Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.035
Filter
1.
Neurology ; 103(3): e209655, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38981073

ABSTRACT

BACKGROUND AND OBJECTIVES: Incidental diffuse-weighted imaging (DWI)-positive subcortical and cortical lesions, or acute incidental cerebral microinfarcts (CMIs), are a common type of brain ischemia, which can be detected on magnetic resonance DWI for approximately 2 weeks after occurrence. Acute incidental CMI was found to be more common in patients with cancer. Whether acute incidental CMI predicts future ischemic stroke is still unknown. We aimed to examine the association between acute incidental CMI in patients with cancer and subsequent ischemic stroke or transient ischemic attack (TIA). METHODS: This is a retrospective cohort study. We used Clalit Health Services records, representing over half of the Israeli population, to identify adults with lung, breast, pancreatic, or colon cancer who underwent brain MRI between January 2014 and April 2020. We included patients who underwent scan between 1 year before cancer diagnosis and 1 year after diagnosis. Primary outcome was ischemic stroke or TIA using International Classification of Diseases, Ninth Revision codes. Secondary outcomes were intracranial hemorrhage (ICH) and mortality. Records were followed from first MRI until primary outcome, death, or end of follow-up (January 2023). Cox proportional hazards models were used to calculate hazard ratio (HR) for patients with and without acute incidental CMI, as a time-dependent covariate. RESULTS: The study cohort included 1,618 patients with cancer, among whom, 59 (3.6%) had acute incidental CMI on at least 1 brain MRI. The median (interquartile range) time from acute incidental CMI to stroke or TIA was 26 days (14-84). On multivariable analysis, patients with acute incidental CMI had a higher stroke or TIA risk (HR 2.97, 95% CI 1.08-8.18, p = 0.035) compared with their non-CMI counterparts. Acute incidental CMIs were also associated with mortality after multivariable analysis (HR 2.76, 95% CI 2.06-3.71, p < 0.001); no association with ICH was found. DISCUSSION: Acute incidental CMI on brain MRI in patients with active cancer is associated with an increased risk of near-future ischemic stroke or TIA and mortality. This finding might suggest that randomly detected acute incidental CMI in patients with cancer may guide primary cerebrovascular risk prevention and etiologic workup.


Subject(s)
Incidental Findings , Ischemic Stroke , Neoplasms , Humans , Female , Male , Aged , Middle Aged , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/complications , Retrospective Studies , Neoplasms/complications , Neoplasms/epidemiology , Neoplasms/diagnostic imaging , Ischemic Attack, Transient/diagnostic imaging , Ischemic Attack, Transient/epidemiology , Ischemic Attack, Transient/complications , Israel/epidemiology , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/epidemiology , Cohort Studies , Aged, 80 and over , Adult
2.
Theranostics ; 14(9): 3634-3652, 2024.
Article in English | MEDLINE | ID: mdl-38948059

ABSTRACT

Rationale: Molecular imaging of microenvironment by hypoxia-activatable fluorescence probes has emerged as an attractive approach to tumor diagnosis and image-guided treatment. Difficulties remain in its translational applications due to hypoxia heterogeneity in tumor microenvironments, making it challenging to image hypoxia as a reliable proxy of tumor distribution. Methods: We report a modularized theranostics platform to fluorescently visualize hypoxia via light-modulated signal compensation to overcome tumor heterogeneity, thereby serving as a diagnostic tool for image-guided surgical resection and photodynamic therapy. Specifically, the platform integrating dual modules of fluorescence indicator and photodynamic moderator using supramolecular host-guest self-assembly, which operates cooperatively as a cascaded "AND" logic gate. First, tumor enrichment and specific fluorescence turn-on in hypoxic regions were accessible via tumor receptors and cascaded microenvironment signals as simultaneous inputs of the "AND" gate. Second, image guidance by a lighted fluorescence module and light-mediated endogenous oxygen consumption of a photodynamic module as dual inputs of "AND" gate collaboratively enabled light-modulated signal compensation in situ, indicating homogeneity of enhanced hypoxia-related fluorescence signals throughout a tumor. Results: In in vitro and in vivo analyses, the biocompatible platform demonstrated several strengths including a capacity for dual tumor targeting to progressively facilitate specific fluorescence turn-on, selective signal compensation, imaging-time window extension conducive to precise normalized image-guided treatment, and the functionality of tumor glutathione depletion to improve photodynamic efficacy. Conclusion: The hypoxia-activatable, image-guided theranostic platform demonstrated excellent potential for overcoming hypoxia heterogeneity in tumors.


Subject(s)
Optical Imaging , Theranostic Nanomedicine , Animals , Theranostic Nanomedicine/methods , Humans , Optical Imaging/methods , Mice , Tumor Microenvironment , Cell Line, Tumor , Fluorescent Dyes/chemistry , Photochemotherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Mice, Nude , Surgery, Computer-Assisted/methods
3.
Int J Nanomedicine ; 19: 6677-6692, 2024.
Article in English | MEDLINE | ID: mdl-38975322

ABSTRACT

Background: The inadequate perfusion, frequently resulting from abnormal vascular configuration, gives rise to tumor hypoxia. The presence of this condition hinders the effective delivery of therapeutic drugs and the infiltration of immune cells into the tumor, thereby compromising the efficacy of treatments against tumors. The objective of this study is to exploit the thermal effect of ultrasound (US) in order to induce localized temperature elevation within the tumor, thereby facilitating vasodilation, augmenting drug delivery, and enhancing immune cell infiltration. Methods: The selection of US parameters was based on intratumor temperature elevation and their impact on cell viability. Vasodilation and hypoxia improvement were investigated using enzyme-linked immunosorbent assay (ELISA) and immunofluorescence examination. The distribution and accumulation of commercial pegylated liposomal doxorubicin (PLD) and PD-L1 antibody (anti-PD-L1) in the tumor were analyzed through frozen section analysis, ELISA, and in vivo fluorescence imaging. The evaluation of tumor immune microenvironment was conducted using flow cytometry (FCM). The efficacy of US-enhanced chemotherapy in combination with immunotherapy was investigated by monitoring tumor growth and survival rate after various treatments. Results: The US irradiation condition of 0.8 W/cm2 for 10 min effectively elevated the tumor temperature to approximately 40 °C without causing any cellular or tissue damage, and sufficiently induced vasodilation, thereby enhancing the distribution and delivery of PLD and anti-PD-L1 in US-treated tumors. Moreover, it effectively mitigated tumor hypoxia while significantly increasing M1-phenotype tumor-associated macrophages (TAMs) and CD8+ T cells, as well as decreasing M2-phenotype TAMs. By incorporating US irradiation, the therapeutic efficacy of PLD and anti-PD-L1 was substantially boosted, leading to effective suppression of tumor growth and prolonged survival in mice. Conclusion: The application of US (0.8 W/cm2 for 10 min) can effectively induce vasodilation and enhance the delivery of PLD and anti-PD-L1 into tumors, thereby reshaping the immunosuppressive tumor microenvironment and optimizing therapeutic outcomes.


Subject(s)
Doxorubicin , Immunotherapy , Polyethylene Glycols , Tumor Microenvironment , Animals , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Mice , Immunotherapy/methods , Cell Line, Tumor , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , B7-H1 Antigen , Female , Humans , Neoplasms/therapy , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Mice, Inbred BALB C , Cell Survival/drug effects , Cell Survival/radiation effects , Immune Checkpoint Inhibitors/pharmacology , Ultrasonic Waves , Combined Modality Therapy
4.
Mikrochim Acta ; 191(7): 433, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38951214

ABSTRACT

A cancer-targeted glutathione (GSH)-gated theranostic probe (CGT probe) for intracellular miRNA imaging and combined treatment of self-sufficient starvation therapy (ST) and chemodynamic therapy (CDT) was developed. The CGT probe is constructed using MnO2 nanosheet (MS) as carrier material to adsorb the elaborately designed functional DNAs. It can be internalized by cancer cells via specific recognition between the AS1411 aptamer and nucleolin. After CGT probe entering the cancer cells, the overexpressed GSH, as gate-control, can degrade MS to Mn2+ which can be used for CDT by Fenton-like reaction. Simultaneously, Mn2+-mediated CDT can further cascade with the enzyme-like activities (catalase-like activity and glucose oxidase-like activity) of CGT probe, achieving self-sufficient ST/CDT synergistic therapy. Meanwhile, the anchored DNAs are released, achieving in situ signal amplification via disubstituted-catalytic hairpin assembly (DCHA) and FRET (fluorescence resonance energy transfer) imaging of miR-21. The in vitro and in vivo experiments demonstrated that accurate and sensitive miRNA detection can be achieved using the CGT probe. Overall, the ingenious CGT probe opens a new avenue for the development of early clinical diagnosis and cancer therapy.


Subject(s)
Fluorescence Resonance Energy Transfer , Glutathione , Manganese Compounds , MicroRNAs , Oxides , Humans , Glutathione/chemistry , Glutathione/metabolism , Animals , Manganese Compounds/chemistry , Oxides/chemistry , Aptamers, Nucleotide/chemistry , Mice , Mice, Nude , Theranostic Nanomedicine/methods , Nucleolin , Neoplasms/diagnostic imaging , Nanostructures/chemistry , Oligodeoxyribonucleotides/chemistry , Mice, Inbred BALB C , Fluorescent Dyes/chemistry
5.
PLoS One ; 19(7): e0304670, 2024.
Article in English | MEDLINE | ID: mdl-38968211

ABSTRACT

In gold nanoparticle-enhanced radiotherapy, intravenously administered nanoparticles tend to accumulate in the tumor tissue by means of the so-called permeability and retention effect and upon irradiation with x-rays, the nanoparticles release a secondary electron field that increases the absorbed dose that would otherwise be obtained from the interaction of the x-rays with tissue alone. The concentration of the nanoparticles in the tumor, number of nanoparticles per unit of mass, which determines the total absorbed dose imparted, can be measured via magnetic resonance or computed tomography images, usually with a resolution of several millimeters. Using a tumor vasculature model with a resolution of 500 nm, we show that for a given concentration of nanoparticles, the dose enhancement that occurs upon irradiation with x-rays greatly depends on whether the nanoparticles are confined to the tumor vasculature or have already extravasated into the surrounding tumor tissue. We show that, compared to the reference irradiation with no nanoparticles present in the tumor model, irradiation with the nanoparticles confined to the tumor vasculature, either in the bloodstream or attached to the inner blood vessel walls, results in a two to three-fold increase in the absorbed dose to the whole tumor model, with respect to an irradiation when the nanoparticles have already extravasated into the tumor tissue. Therefore, it is not enough to measure the concentration of the nanoparticles in a tumor, but the location of the nanoparticles within each volume element of a tumor, be it inside the vasculature or the tumor tissue, needs to be determined as well if an accurate estimation of the resultant absorbed dose distribution, a key element in the success of a radiotherapy treatment, is to be made.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Mice , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Neoplasms/blood supply , Humans , Radiotherapy Dosage , Neovascularization, Pathologic/radiotherapy , Neovascularization, Pathologic/diagnostic imaging
6.
Sci Adv ; 10(27): eadn7896, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968361

ABSTRACT

Recent years have witnessed a surge of interest in tuning the optical properties of organic semiconductors for diverse applications. However, achieving control over the optical bandgap in the second near-infrared (NIR-II) window has remained a major challenge. To address this, here we report a polaron engineering strategy that introduces diverse defects into carbon quantum dots (CQDs). These defects induce lattice distortions resulting in the formation of polarons, which can absorb the near-field scattered light. Furthermore, the formed polarons in N-related vacancies can generate thermal energy through the coupling of lattice vibrations, while the portion associated with O-related defects can return to the ground state in the form of NIR-II fluorescence. On the basis of this optical absorption model, these CQDs have been successfully applied to NIR-II fluorescence imaging and photothermal therapy. This discovery could open a promising route for the polarons of organic semiconductor materials as NIR-II absorbers in nanomedical applications.


Subject(s)
Carbon , Infrared Rays , Neoplasms , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Humans , Neoplasms/therapy , Neoplasms/diagnostic imaging , Animals , Optical Imaging/methods , Mice , Cell Line, Tumor
7.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999054

ABSTRACT

Gastrin-releasing peptide receptor (GRPR), overexpressed in many solid tumors, is a promising imaging marker and therapeutic target. Most reported GRPR-targeted radioligands contain a C-terminal amide. Based on the reported potent antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH, we synthesized C-terminal hydroxamate-derived [68Ga]Ga-LW02075 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH) and [68Ga]Ga-LW02050 ([68Ga]Ga-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH), and compared them with the closely related and clinically validated [68Ga]Ga-SB3 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt). Binding affinities (Ki) of Ga-SB3, Ga-LW02075, and Ga-LW02050 were 1.20 ± 0.31, 1.39 ± 0.54, and 8.53 ± 1.52 nM, respectively. Both Ga-LW02075 and Ga-LW02050 were confirmed to be GRPR antagonists by calcium release assay. Imaging studies showed that PC-3 prostate cancer tumor xenografts were clearly visualized at 1 h post injection by [68Ga]Ga-SB3 and [68Ga]Ga-LW02050 in PET images, but not by [68Ga]Ga-LW02075. Ex vivo biodistribution studies conducted at 1 h post injection showed that the tumor uptake of [68Ga]Ga-LW02050 was comparable to that of [68Ga]Ga-SB3 (5.38 ± 1.00 vs. 6.98 ± 1.36 %ID/g), followed by [68Ga]Ga-LW02075 (3.97 ± 1.71 %ID/g). [68Ga]Ga-SB3 had the highest pancreas uptake (37.3 ± 6.90 %ID/g) followed by [68Ga]Ga-LW02075 (17.8 ± 5.24 %ID/g), while the pancreas uptake of [68Ga]Ga-LW02050 was only 0.53 ± 0.11 %ID/g. Our data suggest that [68Ga]Ga-LW02050 is a promising PET tracer for detecting GRPR-expressing cancer lesions.


Subject(s)
Gallium Radioisotopes , Hydroxamic Acids , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, Bombesin , Receptors, Bombesin/metabolism , Receptors, Bombesin/antagonists & inhibitors , Gallium Radioisotopes/chemistry , Animals , Humans , Positron-Emission Tomography/methods , Mice , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Cell Line, Tumor , Tissue Distribution , Male , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism
8.
PLoS One ; 19(7): e0301441, 2024.
Article in English | MEDLINE | ID: mdl-38995975

ABSTRACT

Multimodal medical image fusion is a perennially prominent research topic that can obtain informative medical images and aid radiologists in diagnosing and treating disease more effectively. However, the recent state-of-the-art methods extract and fuse features by subjectively defining constraints, which easily distort the exclusive information of source images. To overcome these problems and get a better fusion method, this study proposes a 2D data fusion method that uses salient structure extraction (SSE) and a swift algorithm via normalized convolution to fuse different types of medical images. First, salient structure extraction (SSE) is used to attenuate the effect of noise and irrelevant data in the source images by preserving the significant structures. The salient structure extraction is performed to ensure that the pixels with a higher gradient magnitude impact the choices of their neighbors and further provide a way to restore the sharply altered pixels to their neighbors. In addition, a Swift algorithm is used to overcome the excessive pixel values and modify the contrast of the source images. Furthermore, the method proposes an efficient method for performing edge-preserving filtering using normalized convolution. In the end,the fused image are obtained through linear combination of the processed image and the input images based on the properties of the filters. A quantitative function composed of structural loss and region mutual data loss is designed to produce restrictions for preserving data at feature level and the structural level. Extensive experiments on CT-MRI images demonstrate that the proposed algorithm exhibits superior performance when compared to some of the state-of-the-art methods in terms of providing detailed information, edge contour, and overall contrasts.


Subject(s)
Algorithms , Neoplasms , Humans , Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Multimodal Imaging/methods , Signal Processing, Computer-Assisted , Carcinoma/diagnostic imaging
9.
ACS Nano ; 18(28): 18412-18424, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38949962

ABSTRACT

As a noninvasive treatment modality, high-intensity focused ultrasound (HIFU)-induced antitumor immune responses play a vital role in surgery prognosis. However, limited response intensity largely hinders postoperative immunotherapy. Herein, a hypoxia-specific metal-organic framework (MOF) nanosystem, coordinated by Fe3+, hypoxic-activated prodrug AQ4N, and IDO-1 signaling pathway inhibitor NLG919, is developed for the potentiating immunotherapy of HIFU surgery. The loaded AQ4N enhances the photoacoustic imaging effects to achieve accurate intraoperative navigation. Within the HIFU-established severe hypoxic environment, AQ4N is activated sequentially, following which it cooperates with Fe3+ to effectively provoke immunogenic cell death. In addition, potent NLG919 suppresses IDO-1 activity and degrades the immunosuppressive tumor microenvironment aggravated by postoperative hypoxia. In vivo studies demonstrate that the MOF-mediated immunotherapy greatly inhibits the growth of primary/distant tumors and eliminates lung metastasis. This work establishes a robust delivery platform to improve immunotherapy and the overall prognosis of HIFU surgery with high specificity and potency.


Subject(s)
Immunotherapy , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Mice , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tumor Microenvironment/drug effects , High-Intensity Focused Ultrasound Ablation , Cell Line, Tumor , Mice, Inbred BALB C , Cell Proliferation/drug effects , Prodrugs/chemistry , Prodrugs/pharmacology , Female , Neoplasms/therapy , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/immunology , Hypoxia
10.
Theranostics ; 14(10): 4127-4146, 2024.
Article in English | MEDLINE | ID: mdl-38994026

ABSTRACT

Background: Biomarker-driven molecular imaging has emerged as an integral part of cancer precision radiotherapy. The use of molecular imaging probes, including nanoprobes, have been explored in radiotherapy imaging to precisely and noninvasively monitor spatiotemporal distribution of biomarkers, potentially revealing tumor-killing mechanisms and therapy-induced adverse effects during radiation treatment. Methods: We summarized literature reports from preclinical studies and clinical trials, which cover two main parts: 1) Clinically-investigated and emerging imaging biomarkers associated with radiotherapy, and 2) instrumental roles, functions, and activatable mechanisms of molecular imaging probes in the radiotherapy workflow. In addition, reflection and future perspectives are proposed. Results: Numerous imaging biomarkers have been continuously explored in decades, while few of them have been successfully validated for their correlation with radiotherapeutic outcomes and/or radiation-induced toxicities. Meanwhile, activatable molecular imaging probes towards the emerging biomarkers have exhibited to be promising in animal or small-scale human studies for precision radiotherapy. Conclusion: Biomarker-driven molecular imaging probes are essential for precision radiotherapy. Despite very inspiring preliminary results, validation of imaging biomarkers and rational design strategies of probes await robust and extensive investigations. Especially, the correlation between imaging biomarkers and radiotherapeutic outcomes/toxicities should be established through multi-center collaboration involving a large cohort of patients.


Subject(s)
Biomarkers, Tumor , Molecular Imaging , Neoplasms , Humans , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Molecular Imaging/methods , Animals , Biomarkers, Tumor/metabolism , Molecular Probes/chemistry , Radiotherapy/methods , Radiotherapy/adverse effects , Biomarkers/metabolism
12.
Mol Imaging ; 23: 15353508241261473, 2024.
Article in English | MEDLINE | ID: mdl-38952401

ABSTRACT

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Subject(s)
B7-H1 Antigen , Mice, Nude , Animals , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Optical Imaging/methods , Iodine Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Female , Luminescence
13.
Int J Nanomedicine ; 19: 6377-6397, 2024.
Article in English | MEDLINE | ID: mdl-38952677

ABSTRACT

Background: How to ingeniously design multi-effect photosensitizers (PSs), including multimodal imaging and multi-channel therapy, is of great significance for highly spatiotemporal controllable precise phototherapy of malignant tumors. Methods: Herein, a novel multifunctional zinc(II) phthalocyanine-based planar micromolecule amphiphile (ZnPc 1) was successfully designed and synthesized, in which N atom with photoinduced electron transfer effect was introduced to enhance the near-infrared absorbance and nonradiative heat generation. After simple self-assembling into nanoparticles (NPs), ZnPc 1 NPs would exhibit enhanced multimodal imaging properties including fluorescence (FL) imaging (FLI) /photoacoustic (PA) imaging (PAI) /infrared (IR) thermal imaging, which was further used to guide the combined photodynamic therapy (PDT) and photothermal therapy (PTT). Results: It was that under the self-guidance of the multimodal imaging, ZnPc 1 NPs could precisely pinpoint the tumor from the vertical and horizontal boundaries achieving highly efficient and accurate treatment of cancer. Conclusion: Accordingly, the integration of FL/PA/IR multimodal imaging and PDT/PTT synergistic therapy pathway into one ZnPc 1 could provide a blueprint for the next generation of phototherapy, which offered a new paradigm for the integration of diagnosis and treatment in tumor and a promising prospect for precise cancer therapy.


Subject(s)
Indoles , Isoindoles , Multimodal Imaging , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Multimodal Imaging/methods , Animals , Humans , Indoles/chemistry , Indoles/pharmacology , Photochemotherapy/methods , Nanoparticles/chemistry , Mice , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Cell Line, Tumor , Photoacoustic Techniques/methods , Photothermal Therapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy , Mice, Inbred BALB C , Phototherapy/methods , Female
14.
Bioconjug Chem ; 35(7): 1064-1074, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38980173

ABSTRACT

The innovative PD-1/PD-L1 pathway strategy is gaining significant traction in cancer therapeutics. However, fluctuating response rates of 20-40% to PD-1/PD-L1 inhibitors, coupled with the risk of hyperprogression after immunotherapy, underscore the need for accurate patient selection and the identification of more beneficiaries. Molecular imaging, specifically near-infrared (NIR) fluorescence imaging, is a valuable alternative for real-time, noninvasive visualization of dynamic PD-L1 expression in vivo. This research introduces AUNP-12, a novel PD-L1-targeting peptide antagonist conjugated with Cy5.5 and CH1055 for first (NIR-I) and second near-infrared (NIR-II) imaging. These probes have proven to be effective in mapping PD-L1 expression across various mouse tumor models, offering insights into tumor-immune interactions. This study highlights the potential of AUNP-12-Cy5.5 and AUNP-12-CH1055 for guiding clinical immunotherapy through precise patient stratification and dynamic monitoring, supporting the shift toward molecular imaging for personalized cancer care.


Subject(s)
B7-H1 Antigen , Fluorescent Dyes , Gold , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/analysis , Fluorescent Dyes/chemistry , Programmed Cell Death 1 Receptor/metabolism , Mice , Humans , Gold/chemistry , Optical Imaging/methods , Carbocyanines/chemistry , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Infrared Rays
15.
Sci Rep ; 14(1): 16294, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009706

ABSTRACT

Radiomics analysis of [18F]-fluorodeoxyglucose ([18F]-FDG) PET images could be leveraged for personalised cancer medicine. However, the inherent sensitivity of radiomic features to intensity discretisation and voxel interpolation complicates its clinical translation. In this work, we evaluated the robustness of tumour [18F]-FDG-PET radiomic features to 174 different variations in intensity resolution or voxel size, and determined whether implementing parameter range conditions or dependency corrections could improve their robustness. Using 485 patient images spanning three cancer types: non-small cell lung cancer (NSCLC), melanoma, and lymphoma, we observed features were more sensitive to intensity discretisation than voxel interpolation, especially texture features. In most of our investigations, the majority of non-robust features could be made robust by applying parameter range conditions. Correctable features, which were generally fewer than conditionally robust, showed systematic dependence on bin configuration or voxel size that could be minimised by applying corrections based on simple mathematical equations. Melanoma images exhibited limited robustness and correctability relative to NSCLC and lymphoma. Our study provides an in-depth characterisation of the sensitivity of [18F]-FDG-PET features to image processing variations and reinforces the need for careful selection of imaging biomarkers prior to any clinical application.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Image Processing, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lymphoma/diagnostic imaging , Lymphoma/pathology , Radiopharmaceuticals , Melanoma/diagnostic imaging , Melanoma/pathology , Neoplasms/diagnostic imaging , Neoplasms/pathology , Radiomics
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 620-626, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932550

ABSTRACT

Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.


Subject(s)
Cadmium , Neoplasms , Optical Imaging , Quantum Dots , Quantum Dots/chemistry , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Imaging/methods , Animals , Photochemotherapy/methods , Drug Delivery Systems , Infrared Rays , Spectroscopy, Near-Infrared
17.
Mol Imaging Biol ; 26(3): 448-458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38869818

ABSTRACT

PURPOSE: Electron Paramagnetic Resonance Imaging (EPRI) can image the partial pressure of oxygen (pO2) within in vivo tumor models. We sought to develop Oxygen Enhanced (OE) EPRI that measures tumor pO2 with breathing gases of 21% O2 (pO221%) and 100% O2 (pO2100%), and the differences in pO2 between breathing gases (ΔpO2). We applied OE EPRI to study the early change in tumor pathophysiology in response to radiotherapy in two tumor models of pancreatic cancer. PROCEDURES: We developed a protocol that intraperitoneally administered OX071, a trityl radical contrast agent, and then acquired anatomical MR images to localize the tumor. Subsequently, we acquired two pO221% and two pO2100% maps using the T1 relaxation time of OX071 measured with EPRI and a R1-pO2 calibration of OX071. We studied 4T1 flank tumor model to evaluate the repeatability of OE EPRI. We then applied OE EPRI to study COLO 357 and Su.86.86 flank tumor models treated with 10 Gy radiotherapy. RESULTS: The repeatability of mean pO2 for individual tumors was ± 2.6 Torr between successive scans when breathing 21% O2 or 100% O2, representing a precision of 9.6%. Tumor pO221% and pO2100% decreased after radiotherapy for both models, although the decreases were not significant or only moderately significant, and the effect sizes were modest. For comparison, ΔpO2 showed a large, highly significant decrease after radiotherapy, and the effect size was large. MANOVA and analyses of the HF10 hypoxia fraction provided similar results. CONCLUSIONS: EPRI can evaluate tumor pO2 with outstanding precision relative to other imaging modalities. The change in ΔpO2 before vs. after treatment was the best parameter for measuring the early change in tumor pathophysiology in response to radiotherapy. Our studies have established ΔpO2 from OE EPRI as a new parameter, and have established that OE EPRI is a valuable new methodology for molecular imaging.


Subject(s)
Oxygen , Animals , Oxygen/metabolism , Electron Spin Resonance Spectroscopy , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
19.
Int J Nanomedicine ; 19: 6295-6317, 2024.
Article in English | MEDLINE | ID: mdl-38919774

ABSTRACT

Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Neoplasms , Metal-Organic Frameworks/chemistry , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Drug Delivery Systems/methods , Animals , Photochemotherapy/methods , Antineoplastic Agents/chemistry , Nanomedicine/methods
20.
Biol Pharm Bull ; 47(6): 1066-1071, 2024.
Article in English | MEDLINE | ID: mdl-38825459

ABSTRACT

Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.


Subject(s)
Molecular Imaging , Nuclear Medicine , Optical Imaging , Humans , Animals , Optical Imaging/methods , Molecular Imaging/methods , Nuclear Medicine/methods , Phototherapy/methods , Molecular Targeted Therapy/methods , Neoplasms/therapy , Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...