Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.456
Filter
1.
Commun Biol ; 7(1): 997, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147853

ABSTRACT

The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd. Typically, Cd exposure impeded the development and maturation of cells in the brain, especially progenitor cells such as neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). It also caused significant cell subpopulation shifts in almost all the types of cells in the brain. Additionally, Cd exposure reduced the dendritic sophistication of cortical neurons in the offspring. Importantly, these changes led to aberrant Ca2+ activity in the cortex and neural behavior changes in mature offspring. These data contribute to our understanding of the effects and mechanisms of Cd exposure on brain development and highlight the importance of controlling environmental neurotoxicant exposure at the population level.


Subject(s)
Brain , Cadmium , Single-Cell Analysis , Transcriptome , Animals , Mice , Cadmium/toxicity , Brain/metabolism , Brain/drug effects , Brain/growth & development , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Mice, Inbred C57BL , Male , Neurons/metabolism , Neurons/drug effects
2.
Chem Biol Interact ; 401: 111187, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39111523

ABSTRACT

Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.


Subject(s)
Cell Proliferation , Dentate Gyrus , Hedgehog Proteins , Neural Stem Cells , Phenols , Rats, Wistar , Signal Transduction , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Hedgehog Proteins/metabolism , Phenols/pharmacology , Phenols/toxicity , Female , Pregnancy , Rats , Signal Transduction/drug effects , Cell Proliferation/drug effects , Purines/pharmacology , Morpholines/pharmacology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Male , SOXB1 Transcription Factors/metabolism , Cell Line
3.
J Transl Med ; 22(1): 723, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103875

ABSTRACT

BACKGROUND: Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS: The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS: Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION: Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.


Subject(s)
AMP-Activated Protein Kinases , Cell Differentiation , Cell Proliferation , Ferroptosis , Metformin , Neural Stem Cells , Rats, Sprague-Dawley , Spinal Cord Injuries , Metformin/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Animals , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Ferroptosis/drug effects , AMP-Activated Protein Kinases/metabolism , Neurons/drug effects , Neurons/metabolism , Signal Transduction/drug effects , Rats , Reactive Oxygen Species/metabolism , Recovery of Function/drug effects
4.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125934

ABSTRACT

The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.


Subject(s)
Antioxidants , Curcumin , Disease Models, Animal , Muscular Atrophy, Spinal , NF-E2-Related Factor 2 , Neural Stem Cells , Curcumin/pharmacology , Antioxidants/pharmacology , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/drug therapy , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Oxidative Stress/drug effects , Motor Neurons/metabolism , Motor Neurons/drug effects , Cell Differentiation/drug effects , Humans , Cells, Cultured
5.
BMC Vet Res ; 20(1): 372, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160565

ABSTRACT

BACKGROUND: Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS: In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 µm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS: FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.


Subject(s)
Follicle Stimulating Hormone , Animals , Follicle Stimulating Hormone/pharmacology , Female , Sheep , Ovary/cytology , Neural Stem Cells/drug effects , Cells, Cultured , Cell Differentiation/drug effects
6.
J Mater Chem B ; 12(29): 7122-7134, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38946474

ABSTRACT

Micro- and nanoencapsulation of cells has been studied as a strategy to protect cells from environmental stress and promote survival during delivery. Hydrogels used in encapsulation can be modified to influence cell behaviors and direct assembly in their surroundings. Here, we report a system that conformally encapsulated stem cells using hyaluronic acid (HA). We successfully modified HA with lipid, thiol, and maleimide pendant groups to facilitate a hydrogel system in which HA was deposited onto cell plasma membranes and subsequently crosslinked through thiol-maleimide click chemistry. We demonstrated conformal encapsulation of both neural stem cells (NSCs) and mesenchymal stromal cells (MSCs), with viability of both cell types greater than 90% after encapsulation. Additional material could be added to the conformal hydrogel through alternating addition of thiol-modified and maleimide-modified HA in a layering process. After encapsulation, we tracked egress and viability of the cells over days and observed differential responses of cell types to conformal hydrogels both according to cell type and the amount of material deposited on the cell surfaces. Through the design of the conformal hydrogels, we showed that multicellular assembly could be created in suspension and that encapsulated cells could be immobilized on surfaces. In conjunction with photolithography, conformal hydrogels enabled rapid assembly of encapsulated cells on hydrogel substrates with resolution at the scale of 100 µm.


Subject(s)
Cell Survival , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells , Neural Stem Cells , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Neural Stem Cells/drug effects , Neural Stem Cells/cytology , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Cell Survival/drug effects , Cell Encapsulation/methods , Mice , Surface Properties , Cells, Cultured
7.
Molecules ; 29(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064908

ABSTRACT

Adult neurogenesis involves the generation of functional neurons from neural progenitor cells, which have the potential to complement and restore damaged neurons and neural circuits. Therefore, the development of drugs that stimulate neurogenesis represents a promising strategy in stem cell therapy and neural regeneration, greatly facilitating the reconstruction of neural circuits in cases of neurodegeneration and brain injury. Our study reveals that compound A5, previously designed and synthesized by our team, exhibits remarkable neuritogenic activities, effectively inducing neurogenesis in neural stem/progenitor cells (NSPCs). Subsequently, transcriptome analysis using high-throughput Illumina RNA-seq technology was performed to further elucidate the underlying molecular mechanisms by which Compound A5 promotes neurogenesis. Notably, comparative transcriptome analysis showed that the up-regulated genes were mainly associated with neurogenesis, and the down-regulated genes were mainly concerned with cell cycle progression. Furthermore, we confirmed that Compound A5 significantly affected the expression of transcription factors related to neurogenesis and cell cycle regulatory proteins. Collectively, these findings identify a new compound with neurogenic activity and may provide insights into drug discovery for neural repair and regeneration.


Subject(s)
Cell Cycle , Hydrazones , Neural Stem Cells , Neurogenesis , Neurogenesis/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , Cell Cycle/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Gene Expression Profiling , Up-Regulation/drug effects , Mice , Transcriptome , Gene Expression Regulation/drug effects , Cell Differentiation/drug effects
8.
Stem Cell Res Ther ; 15(1): 200, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971770

ABSTRACT

BACKGROUND: Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS: Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-ß (Aß) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS: ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aß-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αß toxicity and prevent synapse loss after Aß treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aß toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS: Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Neurogenesis , Neuroprotective Agents , Receptor, trkB , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Neurogenesis/drug effects , Receptor, trkB/metabolism , Receptor, trkB/agonists , Receptor, trkB/genetics , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neuroprotective Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism
9.
Neuropharmacology ; 257: 110058, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38960135

ABSTRACT

Postnatal hippocampal neurogenesis is essential for learning and memory. Hippocampal neural precursor cells (NPCs) can be induced to proliferate and differentiate into either glial cells or dentate granule cells. Notably, hippocampal neurogenesis decreases dramatically with age, partly due to a reduction in the NPC pool and a decrease in their proliferative activity. Alpha-melanocyte-stimulating hormone (α-MSH) improves learning, memory, neuronal survival and plasticity. Here, we used postnatally-isolated hippocampal NPCs from Wistar rat pups (male and female combined) to determine the role of the melanocortin analog [Nle4, D-Phe7]-α-MSH (NDP-MSH) in proliferation and fate acquisition of NPCs. Incubation of growth-factor deprived NPCs with 10 nM NDP-MSH for 6 days increased the proportion of Ki-67- and 5-bromo-2'-deoxyuridine (BrdU)-positive cells, compared to the control group, and these effects were blocked by the MC4R antagonist JKC-363. NDP-MSH also increased the proportion of glial fibrillar acidic protein (GFAP)/Ki-67, GFAP/sex-determining region Y-box2 (SOX2) and neuroepithelial stem cell protein (NESTIN)/Ki-67-double positive cells (type-1 and type-2 precursors). Finally, NDP-MSH induced peroxisome proliferator-activated receptor (PPAR)-γ protein expression, and co-incubation with the PPAR-γ inhibitor GW9662 prevented the effect of NDP-MSH on NPC proliferation and differentiation. Our results indicate that in vitro activation of MC4R in growth-factor-deprived postnatal hippocampal NPCs induces proliferation and promotes the relative expansion of the type-1 and type-2 NPC pool through a PPAR-γ-dependent mechanism. These results shed new light on the mechanisms underlying the beneficial effects of melanocortins in hippocampal plasticity and provide evidence linking the MC4R and PPAR-γ pathways in modulation of hippocampal NPC proliferation and differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Hippocampus , Neural Stem Cells , Neurogenesis , Rats, Wistar , Receptor, Melanocortin, Type 4 , alpha-MSH , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/pharmacology , alpha-MSH/analogs & derivatives , Female , Cell Differentiation/drug effects , Cell Differentiation/physiology , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Rats , Cells, Cultured , SOXB1 Transcription Factors/metabolism , Animals, Newborn , Glial Fibrillary Acidic Protein/metabolism , PPAR gamma/metabolism
10.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38977310

ABSTRACT

Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired. Here, using a mouse model of mesial temporal lobe epilepsy, we show that the epidermal growth factor receptor (EGFR) signaling pathway is key for the induction of React-NSCs and that its inhibition exerts a beneficial effect on the neurogenic niche. We show that during the initial days after the induction of seizures by a single intrahippocampal injection of kainic acid, a strong release of zinc and heparin-binding epidermal growth factor, both activators of the EGFR signaling pathway in neural stem cells, is produced. Administration of the EGFR inhibitor gefitinib, a chemotherapeutic in clinical phase IV, prevents the induction of React-NSCs and preserves neurogenesis.


Subject(s)
ErbB Receptors , Heparin-binding EGF-like Growth Factor , Hippocampus , Neural Stem Cells , Neurogenesis , Seizures , Signal Transduction , Animals , ErbB Receptors/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Hippocampus/metabolism , Mice , Heparin-binding EGF-like Growth Factor/metabolism , Seizures/metabolism , Neurogenesis/drug effects , Signal Transduction/drug effects , Male , Disease Models, Animal , Gefitinib/pharmacology , Epilepsy, Temporal Lobe/metabolism , Cell Differentiation/drug effects , Kainic Acid/pharmacology , Mice, Inbred C57BL
11.
Biomed Pharmacother ; 177: 117046, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981241

ABSTRACT

Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3ß inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3ß pathway.


Subject(s)
Cell Proliferation , Cerebellum , Glycogen Synthase Kinase 3 beta , Neural Stem Cells , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cerebellum/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Benzophenones/pharmacology , Mice , Cells, Cultured , Male
12.
Chem Biol Interact ; 399: 111145, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39002876

ABSTRACT

Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).


Subject(s)
Hippocampus , Maternal Exposure , Neonicotinoids , Neural Stem Cells , Neurogenesis , Nitro Compounds , Prenatal Exposure Delayed Effects , Reelin Protein , Animals , Neurogenesis/drug effects , Pregnancy , Female , Neonicotinoids/toxicity , Rats , Nitro Compounds/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/cytology , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Insecticides/toxicity , Male , Cell Proliferation/drug effects , Behavior, Animal/drug effects , Rats, Sprague-Dawley , Oxidative Stress/drug effects
13.
Tissue Eng Regen Med ; 21(6): 809-827, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39004636

ABSTRACT

BACKGROUND: In the intricate pathological milieu post-spinal cord injury (SCI), neural stem cells (NSCs) frequently differentiate into astrocytes rather than neurons, significantly limiting nerve repair. Hence, the utilization of biocompatible hydrogel scaffolds in conjunction with exogenous factors to foster the differentiation of NSCs into neurons has the potential for SCI repair. METHODS: In this study, we engineered a 3D-printed porous SilMA hydrogel scaffold (SM) supplemented with pH-/temperature-responsive paclitaxel nanoparticles (PTX-NPs). We analyzed the biocompatibility of a specific concentration of PTX-NPs and its effect on NSC differentiation. We also established an SCI model to explore the ability of composite scaffolds for in vivo nerve repair. RESULTS: The physical adsorption of an optimal PTX-NPs dosage can simultaneously achieve pH/temperature-responsive release and commendable biocompatibility, primarily reflected in cell viability, morphology, and proliferation. An appropriate PTX-NPs concentration can steer NSC differentiation towards neurons over astrocytes, a phenomenon that is also efficacious in simulated injury settings. Immunoblotting analysis confirmed that PTX-NPs-induced NSC differentiation occurred via the MAPK/ERK signaling cascade. The repair of hemisected SCI in rats demonstrated that the composite scaffold augmented neuronal regeneration at the injury site, curtailed astrocyte and fibrotic scar production, and enhanced motor function recovery in rat hind limbs. CONCLUSION: The scaffold's porous architecture serves as a cellular and drug carrier, providing a favorable microenvironment for nerve regeneration. These findings corroborate that this strategy amplifies neuronal expression within the injury milieu, significantly aiding in SCI repair.


Subject(s)
Cell Differentiation , Hydrogels , Nanoparticles , Neural Stem Cells , Neurons , Paclitaxel , Rats, Sprague-Dawley , Spinal Cord Injuries , Tissue Scaffolds , Spinal Cord Injuries/drug therapy , Animals , Paclitaxel/pharmacology , Tissue Scaffolds/chemistry , Cell Differentiation/drug effects , Neurons/drug effects , Neurons/cytology , Neurons/metabolism , Nanoparticles/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Porosity , Rats , Nerve Regeneration/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/cytology
14.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927995

ABSTRACT

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Gap Junctions , Neural Stem Cells , Neuroglia , Octanols , Animals , Gap Junctions/drug effects , Gap Junctions/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Rats , Octanols/pharmacology , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/cytology , Cells, Cultured , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Lateral Ventricles/drug effects , Connexin 43/metabolism , Rats, Wistar , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/cytology , Animals, Newborn , Humans
15.
Antiviral Res ; 228: 105933, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851593

ABSTRACT

The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.


Subject(s)
Dichloroacetic Acid , Glucose , Virus Replication , Zika Virus Infection , Zika Virus , Zika Virus/drug effects , Zika Virus/physiology , Dichloroacetic Acid/pharmacology , Virus Replication/drug effects , Glucose/metabolism , Humans , Zika Virus Infection/drug therapy , Zika Virus Infection/virology , Neural Stem Cells/drug effects , Neural Stem Cells/virology , Neural Stem Cells/metabolism , Animals , Glycolysis/drug effects , Cell Survival/drug effects , Cells, Cultured , Mitochondria/drug effects , Mitochondria/metabolism , Antiviral Agents/pharmacology
16.
Ecotoxicol Environ Saf ; 280: 116585, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875821

ABSTRACT

Neonicotinoids form a class of insecticides that are chemically related to nicotine and are widely used in crop protection. They have adverse effects on the neuronal nicotinic acetylcholine receptors (nAChRs). One of the neonicotinoids approved for control of the invasive pest Drosophila suzukii is acetamiprid. Despite concerns regarding its genotoxicity and data indicating the presence of small amounts of this substance in fruits intended for consumption, effects of its low doses on nerve cells are yet to be investigated. To determine whether the neurotoxic effects are species-specific and vary depending on the insecticide present in diet, multigenerational cultures of Drosophila melanogaster and D. suzukii were prepared, in this study, in media supplemented with different concentrations (below the LC50) of acetamiprid and nicotine. Acetamiprid, analogous to nicotine, caused damage to the DNA of neuroblasts in both species, at sublethal concentrations, along with a decrease in mobility, which remained at a similar level over subsequent generations. D. suzukii was found to be more sensitive to nicotine and acetamiprid, due to which the genotoxic effects were stronger even at lower doses of toxins. The results collectively indicated that even low concentrations of acetamiprid affect the stem cells of developing fly brain, and that long-term response to the tested insecticides is species-specific.


Subject(s)
DNA Damage , Drosophila melanogaster , Insecticides , Neonicotinoids , Nicotine , Animals , Neonicotinoids/toxicity , Nicotine/toxicity , Drosophila melanogaster/drug effects , Insecticides/toxicity , Drosophila/drug effects , Species Specificity , Mutagens/toxicity , Neural Stem Cells/drug effects , Dose-Response Relationship, Drug , Female
17.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891838

ABSTRACT

Nanoparticles (NPs) are becoming increasingly important novel materials for many purposes, including basic research, medicine, agriculture, and engineering. Increasing human and environmental exposure to these promising compounds requires assessment of their potential health risks. While the general direct cytotoxicity of NPs is often routinely measured, more indirect possible long-term effects, such as reproductive or developmental neurotoxicity (DNT), have been studied only occasionally and, if so, mostly on non-human animal models, such as zebrafish embryos. In this present study, we employed a well-characterized human neuronal precursor cell line to test the concentration-dependent DNT of green-manufactured copper sulfide (CuS) nanoparticles on crucial early events in human brain development. CuS NPs turned out to be generally cytotoxic in the low ppm range. Using an established prediction model, we found a clear DNT potential of CuS NPs on neuronal precursor cell migration and neurite outgrowth, with IC50 values 10 times and 5 times, respectively, lower for the specific DNT endpoint than for general cytotoxicity. We conclude that, in addition to the opportunities of NPs, their risks to human health should be carefully considered.


Subject(s)
Copper , Metal Nanoparticles , Neurons , Humans , Copper/toxicity , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Neurons/drug effects , Sulfides/toxicity , Sulfides/chemistry , Cell Movement/drug effects , Cell Line , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Nanoparticles/toxicity , Nanoparticles/chemistry , Neural Stem Cells/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Cell Survival/drug effects
18.
ACS Appl Mater Interfaces ; 16(25): 31922-31935, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874539

ABSTRACT

Poly-l-lysine (PLL) and Matrigel, both classical coating materials for culture substrates in neural stem cell (NSC) research, present distinct interfaces whose effect on NSC behavior at cellular and molecular levels remains ambiguous. Our investigation reveals intriguing disparities: although both PLL and Matrigel interfaces are hydrophilic and feature amine functional groups, Matrigel stands out with lower stiffness and higher roughness. Based on this diversity, Matrigel surpasses PLL, driving NSC adhesion, migration, and proliferation. Intriguingly, PLL promotes NSC differentiation into astrocytes, whereas Matrigel favors neural differentiation and the physiological maturation of neurons. At the molecular level, Matrigel showcases a wider upregulation of genes linked to NSC behavior. Specifically, it enhances ECM-receptor interaction, activates the YAP transcription factor, and heightens glycerophospholipid metabolism, steering NSC proliferation and neural differentiation. Conversely, PLL upregulates genes associated with glial cell differentiation and amino acid metabolism and elevates various amino acid levels, potentially linked to its support for astrocyte differentiation. These distinct transcriptional and metabolic activities jointly shape the divergent NSC behavior on these substrates. This study significantly advances our understanding of substrate regulation on NSC behavior, offering novel insights into optimizing and targeting the application of these surface coating materials in NSC research.


Subject(s)
Cell Differentiation , Cell Proliferation , Collagen , Drug Combinations , Laminin , Neural Stem Cells , Polylysine , Proteoglycans , Polylysine/chemistry , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Laminin/chemistry , Laminin/pharmacology , Collagen/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Proteoglycans/chemistry , Proteoglycans/pharmacology , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Mice
19.
PLoS One ; 19(6): e0305853, 2024.
Article in English | MEDLINE | ID: mdl-38913632

ABSTRACT

The intricate process of neuronal differentiation integrates multiple signals to induce transcriptional, morphological, and electrophysiological changes that reshape the properties of neural precursor cells during their maturation and migration process. An increasing number of neurotransmitters and biomolecules have been identified as molecular signals that trigger and guide this process. In this sense, taurine, a sulfur-containing, non-essential amino acid widely expressed in the mammal brain, modulates the neuronal differentiation process. In this study, we describe the effect of taurine acting via the ionotropic GABAA receptor and the metabotropic GABAB receptor on the neuronal differentiation and electrophysiological properties of precursor cells derived from the subventricular zone of the mouse brain. Taurine stimulates the number of neurites and favors the dendritic complexity of the neural precursor cells, accompanied by changes in the somatic input resistance and the strength of inward and outward membranal currents. At the pharmacological level, the blockade of GABAA receptors inhibits these effects, whereas the stimulation of GABAB receptors has no positive effects on the taurine-mediated differentiation process. Strikingly, the blockade of the GABAB receptor with CGP533737 stimulates neurite outgrowth, dendritic complexity, and membranal current kinetics of neural precursor cells. The effects of taurine on the differentiation process involve Ca2+ mobilization and the activation of intracellular signaling cascades since chelation of intracellular calcium with BAPTA-AM, and inhibition of the CaMKII, ERK1/2, and Src kinase inhibits the neurite outgrowth of neural precursor cells of the subventricular zone.


Subject(s)
Cell Differentiation , Lateral Ventricles , Neural Stem Cells , Receptors, GABA-A , Receptors, GABA-B , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Receptors, GABA-B/metabolism , Mice , Cell Differentiation/drug effects , Receptors, GABA-A/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Taurine/pharmacology , Neurogenesis/drug effects , Calcium/metabolism
20.
Biomolecules ; 14(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927091

ABSTRACT

BACKGROUND: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). METHODS: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone). RESULTS: Antipsychotics did not modify the growth properties of NPCs after 3 days of treatment. However, the characteristics of neurite outgrowth changed significantly in response to haloperidol and olanzapine. After three weeks of differentiation, mRNA expression levels of the selected neuronal markers increased (except for MAP2), while antipsychotics caused only subtle changes. Additionally, we found no changes in MAP2 or GFAP protein expression levels as a result of antipsychotic treatment. CONCLUSIONS: Altogether, antipsychotic medications promoted neurogenesis in vitro by influencing neurite outgrowth rather than changing cell survival or gene expression. This study provides insights into the effects of antipsychotics on neuronal differentiation and highlights the importance of considering neurite outgrowth as a potential target of action.


Subject(s)
Antipsychotic Agents , Cell Differentiation , Haloperidol , Hippocampus , Induced Pluripotent Stem Cells , Neural Stem Cells , Neurogenesis , Olanzapine , Risperidone , Humans , Olanzapine/pharmacology , Risperidone/pharmacology , Neurogenesis/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Haloperidol/pharmacology , Antipsychotic Agents/pharmacology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Neuronal Outgrowth/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL