Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Cell Biol Toxicol ; 40(1): 51, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958792

ABSTRACT

The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.


Subject(s)
Embryonic Development , Neural Tube Defects , Neural Tube , Oxidative Stress , Reactive Oxygen Species , Zinc Oxide , Zinc Oxide/toxicity , Animals , Oxidative Stress/drug effects , Chick Embryo , Embryonic Development/drug effects , Mice , Neural Tube/drug effects , Neural Tube/embryology , Neural Tube/metabolism , Humans , Neural Tube Defects/chemically induced , Neural Tube Defects/metabolism , Neural Tube Defects/embryology , Neural Tube Defects/pathology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Female , Mitochondria/drug effects , Mitochondria/metabolism , Metal Nanoparticles/toxicity , Autophagy/drug effects , Cell Line, Tumor , Nanoparticles/toxicity
2.
Dev Cell ; 59(12): 1487-1488, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889690

ABSTRACT

In this issue of Developmental Cell, Bolondi et al. systematically assesses neuro-mesodermal progenitor (NMP) dynamics by combining a mouse stem-cell-based embryo model with molecular recording of single cells, shedding light on the dynamics of neural tube and paraxial mesoderm formation during mammalian development.


Subject(s)
Mesoderm , Animals , Mice , Mesoderm/cytology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Neural Tube/cytology , Neural Tube/embryology , Cell Differentiation/physiology , Stem Cells/cytology , Stem Cells/metabolism , Body Patterning
3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38851297

ABSTRACT

The development of the human central nervous system initiates in the early embryonic period until long after delivery. It has been shown that several neurological and neuropsychiatric diseases originate from prenatal incidents. Mathematical models offer a direct way to understand neurodevelopmental processes better. Mathematical modelling of neurodevelopment during the embryonic period is challenging in terms of how to 'Approach', how to initiate modelling and how to propose the appropriate equations that fit the underlying dynamics of neurodevelopment during the embryonic period while including the variety of elements that are built-in naturally during the process of neurodevelopment. It is imperative to answer where and how to start modelling; in other words, what is the appropriate 'Approach'? Therefore, one objective of this study was to tackle the mathematical issue broadly from different aspects and approaches. The approaches were divided into three embryonic categories: cell division, neural tube growth and neural plate growth. We concluded that the neural plate growth approach provides a suitable platform for simulation of brain formation/neurodevelopment compared to cell division and neural tube growth. We devised a novel equation and designed algorithms that include geometrical and topological algorithms that could fit most of the necessary elements of the neurodevelopmental process during the embryonic period. Hence, the proposed equations and defined mathematical structure would be a platform to generate an artificial neural network that autonomously grows and develops.


Subject(s)
Models, Biological , Neural Tube , Animals , Humans , Algorithms , Cell Division , Embryonic Development , Models, Neurological , Neural Networks, Computer , Neural Plate/cytology , Neural Plate/embryology , Neural Tube/embryology , Neurogenesis , Neurons/cytology
4.
Dev Growth Differ ; 66(5): 320-328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38925637

ABSTRACT

During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.


Subject(s)
Neural Plate , Neural Tube , Xenopus laevis , Animals , Neural Tube/embryology , Neural Tube/cytology , Neural Tube/metabolism , Neural Plate/embryology , Neural Plate/metabolism , Neural Plate/cytology , Xenopus laevis/embryology , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Microscopy, Atomic Force , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology
5.
Toxicol Appl Pharmacol ; 489: 117011, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906510

ABSTRACT

The critical developmental stages of the embryo are strongly influenced by the dietary composition of the mother. Acrylamide is a food contaminant that can form in carbohydrate-rich foods that are heat-treated. The aim of this study was to investigate the toxicity of a relatively low dose of acrylamide on the development of the neural tube in the early stage chick embryos. Specific pathogen-free fertilized eggs (n = 100) were treated with acrylamide (0.1, 0.5, 2.5, 12.5 mg/kg) between 28-30th hours of incubation and dissected at 48th hours. In addition to morphological and histopathological examinations, proliferating cell nuclear antigen (PCNA) and caspase 3 were analyzed immunohistochemically. The brain and reproductive expression gene (BRE) was analyzed by RT-PCR. Acrylamide exposure had a negative effect on neural tube status even at a very low dose (0.1 mg/kg) (p < 0.05). Doses of 0.5 mg/kg and above caused a delay in neural tube development (p < 0.05). Crown-rump length and somite count decreased dose-dependently, while this decrease was not significant in the very low dose group (p > 0.05), which was most pronounced at doses of 2.5 and 12.5 mg/kg (p < 0.001). Acrylamide exposure dose-dependently decreased PCNA and increased caspase 3, with this change being significant at doses of 0.5 mg/kg and above (p < 0.001). BRE was downregulated at all acrylamide exposures except in the very low dose group (0.1 mg/kg). In conclusion, we find that acrylamide exposure (at 0.5 mg/kg and above) in post-gastrulation delays neural tube closure in chicken embryos by suppressing proliferation and apoptosis induction and downregulating BRE gene expression.


Subject(s)
Acrylamide , Dose-Response Relationship, Drug , Embryonic Development , Proliferating Cell Nuclear Antigen , Animals , Chick Embryo , Acrylamide/toxicity , Proliferating Cell Nuclear Antigen/metabolism , Embryonic Development/drug effects , Neural Tube/drug effects , Neural Tube/embryology , Caspase 3/metabolism , Caspase 3/genetics , Gene Expression Regulation, Developmental/drug effects
6.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856082

ABSTRACT

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.


Subject(s)
Cell Proliferation , Mesoderm , Models, Biological , Morphogenesis , Neural Tube , Animals , Mesoderm/embryology , Mesoderm/cytology , Neural Tube/embryology , Neural Tube/cytology , Quail/embryology , Embryo, Nonmammalian/cytology , Embryonic Development/physiology , Viscosity
7.
Genesis ; 62(3): e23602, 2024 06.
Article in English | MEDLINE | ID: mdl-38721990

ABSTRACT

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Subject(s)
Cilia , Neural Tube , Animals , Mice , Cilia/metabolism , Cilia/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Point Mutation , Signal Transduction
8.
Sci Bull (Beijing) ; 69(14): 2260-2272, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38702277

ABSTRACT

Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.


Subject(s)
Autophagy , Heparan Sulfate Proteoglycans , Neural Tube Defects , Animals , Mice , Heparan Sulfate Proteoglycans/metabolism , Heparan Sulfate Proteoglycans/genetics , Humans , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/pathology , Neural Tube/metabolism , Neural Tube/embryology , Neural Tube/pathology , Neural Stem Cells/metabolism , Neuroepithelial Cells/metabolism , Female , Male , Disease Models, Animal
9.
Curr Top Dev Biol ; 159: 168-231, 2024.
Article in English | MEDLINE | ID: mdl-38729676

ABSTRACT

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell Movement
10.
Dev Biol ; 511: 26-38, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38580174

ABSTRACT

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Subject(s)
Neural Tube , Spinal Cord , Animals , Spinal Cord/embryology , Neural Tube/embryology , Neural Crest/embryology , Neural Crest/cytology , Neural Crest/physiology , Cell Differentiation/physiology , Neuroglia/physiology , Neuroepithelial Cells/cytology , Neuroepithelial Cells/physiology , Humans
11.
Nature ; 628(8007): 391-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408487

ABSTRACT

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Subject(s)
Body Patterning , Microfluidics , Neural Tube , Humans , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Neural Crest/cytology , Neural Crest/embryology , Neural Tube/cytology , Neural Tube/embryology , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Prosencephalon/embryology , Spinal Cord/cytology , Spinal Cord/embryology
12.
Brain Behav Evol ; 99(1): 45-68, 2024.
Article in English | MEDLINE | ID: mdl-38342091

ABSTRACT

BACKGROUND: The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY: Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES: The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.


Subject(s)
Biological Evolution , Brain , Neural Tube , Vertebrates , Animals , Vertebrates/embryology , Vertebrates/growth & development , Brain/embryology , Brain/growth & development , Neural Tube/embryology , Neurogenesis/physiology , Neurulation/physiology
13.
Sci Adv ; 9(24): eadf6927, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315133

ABSTRACT

Correct notochord and neural tube (NT) formation is crucial to the development of the central nervous system and midline structures. Integrated biochemical and biophysical signaling controls embryonic growth and patterning; however, the underlying mechanisms remain poorly understood. Here, we took the opportunities of marked morphological changes during notochord and NT formation and identified both necessary and sufficient roles of Yap, a key mechanosensor and mechanotransducer, in biochemical signaling activation during formation of notochord and floor plate, the ventral signaling centers that pattern the dorsal-ventral axis of NT and the surrounding tissues. We showed that Yap activation by a gradient of mechanical stress and tissue stiffness in the notochord and ventral NT induces FoxA2 and Shh expression. Hedgehog signaling activation rescued NT patterning defects caused by Yap deficiency, but not notochord formation. Therefore, mechanotransduction via Yap activation acts in feedforward mechanisms to induce FoxA2 expression for notochord formation and activate Shh expression for floor plate induction by synergistically interacting with FoxA2.


Subject(s)
Hedgehog Proteins , Hepatocyte Nuclear Factor 3-beta , Mechanotransduction, Cellular , YAP-Signaling Proteins , Central Nervous System/embryology , Embryonic Development , Neural Tube/embryology
14.
Nature ; 612(7941): 732-738, 2022 12.
Article in English | MEDLINE | ID: mdl-36517595

ABSTRACT

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Subject(s)
Gastrulation , Macaca fascicularis , Organogenesis , Single-Cell Analysis , Animals , Humans , Mice , Gastrulation/genetics , Macaca fascicularis/embryology , Macaca fascicularis/genetics , Organogenesis/genetics , Embryoid Bodies , Gene Expression Profiling , Primitive Streak/cytology , Primitive Streak/embryology , Neural Tube/cytology , Neural Tube/embryology , Neural Crest/cytology , Neural Crest/embryology , Hippo Signaling Pathway , Mesoderm/cytology , Mesoderm/embryology , Stem Cells
15.
Nature ; 610(7930): 143-153, 2022 10.
Article in English | MEDLINE | ID: mdl-36007540

ABSTRACT

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Subject(s)
Embryo, Mammalian , Gastrulation , Models, Biological , Neurulation , Organogenesis , Animals , Cell Lineage , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Stem Cells/cytology , Endoderm/cytology , Endoderm/embryology , Heart/embryology , Mesencephalon/embryology , Mice , Neural Tube/embryology , PAX6 Transcription Factor/deficiency , PAX6 Transcription Factor/genetics , Prosencephalon/embryology , Somites/embryology
16.
Proc Natl Acad Sci U S A ; 119(20): e2117075119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35561223

ABSTRACT

Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.


Subject(s)
Neural Tube , Neurulation , Animals , Ectoderm/embryology , Humans , Mice , Neural Plate/embryology , Neural Tube/embryology , Neurulation/physiology , Notochord/embryology
17.
Arch Gynecol Obstet ; 306(4): 983-989, 2022 10.
Article in English | MEDLINE | ID: mdl-35048180

ABSTRACT

PURPOSE: One of the most common malformations of the central nervous system is related to embryonic neural tube alterations. We hypothesized that anencephaly affects the development of the vagina during the human second trimester of pregnancy. Our study compared the biometric parameters of the vagina in human female fetuses with neural tube defects. METHODS: In our study, 34 female fetuses were analyzed, 22 normal and 12 anencephalic, aged between 12 and 22 weeks post conception (WPC). After dissection of the pelvis and individualization of the genital tract, we evaluated the length and width of the vagina using the Image J software. We compared the means statistically using the Wilcoxon-Mann-Whitney test and performed linear regression. RESULTS: We do not identify statistical significance between the groups for the measurements of vaginal length (Control 3.12-18.33 mm/mean = 9.08 mm/SD +  - 3.77 vs. Anencephalic 2.91-13.10 mm/mean = 7.24 mm/SD +  - 2.28, p = 0.3469) and vaginal width (Control 1.04-4.86 mm/mean = 2.71 mm/SD + - 0.94 vs. Anencephalic 1.35-3.17 mm/mean = 2.13 mm/SD + - 0.65; p = 0.2503). The linear regression analysis indicated that 78.57% significance was found in the correlations in normocephalic fetuses and 57.14% significance in anencephalic fetuses (12.3-18.6 WPC). CONCLUSIONS: We do not find differences in the length and width of the vagina in anencephalic fetuses but the vaginal length and width shows a lesser tendency of growth in the anencephalic fetuses during the second trimester suggesting that anencephaly can impact the development of the vagina.


Subject(s)
Anencephaly , Neural Tube Defects , Vagina , Female , Fetus , Humans , Infant , Neural Tube/embryology , Neural Tube Defects/complications , Pregnancy , Pregnancy Trimester, Second
18.
Dev Biol ; 483: 39-57, 2022 03.
Article in English | MEDLINE | ID: mdl-34990731

ABSTRACT

Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is thought to be a conserved and complex process that is controlled by a tightly-regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this lack in information, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SNAI2, SOX9, and SOX10, from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SNAI2, SOX9, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.


Subject(s)
Avian Proteins/genetics , Avian Proteins/metabolism , Cell Movement/genetics , Chickens/genetics , Coturnix/embryology , Coturnix/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neurulation/genetics , Animals , Chick Embryo , Chickens/metabolism , Coturnix/metabolism , Female , Gene Regulatory Networks , Neural Crest/embryology , Neural Tube/embryology , Neural Tube/metabolism , Oviparity/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
19.
Toxins (Basel) ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34822527

ABSTRACT

Fumonisin B1 (FB1) is among the most common contaminants produced by Fusarium spp. fungus from corns and animal feeds. Although FB1 has been known to cause physical or functional defects of embryos in humans and several animal species such as Syrian hamsters, rabbits, and rodents, little is known about the precise toxicity to the embryos and the underlying mechanisms have not been fully addressed. The present study aimed to investigate its developmental toxicity and potential mechanisms of action on sphingolipid metabolism in Brown Tsaiya Ducks (BTDs) embryos. We examined the effect of various FB1 dosages (0, 10, 20 and 40 µg/embryo) on BTD embryogenesis 72 h post-incubation. The sphingomyelin content of duck embryos decreased (p < 0.05) in the highest FB1-treated group (40 µg). Failure of neural tube closure was observed in treated embryos and the expression levels of a neurulation-related gene, sonic hedgehog (Shh) was abnormally decreased. The sphingolipid metabolism-related genes including N-acylsphingosine amidohydrolase 1 (ASAH1), and ceramide synthase 6 (CERS6) expressions were altered in the treated embryos compared to those in the control embryos. Apparently, FB1 have interfered sphingolipid metabolisms by inhibiting the functions of ceramide synthase and folate transporters. In conclusion, FB1-caused developmental retardation and abnormalities, such as neural tube defects in Brown Tsaiya Duck embryos, as well as are partly mediated by the disruption of sphingolipid metabolisms.


Subject(s)
Ducks/embryology , Fumonisins/adverse effects , Neural Tube/drug effects , Sphingolipids/metabolism , Animals , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryonic Development/drug effects , Neural Tube/embryology
20.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34610637

ABSTRACT

Many developmental disorders are thought to arise from an interaction between genetic and environmental risk factors. The Hedgehog (HH) signaling pathway regulates myriad developmental processes, and pathway inhibition is associated with birth defects, including holoprosencephaly (HPE). Cannabinoids are HH pathway inhibitors, but little is known of their effects on HH-dependent processes in mammalian embryos, and their mechanism of action is unclear. We report that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) induces two hallmark HH loss-of-function phenotypes (HPE and ventral neural tube patterning defects) in Cdon mutant mice, which have a subthreshold deficit in HH signaling. THC therefore acts as a 'conditional teratogen', dependent on a complementary but insufficient genetic insult. In vitro findings indicate that THC is a direct inhibitor of the essential HH signal transducer smoothened. The canonical THC receptor, cannabinoid receptor-type 1, is not required for THC to inhibit HH signaling. Cannabis consumption during pregnancy may contribute to a combination of risk factors underlying specific developmental disorders. These findings therefore have significant public health relevance.


Subject(s)
Body Patterning/drug effects , Cannabinoid Receptor Agonists/toxicity , Dronabinol/toxicity , Holoprosencephaly/chemically induced , Smoothened Receptor/metabolism , Teratogens/toxicity , Animals , Cannabinoid Receptor Agonists/pharmacology , Cell Adhesion Molecules/genetics , Cells, Cultured , Dronabinol/pharmacology , Female , Mice , Mice, Inbred C57BL , Neural Tube/drug effects , Neural Tube/embryology , Neural Tube/metabolism , Signal Transduction/drug effects , Teratogens/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL