cardiovascular medicine, offering potential for improved patient outcomes and reduced mortality rates from these pervasive diseases.


[Box: see text].


Subject(s)
Biomarkers , Cardiovascular Diseases , Nanotechnology , Humans , Cardiovascular Diseases/diagnosis , Nanotechnology/methods , Biomarkers/analysis , Nanomedicine/methods , Biosensing Techniques/methods , Drug Delivery Systems/methods
15.
Nat Commun ; 15(1): 6651, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103330

ABSTRACT

Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.


Subject(s)
Cerium , Indoles , Melanins , Myocardial Infarction , Nanomedicine , Polymers , Animals , Melanins/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Male , Mice , Nanomedicine/methods , Indoles/chemistry , Polymers/chemistry , Cerium/chemistry , Cerium/pharmacology , Cerium/administration & dosage , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nanocomposites/chemistry , Disease Models, Animal , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Cellular Microenvironment/drug effects , Ferrocyanides
16.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124985

ABSTRACT

Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.


Subject(s)
Deep Brain Stimulation , Dopamine , Nanomedicine , Neurodegenerative Diseases , Substance-Related Disorders , Humans , Nanomedicine/methods , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Substance-Related Disorders/therapy , Dopamine/metabolism , Deep Brain Stimulation/methods , Animals , Nanoparticles/chemistry , Brain/metabolism , Brain/drug effects
17.
ACS Biomater Sci Eng ; 10(8): 4645-4661, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39086282

ABSTRACT

Graphite carbon nitride (g-C3N4) is a two-dimensional conjugated polymer with a unique energy band structure similar to graphene. Due to its outstanding analytical advantages, such as relatively small band gap (2.7 eV), low-cost synthesis, high thermal stability, excellent photocatalytic ability, and good biocompatibility, g-C3N4 has attracted the interest of researchers and industry, especially in the medical field. This paper summarizes the latest research on g-C3N4-based composites in various biomedical applications, including therapy, diagnostic imaging, biosensors, antibacterial, and wearable devices. In addition, the application prospects and possible challenges of g-C3N4 in nanomedicine are also discussed in detail. This review is expected to inspire emerging biomedical applications based on g-C3N4.


Subject(s)
Biosensing Techniques , Graphite , Nitrogen Compounds , Graphite/chemistry , Humans , Nitrogen Compounds/chemistry , Biocompatible Materials/chemistry , Animals , Nitriles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Wearable Electronic Devices , Nanomedicine/methods
18.
J Nanobiotechnology ; 22(1): 504, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175020

ABSTRACT

Pyroptosis, a lytic form of cell death mediated by the gasdermin family, is characterized by cell swelling and membrane rupture. Inducing pyroptosis in cancer cells can enhance antitumor immune responses and is a promising strategy for cancer therapy. However, excessive pyroptosis may trigger the development of inflammatory diseases due to immoderate and continuous inflammatory reactions. Nanomaterials and nanobiotechnology, renowned for their unique advantages and diverse structures, have garnered increasing attention owing to their potential to induce pyroptosis in diseases such as cancer. A nano-delivery system for drug-induced pyroptosis in cancer cells can overcome the limitations of small molecules. Furthermore, nanomedicines can directly induce and manipulate pyroptosis. This review summarizes and discusses the latest advancements in nanoparticle-based treatments with pyroptosis among inflammatory diseases and cancer, focusing on their functions and mechanisms and providing valuable insights into selecting nanodrugs for pyroptosis. However, the clinical application of these strategies still faces challenges owing to a limited understanding of nanobiological interactions. Finally, future perspectives on the emerging field of pyroptotic nanomaterials are presented.


Subject(s)
Inflammation , Nanoparticles , Neoplasms , Pyroptosis , Pyroptosis/drug effects , Humans , Neoplasms/drug therapy , Nanoparticles/chemistry , Animals , Inflammation/drug therapy , Nanomedicine/methods , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
19.
J Nanobiotechnology ; 22(1): 499, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164747

ABSTRACT

Ischemic stroke poses significant challenges in terms of mortality and disability rates globally. A key obstacle to the successful treatment of ischemic stroke lies in the limited efficacy of administering therapeutic agents. Leveraging the unique properties of nanoparticles for brain targeting and crossing the blood-brain barrier, researchers have engineered diverse nanoparticle-based drug delivery systems to improve the therapeutic outcomes of ischemic stroke. This review provides a concise overview of the pathophysiological mechanisms implicated in ischemic stroke, encompassing oxidative stress, glutamate excitotoxicity, neuroinflammation, and cell death, to elucidate potential targets for nanoparticle-based drug delivery systems. Furthermore, the review outlines the classification of nanoparticle-based drug delivery systems according to these distinct physiological processes. This categorization aids in identifying the attributes and commonalities of nanoparticles that target specific pathophysiological pathways in ischemic stroke, thereby facilitating the advancement of nanomedicine development. The review discusses the potential benefits and existing challenges associated with employing nanoparticles in the treatment of ischemic stroke, offering new perspectives on designing efficacious nanoparticles to enhance ischemic stroke treatment outcomes.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Ischemic Stroke , Nanoparticles , Humans , Ischemic Stroke/drug therapy , Animals , Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Nanoparticles/chemistry , Oxidative Stress/drug effects , Nanoparticle Drug Delivery System/chemistry , Brain Ischemia/drug therapy , Nanomedicine/methods , Brain/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemistry
20.
Int J Nanomedicine ; 19: 8373-8400, 2024.
Article in English | MEDLINE | ID: mdl-39161363

ABSTRACT

Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.


Subject(s)
Antineoplastic Agents , Chitosan , Nanoparticles , Neoplasms , Humans , Chitosan/chemistry , Neoplasms/drug therapy , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Animals , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Delivery Systems/methods , Nanomedicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL