Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53.247
Filter
2.
J Proteome Res ; 23(7): 2452-2473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965921

ABSTRACT

Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.


Subject(s)
Anti-Bacterial Agents , Cachexia , Muscle, Skeletal , Proteome , Cachexia/metabolism , Cachexia/microbiology , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Proteome/metabolism , Proteome/analysis , Mice , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Muscle Proteins/metabolism , Male , Proteomics/methods , Microbiota/drug effects , Energy Metabolism/drug effects
3.
Adv Exp Med Biol ; 1445: 73-88, 2024.
Article in English | MEDLINE | ID: mdl-38967751

ABSTRACT

Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.


Subject(s)
Immunoglobulins , Humans , Animals , Immunoglobulins/genetics , Immunoglobulins/metabolism , Immunoglobulins/immunology , Glycosylation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
4.
BMC Cancer ; 24(1): 794, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961454

ABSTRACT

BACKGROUND: Kallikrein-related peptidase 7 (KLK7) is a chymotrypsin-like serine protease which is essential for the desquamation of corneocytes and thus plays a pivotal role in maintaining skin homeostasis. In cancer, KLK7 overexpression was suggested to represent a route for metastasis through cleavage of cell junction and extracellular matrix proteins of cancer cells. METHODS: To comprehensively determine KLK7 protein expression in normal and neoplastic tissues, a tissue microarray containing 13,447 samples from 147 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS: KLK7 positivity was found in 64 of 147 tumor categories, including 17 tumor categories with at least one strongly positive case. The highest rate of KLK7 positivity was found in squamous cell carcinomas from various sites of origin (positive in 18.1%-63.8%), ovarian and endometrium cancers (4.8%-56.2%), salivary gland tumors (4.8%-13.7%), bilio-pancreatic adenocarcinomas (20.0%-40.4%), and adenocarcinomas of the upper gastrointestinal tract (3.3%-12.5%). KLK7 positivity was linked to nodal metastasis (p = 0.0005), blood vessel infiltration (p = 0.0037), and lymph vessel infiltration (p < 0.0001) in colorectal adenocarcinoma, nodal metastasis in hepatocellular carcinoma (p = 0.0382), advanced pathological tumor stage in papillary thyroid cancer (p = 0.0132), and low grade of malignancy in a cohort of 719 squamous cell carcinomas from 11 different sites of origin (p < 0.0001). CONCLUSIONS: These data provide a comprehensive overview on KLK7 expression in normal and neoplastic human tissues. The prognostic relevance of KLK7 expression and the possible role of KLK7 as a drug target need to be further investigated.


Subject(s)
Kallikreins , Neoplasms , Tissue Array Analysis , Humans , Kallikreins/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Female , Immunohistochemistry , Male
5.
Mol Cancer ; 23(1): 135, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951876

ABSTRACT

In cells, signal transduction heavily relies on the intricate regulation of protein kinases, which provide the fundamental framework for modulating most signaling pathways. Dysregulation of kinase activity has been implicated in numerous pathological conditions, particularly in cancer. The druggable nature of most kinases positions them into a focal point during the process of drug development. However, a significant challenge persists, as the role and biological function of nearly one third of human kinases remains largely unknown.Within this diverse landscape, cyclin-dependent kinases (CDKs) emerge as an intriguing molecular subgroup. In human, this kinase family encompasses 21 members, involved in several key biological processes. Remarkably, 13 of these CDKs belong to the category of understudied kinases, and only 5 having undergone broad investigation to date. This knowledge gap underscores the pressing need to delve into the study of these kinases, starting with a comprehensive review of the less-explored ones.Here, we will focus on the PCTAIRE subfamily of CDKs, which includes CDK16, CDK17, and CDK18, arguably among the most understudied CDKs members. To contextualize PCTAIREs within the spectrum of human pathophysiology, we conducted an exhaustive review of the existing literature and examined available databases. This approach resulted in an articulate depiction of these PCTAIREs, encompassing their expression patterns, 3D configurations, mechanisms of activation, and potential functions in normal tissues and in cancer.We propose that this effort offers the possibility of identifying promising areas of future research that extend from basic research to potential clinical and therapeutic applications.


Subject(s)
Cyclin-Dependent Kinases , Humans , Cyclin-Dependent Kinases/metabolism , Animals , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Signal Transduction , Structure-Activity Relationship , Protein Conformation
6.
Mol Cancer ; 23(1): 134, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951879

ABSTRACT

Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.


Subject(s)
Exosomes , Killer Cells, Natural , Neoplasms , Humans , Exosomes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Clinical Relevance
7.
Adv Protein Chem Struct Biol ; 141: 123-176, 2024.
Article in English | MEDLINE | ID: mdl-38960472

ABSTRACT

Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.


Subject(s)
Metalloproteins , Proteomics , Humans , Metalloproteins/metabolism , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
8.
Adv Protein Chem Struct Biol ; 141: 223-253, 2024.
Article in English | MEDLINE | ID: mdl-38960475

ABSTRACT

Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.


Subject(s)
Epigenesis, Genetic , Isocitrate Dehydrogenase , Neoplasms , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , DNA Methylation
9.
Signal Transduct Target Ther ; 9(1): 170, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965243

ABSTRACT

Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/ß-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-ß, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.


Subject(s)
Neoplasms , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Signal Transduction , Drug Resistance, Neoplasm/genetics
10.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965548

ABSTRACT

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/genetics , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Molecular Targeted Therapy
11.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972873

ABSTRACT

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Subject(s)
Membrane Glycoproteins , Myeloid Cells , Neoplasms , Receptors, Immunologic , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Prognosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Female , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics
12.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990945

ABSTRACT

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Subject(s)
Cell Movement , Gene Amplification , Proto-Oncogene Proteins c-myc , Stress, Mechanical , Humans , Cell Movement/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Cell Line, Tumor , Mice , Mitosis/genetics , Chromosomal Instability , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
13.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994757

ABSTRACT

Cancer incidence is increasing globally, presenting a growing public health challenge. While anticancer drugs are crucial in treatment, their limitations, including poor targeting ability and high toxicity, hinder effectiveness and patient safety, requiring relentless scientific research and technological advancements to develop safer and more effective therapeutics. Cinnamaldehyde (CA), an active compound derived from the natural plant cinnamon, has garnered attention in pharmacological research due to its diverse therapeutic applications. CA has potential in treating a wide array of conditions, including cardiovascular diseases, diabetes, inflammatory disorders and various forms of cancer. The present review comprehensively summarizes the physicochemical and pharmacokinetic profiles of CA, and delves into the latest advancements in elucidating its potential mechanisms and targets across various cancer types. CA and its derivatives have antitumor effects, which encompass inhibiting cell proliferation, arresting the cell cycle, inducing apoptosis, limiting cell migration and invasion, and suppressing angiogenesis. Additionally, the present review explores targeted formulations of CA, laying a scientific foundation for further exploration of its implications in cancer prevention and treatment strategies.


Subject(s)
Acrolein , Antineoplastic Agents , Neoplasms , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Acrolein/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Proliferation/drug effects
14.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994754

ABSTRACT

Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.


Subject(s)
LIM Domain Proteins , Neoplasms , Transcription Factors , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Prognosis , Carcinogenesis/genetics , Molecular Targeted Therapy/methods
15.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994763

ABSTRACT

In years of research on classical pathways, the composition, information transmission mechanism, crosstalk with other pathways, and physiological and pathological effects of hedgehog (HH) pathway have been gradually clarified. HH also plays a critical role in tumor formation and development. According to the update of interpretation of tumor phenotypes, the latest relevant studies have been sorted out, to explore the specific mechanism of HH pathway in regulating different tumor phenotypes through gene mutation and signal regulation. The drugs and natural ingredients involved in regulating HH pathway were also reviewed; five approved drugs and drugs under research exert efficacy by blocking HH pathway, and at least 22 natural components have potential to treat tumors by HH pathway. Nevertheless, there is a deficiency of existing studies. The present review confirmed the great potential of HH pathway in future cancer treatment with factual basis.


Subject(s)
Hedgehog Proteins , Neoplasms , Signal Transduction , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Mutation
16.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994776

ABSTRACT

Cordycepin is a nucleoside molecule found in Cordyceps sinensis and can be obtained through chemical synthesis and biotransformation. Cordycepin has been extensively studied and has been shown to have antitumour activity. This activity includes effects on the autophagy process and inhibition of the MAPK/ERK and Hedgehog pathways. Ultimately, the inhibitory effect of cordycepin on tumour cells is due to the interplay of these effects. Cordycepin was shown to enhance the therapeutic effects of radiotherapy. There is increasing evidence indicating that cordycepin plays an anticancer role in the treatment of various cancers. The present review aims to provide a clear understanding of the antitumour mechanisms of cordycepin and discuss its present application in the treatment of tumours. This information can be an important theoretical basis and provide clinical guidance for the further development of cordycepin as an antitumour drug.


Subject(s)
Deoxyadenosines , Neoplasms , Humans , Deoxyadenosines/therapeutic use , Deoxyadenosines/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects
17.
Front Immunol ; 15: 1417758, 2024.
Article in English | MEDLINE | ID: mdl-38983854

ABSTRACT

Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.


Subject(s)
Exosomes , Neoplasms , Exosomes/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism
19.
Mol Cell ; 84(13): 2407-2409, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996457

ABSTRACT

In two recent studies appearing in Cell1 and Cell Metabolism,2 Tran et al. and Wu et al. describe underappreciated nuance in organismal and cellular purine nucleotide salvage pathways and identify purine salvage as a metabolic limitation for tumor growth.


Subject(s)
Purines , Purines/metabolism , Humans , Animals , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Purine Nucleotides/metabolism
20.
Mol Biol Cell ; 35(8): ar108, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38959101

ABSTRACT

Our recent work has uncovered a novel function of HSPA8 as an amyloidase, capable of dismantling the RHIM-containing protein fibrils to suppress necroptosis. However, the impact of HSPA8 inhibitors on cancer regression via necroptosis remains unexplored. In this study, we conducted a comprehensive investigation to assess the potential of HSPA8 inhibitors in enhancing necroptosis both in vitro and in vivo. Our findings indicate that pharmacologic inhibition of HSPA8, achieved either through VER (VER-155008) targeting the nucleotide binding domain or pifithrin-µ targeting the substrate binding domain of HSPA8, significantly potentiates necroptosis induced by diverse treatments in cellular assays. These inhibitors effectively disrupt the binding of HSPA8 to the RHIM protein, impeding its regulatory function on RHIM amyloid formation. Importantly, HSPA8 inhibitors significantly enhanced cancer cell sensitivity to microtubule-targeting agents (MTAs) in vitro, while reversing chemoresistance and facilitating tumor regression by augmenting necroptosis in vivo. Our findings suggest a promising therapeutic approach to cancer through necroptosis modulation via HSPA8 targeting, particularly in combination with MTA drugs for enhanced treatment efficacy.


Subject(s)
HSC70 Heat-Shock Proteins , Necroptosis , Neoplasms , Necroptosis/drug effects , Humans , Animals , Cell Line, Tumor , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , HSC70 Heat-Shock Proteins/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Mice, Nude , Drug Resistance, Neoplasm/drug effects , Purine Nucleosides
SELECTION OF CITATIONS
SEARCH DETAIL
...