Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.274
Filter
1.
J Med Chem ; 67(11): 8932-8961, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38814290

ABSTRACT

This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.


Subject(s)
Antifungal Agents , Candida albicans , Microbial Sensitivity Tests , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Candida albicans/drug effects , Hemolysis/drug effects , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacology
2.
J Am Chem Soc ; 146(21): 14844-14855, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747446

ABSTRACT

Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.


Subject(s)
Adenosine Triphosphate , Imides , Naphthalenes , Polymerization , Naphthalenes/chemistry , Naphthalenes/metabolism , Naphthalenes/chemical synthesis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Imides/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/chemical synthesis , Molecular Structure , Kinetics , Polymers/chemistry
3.
Chembiochem ; 24(5): e202200555, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36594441

ABSTRACT

Combining natural product fragments to design new scaffolds with unprecedented bioactivity is a powerful strategy for the discovery of tool compounds and potential therapeutics. However, the choice of fragments to couple and the biological screens to employ remain open questions in the field. By choosing a primary fragment containing the A/B ring system of estradiol and fusing it to nine different secondary fragments, we were able to identify compounds that modulated four different phenotypes: inhibition of autophagy and osteoblast differentiation, as well as potassium channel and tubulin modulation. The latter two were uncovered by using unbiased morphological profiling with a cell-painting assay. The number of hits and variety in bioactivity discovered validates the use of recombining natural product fragments coupled to phenotypic screening for the rapid identification of biologically diverse compounds.


Subject(s)
Biological Products , Naphthalenes , Biological Products/pharmacology , Biological Products/chemistry , Naphthalenes/chemical synthesis , Estradiol/chemistry
4.
Bioorg Med Chem Lett ; 59: 128530, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35007725

ABSTRACT

A novel series of naphthalene derivatives were designed and synthesized based on the strategy focusing on the restriction of the flexible bond rotation of OX2R selective agonist YNT-185 (1) and their agonist activities against orexin receptors were evaluated. The 1,7-naphthalene derivatives showed superior agonist activity than 2,7-naphthalene derivatives, suggesting that the bent form of 1 would be favorable for the agonist activity. The conformational analysis of 1,7-naphthalene derivatives indicated that the twisting of the amide unit out from the naphthalene plane is important for the enhancement of activity. The introduction of a methyl group on the 2-position of 1,7-naphthalene ring effectively increased the activity, which led to the discovery of the potent OX2R agonist 28c (EC50 = 9.21 nM for OX2R, 148 nM for OX1R). The structure-activity relationship results were well supported by a comparison of the docking simulation results of the most potent derivative 28c with an active state of agonist-bound OX2R cryo-EM SPA structure. These results suggested important information for understanding the active conformation and orientation of pharmacophores in the orexin receptor agonists, which is expected as a chemotherapeutic agent for the treatment of narcolepsy.


Subject(s)
Aniline Compounds/pharmacology , Benzamides/pharmacology , Drug Design , Naphthalenes/pharmacology , Orexin Receptors/agonists , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Structure-Activity Relationship
5.
Pharmacol Res Perspect ; 10(1): e00901, 2022 02.
Article in English | MEDLINE | ID: mdl-35041297

ABSTRACT

Neutral antagonists of GPCRs remain relatively rare-indeed, a large majority of GPCR antagonists are actually inverse agonists. The synthetic cannabinoid receptor agonist (SCRA) EG-018 was recently reported as a low efficacy cannabinoid receptor agonist. Here we report a comparative characterization of EG-018 and 13 analogues along with extant putative neutral antagonists of CB1 . In HEK cells stably expressing human CB1 , assays for inhibition of cAMP were performed by real-time BRET biosensor (CAMYEL), G protein cycling was quantified by [35 S]GTPγS binding, and stimulation of pERK was characterized by AlphaLISA (PerkinElmer). Signaling outcomes for the EG-018 analogues were highly variable, ranging from moderate efficacy agonism with high potency, to marginal agonism at lower potency. As predicted by differing pathway sensitivities to differences in ligand efficacy, most EG-018-based compounds were completely inactive in pERK alone. The lowest efficacy analogue in cAMP assays, 157, had utility in antagonism assay paradigms. Developing neutral antagonists of the CB1 receptor has been a long-standing research goal, and such compounds would have utility both as research tools and in therapeutics. Although these results emphasize again the importance of system factors in determining signaling outcomes, some compounds characterized in this study appear among the lowest efficacy agonists described to date and therefore suggest that development of neutral antagonists is an achievable goal for CB1 .


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Carbazoles/pharmacology , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB1/agonists , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/chemistry , Carbazoles/chemical synthesis , Carbazoles/chemistry , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
6.
J Enzyme Inhib Med Chem ; 37(1): 641-651, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35086409

ABSTRACT

To discover new agrochemicals with prominent pesticidal properties, a series of novel ß-naphthol derivatives containing benzothiazolylamino and various heteroaryl groups (8a-q) were efficiently synthesised via Betti reaction. The bioassay results showed that most of the synthesised compounds exhibited favourable insecticidal potentials, particularly towards oriental armyworm (50-100% at 200 mg·L-1) and diamondback moth (50-95% at 10 mg·L-1). Compounds 8 b, 8f, 8 g, 8j, 8k, 8n, and 8o possessed LC50 values of 0.0988-5.8864 mg·L-1 against diamondback moth. Compounds 8i, 8 l, and 8 m also displayed lethality rates of 30-90% against spider mite at the concentration of 100 mg·L-1. Overall, some compounds could be considered as new insecticidal/acaricidal leading structures for further investigation. The calcium imaging experiments revealed that 8 h, 8i, and viii could activate the release of calcium ions in insect (M. separata) central neurons at a higher concentration (50 mg·L-1). The SAR analysis provided valuable information for further structural modifications.


Subject(s)
Benzothiazoles/pharmacology , Moths/drug effects , Naphthalenes/pharmacology , Pesticides/pharmacology , Animals , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Pesticides/chemical synthesis , Pesticides/chemistry , Structure-Activity Relationship
7.
Eur J Med Chem ; 228: 113972, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34772530

ABSTRACT

With the increase of fungal infection and drug resistance, it is becoming an urgent task to discover the highly effective antifungal drugs. In the study, we selected the key ergosterol bio-synthetic enzymes (Squalene epoxidase, SE; 14 α-demethylase, CYP51) as dual-target receptors to guide the construction of novel antifungal compounds, which could achieve the purpose of improving drug efficacy and reducing drug-resistance. Three different series of amide naphthyl compounds were generated through the method of skeleton growth, and their corresponding target products were synthesized. Most of compounds displayed the obvious biological activity against different Candida spp. and Aspergillus fumigatus. Among of them, target compounds 14a-2 and 20b-2 not only possessed the excellent broad-spectrum anti-fungal activity (MIC50, 0.125-2 µg/mL), but also maintained the anti-drug-resistant fungal activity (MIC50, 1-4 µg/mL). Preliminary mechanism study revealed the compounds (14a-2, 20b-2) could block the bio-synthetic pathway of ergosterol by inhibiting the dual-target (SE/CYP51) activity, and this finally caused the cleavage and death of fungal cells. In addition, we also discovered that compounds 14a-2 and 20b-2 with low toxic and side effects could exert the excellent therapeutic effect in mice model of fungal infection, which was worthy for further in-depth study.


Subject(s)
Amides/pharmacology , Antifungal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Naphthalenes/pharmacology , Squalene Monooxygenase/antagonists & inhibitors , Sterol 14-Demethylase/metabolism , Amides/chemical synthesis , Amides/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus fumigatus/drug effects , Candida/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ligands , Microbial Sensitivity Tests , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Squalene Monooxygenase/metabolism , Structure-Activity Relationship
8.
J Enzyme Inhib Med Chem ; 37(1): 380-396, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34923885

ABSTRACT

In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Naphthalenes/pharmacology , Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Photochem Photobiol Sci ; 20(10): 1357-1378, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34537894

ABSTRACT

Natural products and their analogue have played a key role in the drug discovery and development process. In the laboratory, the total synthesis of secondary metabolites is very useful in ascertaining the hypothetical complex structure of molecules of natural origin. Total synthesis of natural products using Norrish type I and II reactions as a crucial step has been explored in this overview. Norrish reactions are important photo-induced transformations of carbonyl compounds in organic synthetic chemistry and are connected in numerous industrially and biologically relevant procedures and the processing of carbonyl compounds in the atmosphere. The present review tries to focus on the brilliant applications of Norrish type I and II photochemical reactions as a key step in the total synthesis of natural products and highlights on natural sources, structures, and biological activities of the promising natural products for the first time elegantly.


Subject(s)
Biological Products/chemical synthesis , Alkaloids/chemical synthesis , Alkaloids/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Cyclization/radiation effects , Light , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Polyketides/chemical synthesis , Polyketides/chemistry , Quantum Theory , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Terpenes/chemical synthesis , Terpenes/chemistry
10.
J Am Chem Soc ; 143(30): 11734-11740, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34297552

ABSTRACT

The mechanism and dynamics for the formation of the delitschiapyrone family of natural products are studied by density functional theory (DFT) calculations and quasiclassical molecular dynamics simulations with DFT and xTB. In the uncatalyzed reaction, delitschiapyrones A and B are formed by Diels-Alder reactions through a single transition state and a post-transition state bifurcation that favors formation of delitschiapyrone B. In water and most likely in the enzyme, the acidic hydroxyquinone ionizes, and the resulting conjugate base undergoes cycloaddition preferentially to delitschiapyrone A. We demonstrate a new type of biosynthetic transformation and variable selectivity from a (4 + 2)/(4 + 3) ambimodal transition state.


Subject(s)
Biological Products , Naphthalenes , Pyrones , Toluene , Water , Biological Products/chemical synthesis , Biological Products/chemistry , Cycloaddition Reaction , Density Functional Theory , Molecular Dynamics Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Pyrones/chemical synthesis , Pyrones/chemistry , Solvents/chemistry , Toluene/chemistry , Water/chemistry
11.
Bioorg Med Chem ; 44: 116300, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34252790

ABSTRACT

The protein-protein interaction (PPI) between kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) is recognized as a promising target for the prevention and treatment of oxidative stress-related inflammatory diseases. Herein, a series of novel 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acid analogs (7p-t and 8c) were designed to further explore the structure-activity relationships of the series. Their activities were measured first with a fluorescence polarization (FP) assay and more potent compounds were further evaluated using a more sensitive time-resolved fluorescence energy transfer (TR-FRET) assay, demonstrating IC50 values between 7.2 and 31.3 nM. In cytotoxicity studies, the naphthalene derivatives did not show noticeable toxicity to human HepG2-C8 and mouse brain BV-2 microglia cells. Among them, compound 7q bearing oxygen-containing fused rings was shown to significantly stimulate the cellular Nrf2 signaling pathway, including activation of antioxidant response element (ARE)-controlled expression of Nrf2 target genes and proteins. More importantly, 7q suppressed up-regulation of several pro-inflammatory cytokines in lipopolysaccharide (LPS)-challenged BV-2 microglial cells, representing a potential therapeutic application for controlling neuroinflammatory disorders.


Subject(s)
Acetates/pharmacology , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/antagonists & inhibitors , Naphthalenes/pharmacology , Neuroinflammatory Diseases/drug therapy , Acetates/chemical synthesis , Acetates/chemistry , Dose-Response Relationship, Drug , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Structure , NF-E2-Related Factor 2/chemistry , NF-E2-Related Factor 2/metabolism , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Neuroinflammatory Diseases/metabolism , Protein Binding , Structure-Activity Relationship
12.
J Enzyme Inhib Med Chem ; 36(1): 1694-1702, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34309466

ABSTRACT

A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 µM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 µM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Naphthalenes/pharmacology , Thiazoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Polymerization/drug effects , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
13.
Eur J Med Chem ; 222: 113599, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34119834

ABSTRACT

Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway represents as a promising strategy to reduce oxidative stress and related-inflammation, including acute lung injury (ALI). NXPZ-2, a naphthalensulfonamide derivative, was previously reported to effectively inhibit the Keap1-Nrf2 protein-protein interaction (PPI) by our group. In the present work, a series of novel isothiocyanate-containing naphthalensulfonamides with the thioether, sulfoxide and sulfone moieties were designed by a structure-based molecular hybridization strategy using NXPZ-2 and the Nrf2 activator sulforaphane. They possessed good Keap1-Nrf2 PPI inhibitory activity and low cytotoxicity. The molecular docking study was performed to further explain the different activity of the thioether-, sulfoxide- and sulfone-containing naphthalensulfonamides. Among these new derivatives, 2-((N-(4-((N-(2-amino-2-oxoethyl)-4-((3-isothiocyanatopropyl)sulfinyl)phenyl)sulfonamido) naphthalen-1-yl)-4-methoxyphenyl)sulfonamido)acetamide (SCN-16) showed a good KD2 value of 0.455 µM to disrupt the PPI. In an LPS-induced peritoneal macrophage cell model, this compound could cause a significant increase in the nuclear Nrf2 protein, decrease in the cytosolic Nrf2 protein, and further elevate the downstream protective enzymes HO-1 and NQO-1, which were better than the lead compound NXPZ-2 and sulforaphane. What's more, the production of ROS and NO and the expression of pro-inflammatory cytokine TNF-α were also suppressed. In the LPS-induced ALI model, SCN-16 could significantly reduce LPS-induced inflammations and alleviate lung injuries by triggering Nrf2 nuclear translocation. Collectively, our results suggested that SCN-16 could be a novel lead compound targeting Keap1-Nrf2 protective pathway for clinical treatment of ALI.


Subject(s)
Acute Lung Injury/drug therapy , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/antagonists & inhibitors , Naphthalenes/pharmacology , Protective Agents/pharmacology , Sulfonamides/pharmacology , Acute Lung Injury/metabolism , Animals , Dose-Response Relationship, Drug , Drug Design , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , NF-E2-Related Factor 2/metabolism , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protective Agents/chemical synthesis , Protective Agents/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
14.
Eur J Med Chem ; 222: 113592, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34147909

ABSTRACT

Approximately 20% of multiple myeloma (MM) are caused by a chromosomal translocation t (4; 14) that leads to the overexpression of the nuclear receptor binding SET domain-protein 2 (NSD2) histone methyltransferase. NSD2 catalyzes the methylation of lysine 36 on histone H3 (H3K36me2) and is associated with transcriptionally active regions. Using high-throughput screening (HTS) with biological analyses, a series of 5-aminonaphthalene derivatives were designed and synthesized as novel NSD2 inhibitors. Among all the prepared compounds, 9c displayed a good NSD2 inhibitory activity (IC50 = 2.7 µM) and selectivity against both SET-domain-containing and non-SET-domain-containing methyltransferases. Preliminary research indicates the inhibition mechanism of compound 9c by significantly suppressed the methylation of H3K36me2. Compound 9c specifically inhibits the proliferation of the human B cell precursor leukemia cell line RS4:11 and the human myeloma cell line KMS11 by inducing cell cycle arrest and apoptosis with little cytotoxicity. It has been reported that the anti-cancer effect of compound 9c is partly achieved by completely suppressing the transcriptional activation of NSD2-targeted genes. When administered intraperitoneally at 25 mg/kg, compound 9c suppressed the tumor growth of RS4:11 xenografts in vivo and no body weight loss was detected in the tested SCID mice.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Multiple Myeloma/drug therapy , Naphthalenes/pharmacology , Repressor Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Humans , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Repressor Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Angew Chem Int Ed Engl ; 60(34): 18514-18518, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34138512

ABSTRACT

Spiroxins A, C, and D are metabolites that have been identified in the marine fungal strain LL-37H248. Their unique polycyclic structures and intriguing biological activities make them attractive targets for the synthetic community. Based on a scalable enantioselective epoxidation of 5-substituted naphthoquinone, an oxidation/spiroketalization cascade, ortho-selective chlorination of the phenol unit, and oxime-ester-directed acetoxylation, an enantioselective total synthesis of (-)-spiroxins A and C and the first total synthesis of (-)-spiroxin D have been achieved.


Subject(s)
Naphthalenes/chemical synthesis , Spiro Compounds/chemical synthesis , Molecular Structure , Naphthalenes/chemistry , Spiro Compounds/chemistry , Stereoisomerism
16.
Bioorg Chem ; 111: 104905, 2021 06.
Article in English | MEDLINE | ID: mdl-33895602

ABSTRACT

Fifteen naphthyl-carboxamide-DAPYs were generated to explore chemical space in reverse transcriptase (RT) binding site via lead optimization strategy. They displayed up to single-digit nanomolar activity against wild-type (WT) and rilpivirine-associated resistant mutant E138K viruses, as well as potent inhibitory ability toward the RT enzyme. Compound a1 showed exceptionally inhibitory effects with an EC50 value of 3.7 nM against HIV-1 wt strain, and an EC50 of 11 nM targeting mutant E138K. The structure-activity relationships (SARs) of the newly obtained DAPYs were also investigated. Molecular docking analysis elucidated the biological activity and offered a structural insight for follow-up research.


Subject(s)
Anti-HIV Agents/pharmacology , HIV/drug effects , Naphthalenes/pharmacology , Pyrimidines/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
17.
Arch Pharm (Weinheim) ; 354(6): e2000409, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33666284

ABSTRACT

Syntheses of tetrahydroepoxy, O-allylic, O-prenylic, and O-propargylic tetrafluoronaphthalene derivatives, starting from 1-bromo-2,3,4,5,6-pentafluorobenzene, are reported here for the first time. The O-substituted tetrafluoronaphthalene derivatives were designed and also synthesized via a one-pot nucleophilic substitution reaction in excellent yields, whereas the tetrafluorotetrahydroepoxynaphthalene derivate was synthesized via a reduction reaction in excellent yield. The chemical structures of all the synthesized molecules were characterized by nuclear magnetic resonance, infrared spectroscopy, and high-resolution mass spectrometry techniques. In this study, a series of novel tetrafluoronaphthalene derivatives (2, 2a, 4-6) was tested toward several enzymes including α-glucosidase, acetylcholinesterase (AChE), and human carbonic anhydrase I and II (hCA I/II). The tetrafluoronaphthalene derivatives 2, 2a, and 4-6 showed IC50 and Ki values in the range of 0.83-1.27 and 0.71-1.09 nM against hCA I, 1.26-1.85 and 1.45-5.31 nM against hCA II, 39.02-56.01 and 20.53-56.76 nM against AChE, and 15.27-34.12 and 22.58-30.45 nM against α-glucosidase, respectively. Molecular docking calculations were made to determine the biological activity values of the tetrafluoronaphthalene derivatives against the enzymes. After the calculations, ADME/T analysis was performed to examine the effects on human metabolism. Finally, these compounds had antidiabetic and anticholinesterase potentials.


Subject(s)
Carbonic Anhydrase Inhibitors , Cholinesterase Inhibitors , Enzyme Inhibitors , Hypoglycemic Agents , Naphthalenes , Acetylcholinesterase/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Fluorine/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/pharmacology , Structure-Activity Relationship , alpha-Glucosidases/metabolism
18.
Molecules ; 26(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669147

ABSTRACT

An aniline-functionalized naphthalene dialdehyde Schiff base fluorescent probe L with aggregation-induced enhanced emission (AIEE) characteristics was synthesized via a simple one-step condensation reaction and exhibited excellent sensitivity and selectivity towards copper(II) ions in aqueous media with a fluorescence " turn-off " phenomenon. The detection limit of the probe is 1.64 × 10-8 mol·L-1. Furthermore, according to the results of the UV-vis/fluorescence titrations, Job's plot method and 1H-NMR titrations, a 1:2 stoichiometry was identified. The binding constant between L and Cu2+ was calculated to be Ka = 1.222 × 103. In addition, the AIEE fluorescent probe L could be applied to detection in real water samples with satisfactory recoveries in the range 99.10-102.90% in lake water and 98.49-102.37% in tap water.


Subject(s)
Copper/analysis , Fluorescent Dyes/chemistry , Naphthalenes/chemistry , Water Pollutants, Chemical/analysis , Crystallography, X-Ray , Fluorescent Dyes/chemical synthesis , Ions/analysis , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Schiff Bases/chemical synthesis , Schiff Bases/chemistry
19.
Arch Pharm (Weinheim) ; 354(6): e2000479, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33586249

ABSTRACT

A concise and versatile synthetic strategy for the total synthesis of arylnaphthalene lignans and aza-analogs was developed. The main objective was to develop synthetic tactics for the creation of the lactone and lactam unit that would give access to an array of synthetic, natural, and/or bioactive compounds through rather simple chemical manipulation. The flexibility and potentiality of these new processes were further illustrated by the total synthesis of retrojusticidin B (13b), justicidin C (14b), and methoxy-vitedoamine A (22a). In this study, a series of novel aryl-naphthalene lignans and aza-analogs were synthesized, and the cytotoxic activities of all compounds on cancer cell growth were evaluated. The target compounds were structurally characterized by 1 H NMR (nuclear magnetic resonance), 13 C NMR, infrared, high-resolution mass spectrometry, and X-ray crystallography. The IC50 values of these compounds on five tumor cell lines (A549, HS683, MCF-7, SK-MEL-28, and B16-F1) were obtained by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay. Five of the compounds exhibited excellent activity compared to 5-fluorouracil and etoposide against the five cell lines tested, with IC50 values ranging from 1 to 10 µM.


Subject(s)
Aza Compounds , Dioxolanes , Lactones , Lignans , Naphthalenes , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Aza Compounds/pharmacology , Cell Line, Tumor , Dioxolanes/chemical synthesis , Dioxolanes/chemistry , Dioxolanes/pharmacology , Humans , Inhibitory Concentration 50 , Lactones/chemical synthesis , Lactones/chemistry , Lactones/pharmacology , Lignans/chemical synthesis , Lignans/chemistry , Lignans/pharmacology , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Structure-Activity Relationship
20.
Eur J Med Chem ; 215: 113274, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33592537

ABSTRACT

Ceramides have emerged as potential therapeutic option with novel mechanism to affect the proliferation, differentiation, senescence, and apoptosis of cancer cells through regulation of multiple signal transduction. Aiming at the improvement of the apoptosis activity and pharmacokinetic profiles of ceramides, a novel series of ceramide analogs were developed through structure simplification and conformation restriction. Among them, compound 12 bearing an alkoxyl naphthyl motif, with favorable rat pharmacokinetic properties, showed better anti-proliferative activity against various colon cancer cells (IC50 ∼20 µM) than other ceramide analogues, as well as the synergistic effect combined with AKT inhibitor MK2206. Additionally, we demonstrated that this combination therapy promoted caspase 3-dependent apoptotic pathway and intensified cell cycle arrest in the G0/G1 phase. Furthermore, the combination of compound 12 and MK2206 displayed synergistic anti-tumor effect in vivo.


Subject(s)
Antineoplastic Agents/therapeutic use , Ceramides/therapeutic use , Heterocyclic Compounds, 3-Ring/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Ceramides/chemical synthesis , Ceramides/pharmacokinetics , Drug Design , Drug Synergism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice, Inbred BALB C , Naphthalenes/chemical synthesis , Naphthalenes/pharmacokinetics , Naphthalenes/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...