Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.751
Filter
1.
Nanotoxicology ; 18(4): 373-400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38949108

ABSTRACT

Nanomaterials (NMs) offer plenty of novel functionalities. Moreover, their physicochemical properties can be fine-tuned to meet the needs of specific applications, leading to virtually unlimited numbers of NM variants. Hence, efficient hazard and risk assessment strategies building on New Approach Methodologies (NAMs) become indispensable. Indeed, the design, the development and implementation of NAMs has been a major topic in a substantial number of research projects. One of the promising strategies that can help to deal with the high number of NMs variants is grouping and read-across. Based on demonstrated structural and physicochemical similarity, NMs can be grouped and assessed together. Within an established NM group, read-across may be performed to fill in data gaps for data-poor variants using existing data for NMs within the group. Establishing a group requires a sound justification, usually based on a grouping hypothesis that links specific physicochemical properties to well-defined hazard endpoints. However, for NMs these interrelationships are only beginning to be understood. The aim of this review is to demonstrate the power of bioinformatics with a specific focus on Machine Learning (ML) approaches to unravel the NM Modes-of-Action (MoA) and identify the properties that are relevant to specific hazards, in support of grouping strategies. This review emphasizes the following messages: 1) ML supports identification of the most relevant properties contributing to specific hazards; 2) ML supports analysis of large omics datasets and identification of MoA patterns in support of hypothesis formulation in grouping approaches; 3) omics approaches are useful for shifting away from consideration of single endpoints towards a more mechanistic understanding across multiple endpoints gained from one experiment; and 4) approaches from other fields of Artificial Intelligence (AI) like Natural Language Processing or image analysis may support automated extraction and interlinkage of information related to NM toxicity. Here, existing ML models for predicting NM toxicity and for analyzing omics data in support of NM grouping are reviewed. Various challenges related to building robust models in the field of nanotoxicology exist and are also discussed.


Subject(s)
Computational Biology , Machine Learning , Nanostructures , Nanostructures/chemistry , Nanostructures/toxicity , Computational Biology/methods , Humans , Risk Assessment , Animals
2.
ACS Appl Mater Interfaces ; 16(24): 30622-30635, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38857197

ABSTRACT

Mo4/3B2-x nanosheets are newly developed, and 2D transition metal borides (MBene) were reported in 2021, but there is no report on their further applications and modification; hence, this article sheds light on the significance of potential biological prospects for future biomedical applications. Therefore, elucidation of the biocompatibility, biotoxicology, and bioactivity of Mo4/3B2-x nanosheets has been an urgent need to be fulfilled. Nanometabolomics (also referred as nanomaterials-based metabolomics) was first proposed and utilized in our previous work, which specialized in interpreting nanomaterials-induced metabolic reprogramming through aqueous metabolomics and lipidomics approach. Hence, nanometabolomics could be considered as a novel concept combining nanoscience and metabolomics to provide bioinformation on nanomaterials' biomedical applications. In this work, the safe range of concentration (<50 mg/L) with good biosafety toward human umbilical vein endothelial cells (HUVECs) was discovered. The low concentration (5 mg/L) and high concentration (50 mg/L) of Mo4/3B2-x nanosheets were utilized for the in vitro Mo4/3B2-x-cell interaction. Nanometabolomics has elucidated the biological prospective of Mo4/3B2-x nanosheets via monitoring its biocompatibility and metabolic shift of HUVECs. The results revealed that 50 mg/L Mo4/3B2-x nanosheets could lead to a stronger alteration of amino acid metabolism with disturbance of the corresponding amino acid-related pathways (including amino acid metabolism, amino acid degradation, fatty acid biosynthesis, and lipid biosynthesis and metabolism). These interesting results were closely involved with the oxidative stress and production of excess ROS. This work could be regarded as a pathbreaking study on Mo4/3B2-x nanosheets at a biological level, which also designates their further biochemical, medical, and industrial application and development based on nanometabolomics bioinformation.


Subject(s)
Amino Acids , Human Umbilical Vein Endothelial Cells , Nanostructures , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Nanostructures/chemistry , Nanostructures/toxicity , Metabolomics , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Reactive Oxygen Species/metabolism , Metabolic Reprogramming
3.
Toxins (Basel) ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38922163

ABSTRACT

The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles' effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water.


Subject(s)
Bacterial Toxins , Cyanobacteria Toxins , Marine Toxins , Microcystins , Water Purification , Cyanobacteria Toxins/chemistry , Humans , Microcystins/toxicity , Microcystins/chemistry , Microcystins/isolation & purification , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/isolation & purification , Water Purification/methods , Adsorption , Bacterial Toxins/toxicity , Bacterial Toxins/chemistry , Bacterial Toxins/isolation & purification , Alkaloids/chemistry , Alkaloids/toxicity , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Tropanes/chemistry , Tropanes/toxicity , Tropanes/isolation & purification , Nanostructures/chemistry , Nanostructures/toxicity , Uracil/analogs & derivatives , Uracil/chemistry , Uracil/toxicity , Cyanobacteria/chemistry , Cell Survival/drug effects , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
4.
Part Fibre Toxicol ; 21(1): 28, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943182

ABSTRACT

BACKGROUND: Today, nanomaterials are broadly used in a wide range of industrial applications. Such large utilization and the limited knowledge on to the possible health effects have raised concerns about potential consequences on human health and safety, beyond the environmental burden. Given that inhalation is the main exposure route, workers exposed to nanomaterials might be at risk of occurrence of respiratory morbidity and/or reduced pulmonary function. However, epidemiological evidence regarding the association between cumulative exposure to nanomaterials and respiratory health is still scarce. This study focused on the association between cumulative exposure to nanomaterials and pulmonary function among 136 workers enrolled in the framework of the European multicentric NanoExplore project. RESULTS: Our findings suggest that, independently of lifelong tobacco smoking, ethnicity, age, sex, body mass index and physical activity habits, 10-year cumulative exposure to nanomaterials is associated to worse FEV1 and FEF25 - 75%, which might be consistent with the involvement of both large and small airway components and early signs of airflow obstruction. We further explored the hypothesis of a mediating effect via airway inflammation, assessed by interleukin (IL-)10, IL-1ß and Tumor Necrosis Factor alpha (TNF-α), all quantified in the Exhaled Breath Condensate of workers. The mediation analysis results suggest that IL-10, TNF-α and their ratio (i.e., anti-pro inflammatory ratio) may fully mediate the negative association between cumulative exposure to nanomaterials and the FEV1/FVC ratio. This pattern was not observed for other pulmonary function parameters. CONCLUSIONS: Safeguarding the respiratory health of workers exposed to nanomaterials should be of primary importance. The observed association between cumulative exposure to nanomaterials and worse pulmonary function parameters underscores the importance of implementing adequate protective measures in the nanocomposite sector. The mitigation of harmful exposures may ensure that workers can continue to contribute productively to their workplaces while preserving their respiratory health over time.


Subject(s)
Inhalation Exposure , Lung , Nanostructures , Occupational Exposure , Humans , Male , Nanostructures/toxicity , Female , Occupational Exposure/adverse effects , Adult , Inhalation Exposure/adverse effects , Middle Aged , Lung/drug effects , Lung/physiopathology , Lung/immunology , Pneumonia/chemically induced , Forced Expiratory Volume , Respiratory Function Tests , Cytokines/metabolism , Air Pollutants, Occupational/toxicity , Europe
5.
Sci Total Environ ; 938: 173576, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810761

ABSTRACT

Surface modification of graphene-based nanomaterials (GBNs) may occur in aquatic environment and during intentional preparation. However, the influence of the surface groups on the developmental toxicity of GBNs has not been determined. In this study, we evaluated the developmental toxicity of three GBNs including GO (graphene oxide), RGO (reduced GO) and RGO-N (aminated RGO) by employing zebrafish embryos at environmentally relevant concentrations (1-100 µg/L), and the underlying metabolic mechanisms were explored. The results showed that both GO and RGO-N disturbed the development of zebrafish embryos, and the adverse effect of GO was greater than that of RGO-N. Furthermore, the oxygen-containing groups of GBNs play a more important role in inducing developmental toxicity compared to size, defects and nitrogen-containing groups. Specifically, the epoxide and hydroxyl groups of GBNs increased their intrinsic oxidative potential, promoted the generation of ROS, and caused lipid peroxidation. Moreover, a significant decrease in guanosine and abnormal metabolism of multiple glycerophospholipids were observed in all three GBN-treated groups. Nevertheless, GO exposure triggered more metabolic activities related to lipid peroxidation than RGO or RGO-N exposure, and the disturbance intensity of the same metabolite was greater than that of the other two agents. These findings reveal underlying metabolic mechanisms of GBN-induced developmental toxicity.


Subject(s)
Glycerophospholipids , Graphite , Nanostructures , Water Pollutants, Chemical , Zebrafish , Graphite/toxicity , Animals , Glycerophospholipids/metabolism , Nanostructures/toxicity , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Metabolic Networks and Pathways/drug effects , Lipid Peroxidation/drug effects
6.
Environ Toxicol Pharmacol ; 108: 104469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759848

ABSTRACT

We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO2 (NM-100), ZnO (NM-110), SiO2 (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein-protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.


Subject(s)
Protein Interaction Maps , Silver , Titanium , Humans , Titanium/toxicity , THP-1 Cells , Protein Interaction Maps/drug effects , Silver/toxicity , Nanostructures/toxicity , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Transcriptome/drug effects , Silicon Dioxide/toxicity , Interleukin-8/metabolism , Interleukin-8/genetics , Heme Oxygenase-1
7.
Plant Physiol Biochem ; 211: 108704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728836

ABSTRACT

Nanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture. Human exposure from various components of agro-environmental sectors (soil, crops) NMs residues are likely to upsurge with exposure paths may stimulates bioaccumulation in food chain. With the aim to achieve sustainability, nanotechnology (NTs) do exhibit its potentials in various domains of agriculture also have its flip side too. In this review article we have opted a fusion approach using bibliometric based analysis of global research trend followed by a holistic assessment of pros and cons i.e. toxicological aspect too. Moreover, we have also tried to analyse the current scenario of policy associated with the application of NMs in agro-environment.


Subject(s)
Agriculture , Nanostructures , Nanotechnology , Agriculture/methods , Nanostructures/toxicity , Ecosystem , Crops, Agricultural/growth & development , Crops, Agricultural/drug effects , Humans
8.
Chemosphere ; 361: 142491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821130

ABSTRACT

In recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp. Employing a suite of experimental methodologies, including Raman spectroscopy, contact angle measurements, electron microscopy, and chromatography, we examined the physicochemical interplay between the GFNs and TBBPA. The toxicity potentials of individual constituents and their binary combinations were assessed through growth inhibition assays, quantifying reactive oxygen species (ROS) generation and malondialdehyde (MDA) production, photosynthetic activity analyses, and various biochemical assays. The toxicity of TBBPA and graphene-based nanomaterials (GFNs) was examined individually and in combinations. Both pristine TBBPA and GFNs showed dose-dependent toxicity. While lower TBBPA concentrations exacerbated toxicity in binary mixtures, higher TBBPA levels reduced the toxic effects compared to pristine TBBPA treatments. The principal mechanism underlying toxicity was ROS generation, resulting in membrane damage and perturbation of photosynthetic parameters. Cluster heatmap and Pearson correlation were employed to assess correlations between the biological parameters. Finally, ecological risk assessment was undertaken to evaluate environmental impacts of the individual components and the mixture in the algae.


Subject(s)
Chlorella , Flame Retardants , Graphite , Microalgae , Nanostructures , Polybrominated Biphenyls , Flame Retardants/toxicity , Polybrominated Biphenyls/toxicity , Graphite/toxicity , Chlorella/drug effects , Nanostructures/toxicity , Nanostructures/chemistry , Microalgae/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
9.
Environ Sci Pollut Res Int ; 31(23): 34368-34380, 2024 May.
Article in English | MEDLINE | ID: mdl-38703317

ABSTRACT

Manganese-based (Mn-based) nanomaterials (NMs) have great potential as alternatives to conventional Mn fertilizers. Yet, its environmental risks and effects on plant growth are not completely well understood. This study investigated the physiological effects of manganese dioxide (MnO2) and manganese tetroxide (Mn3O4) NMs on inter-root exposure (0-500 mg/L) of hydroponically grown rice. The results showed that on inter-root exposure, 50 mg/L Mn-based NMs promoted the uptake of mineral elements and enhanced the enzymatic activities of antioxidant systems (CAT and SOD) in rice, whereas 500 mg/L Mn3O4 NMs disrupted the mineral element homeostasis and led to phytotoxicity. The promotion effect of MnO2 NMs was better, firstly because MnO2 NMs treatment had lower Mn content in the plant than Mn3O4 NMs. In addition, MnO2 NMs are more transported and absorbed in the plant in ionic form, while Mn3O4 NMs exist in granular form. MnO2 NMs and Mn3O4 NMs both can be used as nano-fertilizers to improve the growth of rice by inter-root application, but the doses should be carefully selected.


Subject(s)
Manganese , Oryza , Oryza/growth & development , Oryza/drug effects , Manganese/toxicity , Fertilizers , Nanostructures/toxicity , Manganese Compounds , Oxides , Plant Roots/drug effects , Plant Roots/growth & development
10.
Chemosphere ; 358: 142208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704042

ABSTRACT

Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.


Subject(s)
Nanostructures , Nanostructures/toxicity , Nanostructures/chemistry , Metals/toxicity , Metals/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Organic Chemicals/toxicity , Organic Chemicals/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Environmental Pollutants/toxicity , Environmental Pollutants/chemistry , Humic Substances
11.
J Environ Manage ; 361: 121289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820797

ABSTRACT

In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.


Subject(s)
Copper , Nanostructures , Plants , Soil Pollutants , Soil , Nanostructures/toxicity , Copper/toxicity , Copper/chemistry , Plants/drug effects , Soil/chemistry , Soil Pollutants/toxicity , Ecosystem , Soil Microbiology , Agriculture
12.
Environ Int ; 188: 108764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788418

ABSTRACT

A strong need exists for broadly applicable nano-QSARs, capable of predicting toxicological outcomes towards untested species and nanomaterials, under different environmental conditions. Existing nano-QSARs are generally limited to only a few species but the inclusion of species characteristics into models can aid in making them applicable to multiple species, even when toxicity data is not available for biological species. Species traits were used to create classification- and regression machine learning models to predict acute toxicity towards aquatic species for metallic nanomaterials. Afterwards, the individual classification- and regression models were stacked into a meta-model to improve performance. Additionally, the uncertainty and limitations of the models were assessed in detail (beyond the OECD principles) and it was investigated whether models would benefit from the addition of more data. Results showed a significant improvement in model performance following model stacking. Investigation of model uncertainties and limitations highlighted the discrepancy between the applicability domain and accuracy of predictions. Data points outside of the assessed chemical space did not have higher likelihoods of generating inadequate predictions or vice versa. It is therefore concluded that the applicability domain does not give complete insight into the uncertainty of predictions and instead the generation of prediction intervals can help in this regard. Furthermore, results indicated that an increase of the dataset size did not improve model performance. This implies that larger dataset sizes may not necessarily improve model performance while in turn also meaning that large datasets are not necessarily required for prediction of acute toxicity with nano-QSARs.


Subject(s)
Quantitative Structure-Activity Relationship , Uncertainty , Nanostructures/toxicity , Animals , Machine Learning , Aquatic Organisms/drug effects
13.
Mar Environ Res ; 198: 106539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718522

ABSTRACT

Nanoplastics and engineering nanomaterials (ENMs) are contaminants of emerging concern (CECs), increasingly being detected in the marine environment and recognized as a potential threat for marine biota at the global level including in polar areas. Few studies have assessed the impact of these anthropogenic nanoparticles in the microbiome of marine invertebrates, however combined exposure resembling natural scenarios has been overlooked. The present study aimed to evaluate the single and combined effects of polystyrene nanoparticles (PS NP) as proxy for nanoplastics and nanoscale titanium dioxide (nano-TiO2) on the prokaryotic communities associated with the gill tissue of the Antarctic soft-shell clam Laternula elliptica, a keystone species of marine benthos Wild-caught specimens were exposed to two environmentally relevant concentrations of carboxylated PS NP (PS-COOH NP, ∼62 nm size) and nano-TiO2 (Aeroxide P25, ∼25 nm) as 5 and 50 µg/L either single and combined for 96h in a semi-static condition.Our findings show a shift in microbiome composition in gills of soft-shell clams exposed to PS NP and nano-TiO2 either alone and in combination with a decrease in the relative abundance of OTU1 (Spirochaetaceae). In addition, an increase of gammaproteobacterial OTUs affiliated to MBAE14 and Methylophagaceae (involved in ammonia denitrification and associated with low-quality water), and the OTU Colwellia rossensis (previously recorded in polluted waters) was observed. Our results suggest that nanoplastics and nano-TiO2 alone and in combination induce alterations in microbiome composition by promoting the increase of negative taxa over beneficial ones in the gills of the Antarctic soft-shell clam. An increase of two low abundance OTUs in PS-COOH NPs exposed clams was also observed. A predicted gene function analysis revealed that sugar, lipid, protein and DNA metabolism were the main functions affected by either PS-COOH NP and nano-TiO2 exposure. The molecular functions involved in the altered affiliated OTUs are novel for nano-CEC exposures.


Subject(s)
Bivalvia , Gills , Microbiota , Water Pollutants, Chemical , Animals , Microbiota/drug effects , Gills/drug effects , Gills/microbiology , Bivalvia/drug effects , Bivalvia/microbiology , Water Pollutants, Chemical/toxicity , Antarctic Regions , Nanostructures/toxicity , Titanium/toxicity , Nanoparticles/toxicity
14.
Sci Data ; 11(1): 503, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755173

ABSTRACT

Nanomaterials hold great promise for improving our society, and it is crucial to understand their effects on biological systems in order to enhance their properties and ensure their safety. However, the lack of consistency in experimental reporting, the absence of universally accepted machine-readable metadata standards, and the challenge of combining such standards hamper the reusability of previously produced data for risk assessment. Fortunately, the research community has responded to these challenges by developing minimum reporting standards that address several of these issues. By converting twelve published minimum reporting standards into a machine-readable representation using FAIR maturity indicators, we have created a machine-friendly approach to annotate and assess datasets' reusability according to those standards. Furthermore, our NanoSafety Data Reusability Assessment (NSDRA) framework includes a metadata generator web application that can be integrated into experimental data management, and a new web application that can summarize the reusability of nanosafety datasets for one or more subsets of maturity indicators, tailored to specific computational risk assessment use cases. This approach enhances the transparency, communication, and reusability of experimental data and metadata. With this improved FAIR approach, we can facilitate the reuse of nanosafety research for exploration, toxicity prediction, and regulation, thereby advancing the field and benefiting society as a whole.


Subject(s)
Nanostructures , Metadata , Nanostructures/toxicity , Risk Assessment
15.
Toxicology ; 504: 153803, 2024 May.
Article in English | MEDLINE | ID: mdl-38616010

ABSTRACT

Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.


Subject(s)
Apoptosis , Mitochondria , Nanostructures , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Nanostructures/toxicity , Animals , Apoptosis/drug effects , Signal Transduction/drug effects
16.
Chem Biol Interact ; 395: 110994, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38582339

ABSTRACT

Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.


Subject(s)
Adiponectin , Apoptosis , Cell Proliferation , Down-Regulation , Nanostructures , Phosphorus , Signal Transduction , Humans , Phosphorus/chemistry , Cell Proliferation/drug effects , Adiponectin/metabolism , Down-Regulation/drug effects , Signal Transduction/drug effects , Nanostructures/chemistry , Nanostructures/toxicity , Apoptosis/drug effects , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
17.
Toxicol In Vitro ; 98: 105814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582230

ABSTRACT

Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.


Subject(s)
Eryptosis , Hemolysis , Nanostructures , Hemolysis/drug effects , Humans , Animals , Nanostructures/toxicity , Eryptosis/drug effects , Erythrocytes/drug effects , Materials Testing/methods
18.
ACS Biomater Sci Eng ; 10(5): 2967-2982, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38632925

ABSTRACT

In recent years, nanomaterials have gained widespread use in the biomedical field, with ZIF-8 and ZnO emerging as promising candidates due to their remarkable performance in osteogenesis, angiogenesis, and antimicrobial therapy. However, before advancing these nanomaterials for clinical applications, it is imperative to evaluate their biocompatibility. In particular, comparing nanomaterials with similar biomedical functions is crucial for identifying the most suitable nanomaterials for further development and market entry. Our study aimed to compare the biocompatibility of nano-ZIF-8 and nano-ZnO under the same conditions. We found that nano-ZIF-8 exhibited lower toxicity both in vitro and in vivo compared to nano-ZnO. To gain insights into the underlying mechanisms responsible for this difference, we conducted further experiments to investigate lysosome damage, mitochondrial change, and the occurrence of ferroptosis. Additionally, we performed transcriptome sequencing to analyze the expression of relevant genes, thereby providing robust validation for our findings. In summary, our study highlighted the importance of evaluating nanomaterials with similar biomedical effects. Through this comparative study, we have not only shed light on the superior biocompatibility of nano-ZIF-8 over nano-ZnO, but also contributed valuable insights and methodological references for future material screening endeavors. Ultimately, our study served as a stepping stone toward the development of safer and more effective nanomaterials for various biomedical applications.


Subject(s)
Biocompatible Materials , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Mice , Humans , Zinc/chemistry , Zinc/pharmacology , Ferroptosis/drug effects , Materials Testing , Nanostructures/chemistry , Nanostructures/toxicity , Cell Survival/drug effects , Zeolites/chemistry , Zeolites/pharmacology
19.
Sci Total Environ ; 928: 172476, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38621536

ABSTRACT

The potential applications of nanomaterials in agriculture for alleviating diverse biotic and abiotic stresses have garnered significant attention. The reported mechanisms encompass promoting plant growth and development, alleviating oxidative stress, inducing defense responses, modulating plant-microbe interactions, and more. However, individual studies may not fully uncover the common pathways or distinguish the effects of different nanostructures. We examined Arabidopsis thaliana transcriptomes exposed to biotic, abiotic, and metal or carbon-based nanomaterials, utilizing 24 microarray chipsets and 17 RNA-seq sets. The results showed that: 1) from the perspective of different nanostructures, all metal nanomaterials relieved biotic/abiotic stresses via boosting metal homeostasis, particularly zinc and iron. Carbon nanomaterials induce hormone-related immune responses in the presence of both biotic and abiotic stressors. 2) Considering the distinct features of various nanostructures, metal nanomaterials displayed unique characteristics in seed priming for combating abiotic stresses. In contrast, carbon nanomaterials exhibited attractive features in alleviating water deprivation and acting as signaling amplifiers during biotic stress. 3) For shared pathway analysis, response to hypoxia emerges as the predominant and widely shared regulatory mechanism governing diverse stress responses, including those induced by nanomaterials. By deciphering shared and specific pathways and responses, this research opens new avenues for precision nano-agriculture, offering innovative strategies to optimize plant resilience, improve stress management, and advance sustainable crop production practices.


Subject(s)
Arabidopsis , Nanostructures , Stress, Physiological , Transcriptome , Arabidopsis/genetics , Arabidopsis/physiology , Nanostructures/toxicity , Transcriptome/drug effects
20.
Environ Pollut ; 350: 123989, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642791

ABSTRACT

The increasing global food demand is threatening the sustainability of agrifood production systems. The intensification of agricultural practices, with inadequate use of pesticides and fertilizers, poses major challenges to the good functioning of agroecosystems and drastically degrades the soil quality. Nanotechnology is expected to optimize the current farming practices and mitigate some associated impacts. Layered double hydroxides (LDHs) are a class of nanomaterials with high potential for use in agricultural productions, mostly due to their sustained release of nutrients. Considering its novelty and lack of studies on the terrestrial ecosystem, it is essential to assess potential long-term harmful consequences to non-target organisms. Our study aimed to evaluate the effect of Zn-Al-NO3 LDH and Mg-Al-NO3 LDH ageing on the survival and reproduction of two soil invertebrate species Enchytraeus crypticus and Folsomia candida. We postulated that the toxicity of nanomaterials to soil invertebrates would change with time, such that the ageing of soil amendments would mediate their impacts on both species. Our results showed that the toxicity of LDHs was species-dependent, with Zn-Al-NO3 LDH being more toxic to E. crypticus, while Mg-Al-NO3 LDH affected more F. candida, especially in the last ageing period, where reproduction was the most sensitive biological parameter. The toxicity of both nanomaterials increased with ageing time, as shown by the decrease of the EC50 values over time. The influence of LDH dissolution and availability of Zn and Mg in the soil pore water was the main factor related to the toxicity, although we cannot rule out the influence of other structural constituents of LDHs (e.g., nitrates and aluminium). This study supports the importance of incorporating ageing in the ecotoxicity testing of nanomaterials, considering their slow release, as effects on soil organisms can change and lead to more severe impacts on the ecosystem functioning.


Subject(s)
Fertilizers , Oligochaeta , Soil Pollutants , Soil , Animals , Fertilizers/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Oligochaeta/drug effects , Nanostructures/toxicity , Reproduction/drug effects , Hydroxides/toxicity , Hydroxides/chemistry , Ecosystem , Invertebrates/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL