Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.854
Filter
1.
Nat Commun ; 15(1): 7098, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154071

ABSTRACT

We assessed whether multiplex real-time PCR plus conventional microbiological testing is safe and more effective than conventional microbiological testing alone for reducing antibiotic use in community-acquired pneumonia (CAP). In this randomised trial, we recruited adults hospitalised with CAP at four Spanish hospitals. Patients were randomly assigned (1:1) to undergo either multiplex real-time PCR in non-invasive respiratory samples plus conventional microbiological testing or conventional microbiological testing alone. The primary endpoint was antibiotic use measured by days of antibiotic therapy (DOT). Between February 20, 2020, and April 24, 2023, 242 patients were enrolled; 119 were randomly assigned to multiplex real-time PCR plus conventional microbiological testing and 123 to conventional microbiological testing alone. All but one of the patients allocated to multiplex real-time PCR plus conventional microbiological testing underwent PCR, which was performed in sputum samples in 77 patients (65.2%) and in nasopharyngeal swabs in 41 (34.7%). The median DOT was 10.04 (IQR 7.98, 12.94) in the multiplex PCR plus conventional microbiological testing group and 11.33 (IQR 8.15, 16.16) in the conventional microbiological testing alone group (difference -1.04; 95% CI, -2.42 to 0.17; p = 0.093). No differences were observed in adverse events and 30-day mortality. Our findings do not support the routine implementation of multiplex real-time PCR in the initial microbiological testing in hospitalised patients with CAP. Clinicaltrials.gov registration: NCT04158492.


Subject(s)
Anti-Bacterial Agents , Community-Acquired Infections , Multiplex Polymerase Chain Reaction , Sputum , Humans , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Community-Acquired Infections/diagnosis , Female , Male , Anti-Bacterial Agents/therapeutic use , Aged , Multiplex Polymerase Chain Reaction/methods , Middle Aged , Sputum/microbiology , Pneumonia/drug therapy , Pneumonia/microbiology , Pneumonia/diagnosis , Real-Time Polymerase Chain Reaction/methods , Nasopharynx/microbiology , Spain
2.
J Med Virol ; 96(8): e29829, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109810

ABSTRACT

Lumpy skin disease virus (LSDV), a double-stranded DNA virus from the Capripoxvirus genus, primarily affects Bos indicus, Bos taurus breeds, and water buffalo. Arthropod vectors, including mosquitoes and biting flies, are the main LSDV transmitters. Although LSDV is not zoonotic, this study unexpectedly detected LSDV reads in the upper respiratory tract microbiome of humans from rural and urban areas in Maharashtra, India. Nasopharyngeal and oropharyngeal swab samples collected for SARS-CoV-2 surveillance underwent whole-genome metagenomics sequencing, revealing LSDV reads in 25% of samples. Split kmer analysis provided insights into sample relatedness despite the low coverage of LSDV reads with the reference genome. Our findings, which include the detection of LSDV contigs aligning to specific locations on the reference genome, suggest a common source for LSDV reads, potentially shared water sources, or milk/milk products. Further investigation is needed to ascertain the mode of transmission and reason for the detection of LSDV reads in human upper respiratory tract.


Subject(s)
Lumpy skin disease virus , Metagenomics , Microbiota , Humans , Microbiota/genetics , Metagenomics/methods , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Oropharynx/virology , Oropharynx/microbiology , Animals , India , Genome, Viral/genetics , Nasopharynx/virology , Nasopharynx/microbiology , Respiratory System/microbiology , Respiratory System/virology , Male , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , Female , Adult , COVID-19/diagnosis , COVID-19/virology , Lumpy Skin Disease/virology
3.
Influenza Other Respir Viruses ; 18(8): e13362, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118486

ABSTRACT

BACKGROUND: Pneumonia is typically caused by a variety of pathogenic microorganisms. Traditional research often focuses on the infection of a few microorganisms, whereas metagenomic studies focus on the impact of the bacteriome and mycobiome on respiratory diseases. Reports on the virome characteristics of pediatric pneumonia remain relatively scarce. METHODS: We employed de novo assembly and combined homology- and feature-based methods to characterize the respiratory virome in whole-genome DNA sequencing samples from oropharynx (OP) swabs, nasopharynx (NP) swabs, and bronchoalveolar lavage fluids (BALF) of children with pneumonia. RESULTS: Significant differences were observed in the alpha and beta diversity indexes, as well as in the composition of the oropharyngeal virome, between pneumonia cases and controls. We identified 1137 viral operational taxonomic units (vOTUs) with significant differences, indicating a preference of pneumonia-reduced vOTUs for infecting Prevotella, Neisseria, and Veillonella, whereas pneumonia-enriched vOTUs included polyomavirus, human adenovirus, and phages targeting Staphylococcus, Streptococcus, Granulicatella, and Actinomyces. Comparative analysis revealed higher relative abundances and prevalence rates of pneumonia-enriched OP vOTUs in NP and BALF samples compared to pneumonia-reduced vOTUs. Additionally, virome analysis identified six pediatric patients with severe human adenovirus or polyomavirus infections, five of whom might have been undetected by targeted polymerase chain reaction (PCR)-based testing. CONCLUSIONS: This study offers insights into pediatric pneumonia respiratory viromes, highlighting frequent transmission of potentially pathogenic viruses and demonstrating virome analysis as a valuable adjunct for pathogen detection.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Nasopharynx , Virome , Viruses , Humans , Child, Preschool , Nasopharynx/virology , Nasopharynx/microbiology , Bronchoalveolar Lavage Fluid/virology , Bronchoalveolar Lavage Fluid/microbiology , Male , Female , Infant , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Child , Oropharynx/virology , Oropharynx/microbiology , Pneumonia/microbiology , Pneumonia/virology , Pneumonia/diagnosis , Metagenomics/methods
4.
Nat Commun ; 15(1): 6577, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097620

ABSTRACT

Limited data from Asia are available on long-term effects of pneumococcal conjugate vaccine introduction on pneumococcal carriage. Here we assess the impact of 13-valent pneumococcal conjugate vaccine (PCV13) introduction on nasopharyngeal pneumococcal carriage prevalence, density and antimicrobial resistance. Cross-sectional carriage surveys were conducted pre-PCV13 (2015) and post-PCV13 introduction (2017 and 2022). Pneumococci were detected and quantified by real-time PCR from nasopharyngeal swabs. DNA microarray was used for molecular serotyping and to infer genetic lineage (Global Pneumococcal Sequence Cluster). The study included 1461 infants (5-8 weeks old) and 1489 toddlers (12-23 months old) enrolled from family health clinics. We show a reduction in PCV13 serotype carriage (with non-PCV13 serotype replacement) and a reduction in the proportion of samples containing resistance genes in toddlers six years post-PCV13 introduction. We observed an increase in pneumococcal nasopharyngeal density. Serotype 15 A, the most prevalent non-vaccine-serotype in 2022, was comprised predominantly of GPSC904;9. Reductions in PCV13 serotype carriage will likely result in pneumococcal disease reduction. It is important for ongoing surveillance to monitor serotype changes to potentially inform new vaccine development.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Vaccines, Conjugate , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Humans , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Infant , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/immunology , Nasopharynx/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Carrier State/prevention & control , Mongolia/epidemiology , Cross-Sectional Studies , Vaccines, Conjugate/immunology , Female , Male , Serogroup , Prevalence , Serotyping
5.
Diagn Microbiol Infect Dis ; 110(2): 116468, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094237

ABSTRACT

Pediatric pneumonia can be severe and result in empyema. Next-generation sequencing (NGS) may broadly detect pathogens though, optimal timing and impact of sample type on diagnostic yield is unknown. This is a prospective, single-center pilot study of children aged 3 months through 17 years admitted to the PICU with a primary diagnosis of complicated pneumonia. Plasma, endotracheal, nasopharyngeal, and pleural fluid samples were collected at three time points during hospitalization. After nucleic acid extraction, combined libraries were enriched with an NGS enrichment panel kit (RPIP, Illumina), sequenced and quantitative organism detections were analyzed. NGS identified the same bacterial pathogen as traditional testing in all samples, regardless of antibiotic pre-treatment or time collected. Conventional culture methods only identified the pathogen reliably in invasively obtained pleural fluid or endotracheal aspirates. Future application of NGS may allow for non-invasive pathogen detection at a broader range of time points and more targeted antibiotic coverage.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/methods , Child , Infant , Child, Preschool , Prospective Studies , Adolescent , Pilot Projects , Male , Female , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Nasopharynx/microbiology , Pneumonia/microbiology , Pneumonia/diagnosis
6.
Article in English | MEDLINE | ID: mdl-39166976

ABSTRACT

Four strains (MSK211, MSK294T, MSK312, MSK433) of a novel Dolosigranulum species were cultured from nasopharyngeal swabs collected from mother-infant dyads in southern Botswana. These strains grew optimally on tryptic soy agar with 5% sheep blood solid medium and in fastidious bacteria broth. Colonies on tryptic soy agar with 5% sheep blood agar appeared grey or white with a flat, smooth surface and variable alpha haemolysis. Cells were Gram-positive, non-spore-forming, non-motile cocci that lacked catalase or oxidase activity. Major fatty acids were C16 : 0 (palmitic acid), C18 : 1 ω9c (oleic acid), and C18 : 0 (stearic acid). Analyses of 16S rRNA gene sequences identified these strains as belonging to the genus Dolosigranulum (family Carnobacteriaceae), which currently contains only a single validly published species (Dolosigranulum pigrum). Whole-genome sequencing revealed that the genomes of these strains are 1.98-2.07 Mbp in size and have a G+C content of 39.6-39.9 mol%. Comparisons of these genomes to publicly available genomes of D. pigrum yielded average nucleotide identities and in silico DNA-DNA hybridization values of 92.3-92.9% and 49.1-51.4%, respectively. These results indicate that these strains represent a novel species of Dolosigranulum, for which we propose the name Dolosigranulum savutiense sp. nov., with the type strain MSK294T (=DSM 117171T=JCM 36673T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Humans , RNA, Ribosomal, 16S/genetics , Botswana , Fatty Acids/chemistry , DNA, Bacterial/genetics , Female , Infant , Whole Genome Sequencing , Nasopharynx/microbiology , Genome, Bacterial
7.
Nat Commun ; 15(1): 6024, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019886

ABSTRACT

Respiratory pathogens, commonly colonizing nasopharynx, are among the leading causes of death due to antimicrobial resistance. Yet, antibiotic resistance determinants within nasopharyngeal microbial communities remain poorly understood. In this prospective cohort study, we investigate the nasopharynx resistome development in preterm infants, assess early antibiotic impact on its trajectory, and explore its association with clinical covariates using shotgun metagenomics. Our findings reveal widespread nasopharyngeal carriage of antibiotic resistance genes (ARGs) with resistomes undergoing transient changes, including increased ARG diversity, abundance, and composition alterations due to early antibiotic exposure. ARGs associated with the critical nosocomial pathogen Serratia marcescens persist up to 8-10 months of age, representing a long-lasting hospitalization signature. The nasopharyngeal resistome strongly correlates with microbiome composition, with inter-individual differences and postnatal age explaining most of the variation. Our report on the collateral effects of antibiotics and prolonged hospitalization underscores the urgency of further studies focused on this relatively unexplored reservoir of pathogens and ARGs.


Subject(s)
Anti-Bacterial Agents , Hospitalization , Infant, Premature , Nasopharynx , Humans , Nasopharynx/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Infant, Newborn , Prospective Studies , Female , Male , Metagenomics/methods , Infant , Serratia marcescens/drug effects , Serratia marcescens/genetics , Microbiota/drug effects , Microbiota/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Drug Resistance, Microbial/drug effects
9.
Virol J ; 21(1): 156, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992721

ABSTRACT

OBJECTIVES: The performance of the new Respiratory Pathogen panel (fluorescent probe melting curve, FPMC) for the qualitative detection of 12 organisms (chlamydia pneumoniae, mycoplasma pneumoniae, adenovirus, influenza A virus, influenza B virus, parainfluenza virus, rhinovirus, etc.) was assessed. METHODS: Prospectively collected nasopharyngeal swab (NPS) and sputum specimens (n = 635) were detected by using the FPMC panel, with the Sanger sequencing method as the comparative method. RESULTS: The overall percent concordance between the FPMC analysis method and the Sanger sequencing method was 100% and 99.66% for NPS and sputum specimens, respectively. The FPMC testified an overall positive percent concordance of 100% for both NPS and sputum specimens. The FPMC analysis method also testified an overall negative percent concordance of 100% and 99.38% for NPS and sputum specimens, respectively. CONCLUSIONS: The FPMC analysis method is a stable and accurate assay for rapid, comprehensive detecting for respiratory pathogens.


Subject(s)
Molecular Diagnostic Techniques , Nasopharynx , Respiratory Tract Infections , Sputum , Humans , Sputum/microbiology , Sputum/virology , Nasopharynx/virology , Nasopharynx/microbiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Molecular Diagnostic Techniques/methods , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Adult , Prospective Studies , Middle Aged , Adolescent , Female , Young Adult , Child , Male , Aged , Child, Preschool , Infant , Specimen Handling/methods , Sensitivity and Specificity , Aged, 80 and over
10.
J Exp Med ; 221(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-38949638

ABSTRACT

Studies during the COVID-19 pandemic showed that children had heightened nasal innate immune responses compared with adults. To evaluate the role of nasal viruses and bacteria in driving these responses, we performed cytokine profiling and comprehensive, symptom-agnostic testing for respiratory viruses and bacterial pathobionts in nasopharyngeal samples from children tested for SARS-CoV-2 in 2021-22 (n = 467). Respiratory viruses and/or pathobionts were highly prevalent (82% of symptomatic and 30% asymptomatic children; 90 and 49% for children <5 years). Virus detection and load correlated with the nasal interferon response biomarker CXCL10, and the previously reported discrepancy between SARS-CoV-2 viral load and nasal interferon response was explained by viral coinfections. Bacterial pathobionts correlated with a distinct proinflammatory response with elevated IL-1ß and TNF but not CXCL10. Furthermore, paired samples from healthy 1-year-olds collected 1-2 wk apart revealed frequent respiratory virus acquisition or clearance, with mucosal immunophenotype changing in parallel. These findings reveal that frequent, dynamic host-pathogen interactions drive nasal innate immune activation in children.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Humans , Immunity, Innate/immunology , Child, Preschool , Infant , COVID-19/immunology , COVID-19/virology , Child , SARS-CoV-2/immunology , Female , Male , Nasopharynx/immunology , Nasopharynx/virology , Nasopharynx/microbiology , Viral Load , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/microbiology , Cytokines/metabolism , Cytokines/immunology , Host-Pathogen Interactions/immunology , Adolescent , Nose/immunology , Nose/virology , Nose/microbiology , Coinfection/immunology , Coinfection/virology
11.
Microbiol Spectr ; 12(8): e0022424, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38990033

ABSTRACT

The Southampton pneumococcal carriage study of children under 5 years old continued during the coronavirus disease 2019 (COVID-19) pandemic. Here, we present data from October 2018 to March 2023 describing prevalence of pneumococci and other pathobionts during the winter seasons before, during, and after the introduction of non-pharmaceutical interventions (NPIs) to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Nasopharyngeal swabs were collected from children attending outpatient clinics at a secondary care hospital and community healthcare sites. Pre-NPIs, in 2019/2020, the carriage prevalence of pneumococci at the hospital site was 32% (n = 161 positive/499 participants). During NPIs, this fell to 19% (n = 12/64), although based on fewer participants compared to previous years due to COVID-19 restrictions on health-care attendance. In 2021/2022, after NPIs had eased, prevalence rebounded to 33% (n = 15/46) [compared to NPIs period, χ2 (1, N = 110) =2.78, P = 0.09]. Carriage prevalence at community healthcare sites fell significantly from 27% (n = 127/470) in 2019/2020 to 19% during the NPI period (n = 44/228) in 2020/2021 [χ2 (1, N = 698) =4.95, P = 0.026]. No rebound was observed in 2021/2022 [19% (n = 56/288)]. However, in a multivariate logistic regression model, neither site had a significantly lower carriage prevalence during the NPI period compared to the post NPI period. A reduction in serotype diversity was observed in 2020/2021. Carriage of Haemophilus influenzae was particularly affected by NPIs with a significant reduction observed. In conclusion, among children under 5 years of age, transient, modest, and statistically non-significant alterations in carriage of both Streptococcus pneumoniae and H. influenzae were associated with SARS-CoV-2 NPIs.IMPORTANCEStreptococcus pneumoniae (the pneumococcus) continues to be a major contributor to global morbidity and mortality. Using our long-running pediatric study, we examined changes in pneumococcal carriage prevalence in nearly 3,000 children under the age of 5 years between the winters of 2018/2019 and 2022/2023. This period coincided with the severe acute respiratory syndrome coronavirus 2 pandemic and, in particular, the implementation of national strategies to limit disease transmission in the UK. We observed a transient reduction of both Streptococcus pneumoniae and Haemophilus influenzae in these populations during this period of non-pharmaceutical interventions. This aligned with the reduction in invasive pneumococcal disease seen in the UK and is therefore a likely contributor to this phenomenon.


Subject(s)
COVID-19 , Carrier State , Haemophilus Infections , Haemophilus influenzae , Nasopharynx , Pneumococcal Infections , SARS-CoV-2 , Streptococcus pneumoniae , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Child, Preschool , Carrier State/epidemiology , Carrier State/microbiology , SARS-CoV-2/isolation & purification , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Male , Female , Streptococcus pneumoniae/isolation & purification , Cross-Sectional Studies , Infant , Haemophilus influenzae/isolation & purification , Haemophilus Infections/epidemiology , Haemophilus Infections/prevention & control , Haemophilus Infections/microbiology , Nasopharynx/microbiology , Nasopharynx/virology , United Kingdom/epidemiology , Prevalence
12.
J Infect ; 89(3): 106222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002934

ABSTRACT

OBJECTIVE: To evaluate the role of Bordetella pertussis (B. pertussis), B. parapertussis, B. holmesii, and B. bronchiseptica on pertussis resurgence in China, particularly the sharp rise since the latest winter. METHODS: Nasopharyngeal swabs collected from children with pertussis-like illness from January 2018 to March 2024 were cultured to detect B. pertussis, B. parapertussis, B. holmesii, and B. bronchiseptica, and tested for all of these except for B. bronchiseptica using a pooled real-time polymerase chain reaction (PCR) kit targeting insertion sequences ptxS1, IS481, IS1001, and hIS1001. RESULTS: Out of the collected 7732 nasopharyngeal swabs, 1531 cases tested positive for B. pertussis (19.8%, 1531/7732), and 10 cases were positive for B. parapertussis (0.1%, 10/7732). B. holmesii and B.bronchiseptica were not detected. The number of specimens and the detection rate of B. pertussis were 1709 and 26.9% (459/1709) in 2018, 1936 and 20.7% (400/1936) in 2019, which sharply declined to 308 and 11.4% (35/308) in 2020, 306 and 4.2% (13/306) in 2021, and then notably increased to 754 and 17.6% (133/754) in 2022, 1842 and 16.0% (295/1842) in 2023, 877 and 22.3% (196/877) in the first quarter of 2024. The proportion of children aged 3 to less than 6 years (preschool age) and 6 to 16 years (school age) in pertussis cases increased significantly during the study period, especially the proportion of school-aged children increased from 2.0% (9/459) in 2018 to 40.8% (80/196) in 2024. CONCLUSIONS: B. pertussis was the predominant pathogen among children with pertussis-like illness in China, with sporadic detection of B. parapertussis and no detection of B. holmesii or B.bronchiseptica. The preschool and school-age children are increasingly prevalent in B. pertussis infection cases, which may be associated with the latest rapid escalation of pertussis outbreak.


Subject(s)
Bordetella Infections , Bordetella , Nasopharynx , Whooping Cough , Humans , China/epidemiology , Child, Preschool , Child , Infant , Male , Female , Whooping Cough/epidemiology , Whooping Cough/diagnosis , Whooping Cough/microbiology , Bordetella Infections/microbiology , Bordetella Infections/epidemiology , Bordetella Infections/diagnosis , Nasopharynx/microbiology , Bordetella/isolation & purification , Bordetella/genetics , Bordetella/classification , Bordetella pertussis/genetics , Bordetella pertussis/isolation & purification , Adolescent , Bordetella parapertussis/isolation & purification , Bordetella parapertussis/genetics , Real-Time Polymerase Chain Reaction
13.
Int J Circumpolar Health ; 83(1): 2371111, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38941555

ABSTRACT

Haemophilus influenzae serotype a (Hia) has recently emerged as an important cause of invasive disease in the North American Arctic and Sub-Arctic regions, mainly affecting young Indigenous children. In this study, we addressed the question of whether the prevalence of Hia and all H. influenzae in the nasopharynx differed between paediatric populations from regions with high versus low incidence of invasive Hia disease. Nasopharyngeal specimens from children with acute respiratory tract infections (ARTI) collected for routine diagnostic detection of respiratory viruses were analysed with molecular-genetic methods to identify and serotype H. influenzae. In Nunavut, a region with a high incidence of invasive Hia disease, all H. influenzae and particularly Hia were found in the nasopharynx of 60.6% and 3.0% children. In Southern Ontario (Hamilton region), where Hia invasive disease is rare, the frequencies of all H. influenzae and Hia detection were 38.5% and 0.6%, respectively. In both cohorts, non-typeable H. influenzae was prevalent (57.0% and 37.9%, respectively). Considering that Hia is an important cause of severe invasive disease in Nunavut children, 3% prevalence of Hia among children with ARTI can reflect continuing circulation of the pathogen in the Northern communities that may result in invasive disease outbreaks.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Nasopharynx , Humans , Haemophilus influenzae/isolation & purification , Haemophilus Infections/epidemiology , Child, Preschool , Nasopharynx/microbiology , Prevalence , Infant , Male , Female , Incidence , Ontario/epidemiology , Child , Arctic Regions/epidemiology , Nunavut/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Canada/epidemiology , Serogroup
14.
Microbiol Spectr ; 12(8): e0066524, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38904365

ABSTRACT

Outbreaks of influenza A viruses are generally seasonal and cause annual epidemics worldwide. Due to their frequent reassortment and evolution, annual surveillance is of paramount importance to guide vaccine strategies. The aim of this study was to explore the molecular epidemiology of influenza A virus and nasopharyngeal microbiota composition in infected patients in Saudi Arabia. A total of 103 nasopharyngeal samples from 2015 and 12 samples from 2022 were collected from patients positive for influenza A. Sequencing of influenza A as well as metatranscriptomic analysis of the nasopharyngeal microbiota was conducted using Oxford Nanopore sequencing. Phylogenetic analysis of hemagglutinin, neuraminidase segments, and concatenated influenza A genomes was performed using MEGA7. Whole-genome sequencing analysis revealed changing clades of influenza A virus: from 6B.1 in 2015 to 5a.2a in 2022. One sample containing the antiviral resistance-mediating mutation S247N toward oseltamivir and zanamivir was found. Phylogenetic analysis showed the clustering of influenza A strains with the corresponding vaccine strains in each period, thus suggesting vaccine effectiveness. Principal component analysis and alpha diversity revealed the absence of a relationship between hospital admission status, age, or gender of infected patients and the nasopharyngeal microbial composition, except for the infecting clade 5a.2a. The opportunistic pathogens Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were the most common species detected. The molecular epidemiology appears to be changing in Saudi Arabia after the COVID-19 pandemic. Antiviral resistance should be carefully monitored in future studies. In addition, the disease severity of patients as well as the composition of the nasopharyngeal microbiota in patients infected with different clades should also be assessed.IMPORTANCEIn this work, we have found that the clade of influenza A virus circulating in Riyadh, KSA, has changed over the last few years from 6B.1 to 5a.2a. Influenza strains clustered with the corresponding vaccine strains in our population, thus emphasizing vaccine effectiveness. Metatranscriptomic analysis showed no correlation between the nasopharyngeal microbiome and the clinical and/or demographic characteristics of infected patients. This is except for the 5a.2a strains isolated post-COVID-19 pandemic. The influenza virus is among the continuously evolving viruses that can cause severe respiratory infections. Continuous surveillance of its molecular diversity and the monitoring of anti-viral-resistant strains are thus of vital importance. Furthermore, exploring potential microbial markers and/or dysbiosis of the nasopharyngeal microbiota during infection could assist in the better management of patients in severe cases.


Subject(s)
Genome, Viral , Influenza A virus , Influenza, Human , Metagenomics , Nasopharynx , Phylogeny , Whole Genome Sequencing , Humans , Saudi Arabia/epidemiology , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/microbiology , Male , Nasopharynx/virology , Nasopharynx/microbiology , Female , Adult , Middle Aged , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Genome, Viral/genetics , Adolescent , Aged , Young Adult , Child , Child, Preschool , Molecular Epidemiology , Infant , Microbiota/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
15.
PLoS Pathog ; 20(5): e1012111, 2024 May.
Article in English | MEDLINE | ID: mdl-38718049

ABSTRACT

Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Animals , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , Mice , Humans , Animals, Newborn , Disease Models, Animal , Mice, Inbred C57BL , Respiratory Mucosa/microbiology , Respiratory Mucosa/metabolism , Female , Nasopharynx/microbiology
16.
J Infect Dev Ctries ; 18(4): 579-586, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728636

ABSTRACT

INTRODUCTION: Streptococcus pneumoniae cause a significant global health challenge. We aimed to determine nasopharyngeal carriage, serotypes distribution, and antimicrobial profile of pneumococci among the children of Aden. METHODOLOGY: A total of 385 children, aged 2-17 years, were included. Asymptomatic samples were randomly collected from children in selected schools and vaccination centers. Symptomatic samples were obtained from selected pediatric clinics. The nasopharyngeal swabs were tested for pneumococci using culture and real time polymerase chain reaction (RT-PCR). Serotyping was done with a pneumotest-latex kit and antimicrobial susceptibility was tested by disc diffusion and Epsilometer test. RESULTS: The total pneumococcal carriage was 44.4% and 57.1% by culture and RT-PCR, respectively. There was a statistically significant association between carriage rate and living in single room (OR = 7.9; p = 0.00001), sharing a sleeping space (OR = 15.1; p = 0.00001), and low monthly income (OR = 2.02; p = 0.007). The common serotypes were 19, 1, 4, 5, 2, and 23. The proportion of non-pneumococcal conjugate vaccine (non-PCV13) serotypes was 24%. Pneumococci were resistant to penicillin (96.5%), cefepime (15.8%), ceftriaxone (16.4%), and amoxicillin-clavulanate (0%). Erythromycin, azithromycin, and doxycycline had resistance rates of 48%, 31%, and 53.3%, respectively. CONCLUSIONS: A high pneumococcal carriage rate was observed in Yemeni children, particularly in low-income households and shared living conditions. There was significant penicillin resistance at meningitis breakpoint. Furthermore, non-PCV13 serotypes were gradually replacing PCV13 serotypes. The findings underscore the urgent need for enhanced surveillance and stewardship to improve vaccination and antibiotic policies in Yemen.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Vaccines, Conjugate , Humans , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Child , Child, Preschool , Cross-Sectional Studies , Yemen/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Female , Male , Pneumococcal Vaccines/administration & dosage , Adolescent , Carrier State/epidemiology , Carrier State/microbiology , Nasopharynx/microbiology , Vaccines, Conjugate/administration & dosage , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Serotyping
17.
J Microbiol Methods ; 221: 106943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705209

ABSTRACT

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Subject(s)
Multiplex Polymerase Chain Reaction , Nasopharynx , Recombinases , Animals , Cattle , Nasopharynx/microbiology , Recombinases/genetics , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Interspersed Repetitive Sequences/genetics , Cattle Diseases/microbiology , Cattle Diseases/diagnosis , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Bovine Respiratory Disease Complex/microbiology , Conjugation, Genetic , Sensitivity and Specificity , Mannheimia haemolytica/genetics , Mannheimia haemolytica/isolation & purification , Pasteurellaceae/genetics , Pasteurellaceae/isolation & purification
18.
PLoS One ; 19(5): e0297767, 2024.
Article in English | MEDLINE | ID: mdl-38768099

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is a leading cause of morbidity and mortality globally, causing bacteremic pneumonia, meningitis, sepsis, and other invasive pneumococcal diseases. Evidence supports nasopharyngeal pneumococcal carriage as a reservoir for transmission and precursor of pneumococcal disease. OBJECTIVES: To estimate the pneumococcal nasopharyngeal burden in all age groups in Latin America and the Caribbean (LAC) before, during, and after the introduction of pneumococcal vaccine conjugate (PVC). METHODS: Systematic literature review of international, regional, and country-published and unpublished data, together with reports including data from serotype distribution in nasopharyngeal carriage in children and adults from LAC countries following Cochrane methods. The protocol was registered in PROSPERO database (ID: CRD42023392097). RESULTS: We included 54 studies with data on nasopharyngeal pneumococcal carriage and serotypes from 31,803 patients. In children under five years old, carriage was found in 41% and in adults over 65, it was 26%. During the study period, children under five showed a colonization proportion of 34% with PCV10 serotypes and 45% with PCV13 serotypes. When we analyze the carriage prevalence of PCV serotypes in all age groups between 1995 and 2019, serotypes included in PCV10 and those included in PCV13, both showed a decreasing trend along analysis by lustrum. CONCLUSION: The data presented in this study highlights the need to establish national surveillance programs to monitor pneumococcal nasopharyngeal carriage to monitor serotype prevalence and replacement before and after including new pneumococcal vaccines in the region. In addition, to analyze differences in the prevalence of serotypes between countries, emphasize the importance of approaches to local realities to reduce IPD effectively.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/isolation & purification , Latin America/epidemiology , Caribbean Region/epidemiology , Nasopharynx/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Pneumococcal Vaccines/administration & dosage , Serogroup , Child, Preschool , Adult , Child , Prevalence
19.
PLoS One ; 19(5): e0302400, 2024.
Article in English | MEDLINE | ID: mdl-38787847

ABSTRACT

BACKGROUND: In 2012, Botswana introduced 13-valent pneumococcal conjugate vaccine (PCV-13) to its childhood immunization program in a 3+0 schedule, achieving coverage rates of above 90% by 2014. In other settings, PCV introduction has been followed by an increase in carriage or disease caused by non-vaccine serotypes, including some serotypes with a high prevalence of antibiotic resistance. METHODS: We characterized the serotype epidemiology and antibiotic resistance of pneumococcal isolates cultured from nasopharyngeal samples collected from infants (≤12 months) in southeastern Botswana between 2016 and 2019. Capsular serotyping was performed using the Quellung reaction. E-tests were used to determine minimum inhibitory concentrations for common antibiotics. RESULTS: We cultured 264 pneumococcal isolates from samples collected from 150 infants. At the time of sample collection, 81% of infants had received at least one dose of PCV-13 and 53% had completed the three-dose series. PCV-13 serotypes accounted for 27% of isolates, with the most prevalent vaccine serotypes being 19F (n = 20, 8%), 19A (n = 16, 6%), and 6A (n = 10, 4%). The most frequently identified non-vaccine serotypes were 23B (n = 29, 11%), 21 (n = 12, 5%), and 16F (n = 11, 4%). Only three (1%) pneumococcal isolates were resistant to amoxicillin; however, we observed an increasing prevalence of penicillin resistance using the meningitis breakpoint (2016: 41%, 2019: 71%; Cochran-Armitage test for trend, p = 0.0003) and non-susceptibility to trimethoprim-sulfamethoxazole (2016: 55%, 2019: 79%; p = 0.04). Three (1%) isolates were multi-drug resistant. CONCLUSIONS: PCV-13 serotypes accounted for a substantial proportion of isolates colonizing infants in Botswana during a four-year period starting four years after vaccine introduction. A low prevalence of amoxicillin resistance supports its continued use as the first-line agent for non-meningeal pneumococcal infections. The observed increase in penicillin resistance at the meningitis breakpoint and the low prevalence of resistance to ceftriaxone supports use of third-generation cephalosporins for empirical treatment of suspected bacterial meningitis.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Botswana/epidemiology , Infant , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/drug therapy , Pneumococcal Vaccines/immunology , Female , Anti-Bacterial Agents/pharmacology , Male , Drug Resistance, Bacterial , Serotyping , Nasopharynx/microbiology , Prevalence
20.
Vaccine ; 42(19): 3961-3967, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38719693

ABSTRACT

The rates of nasopharyngeal meningococcal carriage in healthcare workers are unknown. Meningococcal vaccine is recommended for risk groups but healthcare workers are not included in risk groups for many countries. Herein, we aimed to investigate the nasopharyngeal meningococcal carriage rates, basal and after one dose of Men-ACWY-DT vaccine response on the 30th day by evaluating meningococcus IgG antibody levels and decolonization at month six after vaccination among the detected carriers. Nasopharyngeal swab samples were taken before vaccination to evaluate meningococcal carriage in healthcare workers. All participants received a single dose of Men-ACWY-DT vaccine. Serum samples were collected immediately before vaccination and again on day 30 post-vaccination. Antibodies in the stored sera were analyzed using the ELISA method. Participants who were determined to carry meningococci at the initial visit underwent another round of nasopharyngeal swab tests six months post-vaccination to check for decolonization. Between November 2020 and May 2021, we evaluated samples from 100 physicians [52 % females, 28.28 ± 4.45 (min: 24, max: 49)]. The majority of the physicians worked in the emergency department (45 %), followed by the infectious diseases clinic (14 %). Fifty-eight physicians had a history of at least one contact with a meningococcus-infected patient, and 53 (91.4 %) had used prophylactic antibiotics at least once due to this exposure. None of the study group nasopharyngeal swab cultures were positive for Neisseria meningitidis. Before the Men-ACWY-DT vaccine, anti-meningococcus IgG positivity was detected in the serum samples of only 3 (3 %) participants. By day 30 after vaccination, 48 % of participants showed positive for antibodies. As we didn't detect nasopharyngeal carriage in any participants, we didn't evaluate decolonization among carriers six months post-vaccination. Notably, detection of antibodies was evident in about half of the participants on day 30 after receiving a single dose of the Men-ACWY-DT vaccine.


Subject(s)
Antibodies, Bacterial , Carrier State , Health Personnel , Meningococcal Infections , Meningococcal Vaccines , Nasopharynx , Neisseria meningitidis , Humans , Male , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Female , Carrier State/immunology , Carrier State/microbiology , Adult , Antibodies, Bacterial/blood , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Health Personnel/statistics & numerical data , Neisseria meningitidis/immunology , Nasopharynx/microbiology , Immunoglobulin G/blood , Vaccination/methods , Young Adult , Antibody Formation/immunology , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL