Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 815
Filter
1.
Nat Commun ; 15(1): 5997, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39013885

ABSTRACT

Cancer is rarely the straightforward consequence of an abnormality in a single gene, but rather reflects a complex interplay of many genes, represented as gene modules. Here, we leverage the recent advances of model-agnostic interpretation approach and develop CGMega, an explainable and graph attention-based deep learning framework to perform cancer gene module dissection. CGMega outperforms current approaches in cancer gene prediction, and it provides a promising approach to integrate multi-omics information. We apply CGMega to breast cancer cell line and acute myeloid leukemia (AML) patients, and we uncover the high-order gene module formed by ErbB family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate AML genes, and observe the enrichment of either known AML genes or candidate AML genes in a single gene module. We also identify patient-specific AML genes and associated gene modules. Together, these results indicate that CGMega can be used to dissect cancer gene modules, and provide high-order mechanistic insights into cancer development and heterogeneity.


Subject(s)
Breast Neoplasms , Deep Learning , Gene Regulatory Networks , Leukemia, Myeloid, Acute , Neural Networks, Computer , Humans , Leukemia, Myeloid, Acute/genetics , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Neuregulin-1/genetics , Neuregulin-1/metabolism
2.
Gut Microbes ; 16(1): 2363015, 2024.
Article in English | MEDLINE | ID: mdl-38845453

ABSTRACT

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'


Subject(s)
Ganglia, Spinal , Gastrointestinal Microbiome , Neuromuscular Junction , Animals , Neuromuscular Junction/microbiology , Mice , Ganglia, Spinal/metabolism , Ganglia, Spinal/microbiology , Germ-Free Life , Peripheral Nerves/microbiology , Peripheral Nerves/growth & development , Muscle, Skeletal/microbiology , Mice, Inbred C57BL , Neuregulin-1/metabolism , Neuregulin-1/genetics , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Schwann Cells/microbiology , Schwann Cells/metabolism
3.
Zhongguo Fei Ai Za Zhi ; 27(5): 399-404, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38880928

ABSTRACT

Lung cancer is the most common malignant disease and the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung cancers, and the probability of NSCLC gene mutations is high, with a wide variety of types. With the development of next-generation sequencing (NGS) detection technology, more and more patients with rare fusion gene mutations are detected. Neuregulin 1 (NRG1) gene is a rare oncogenic driver that can lead to activation of human epidermal growth factor receptor 3 (Her3/ErbB3) mediated pathway, resulting in tumor formation. In this article, we reported a case of mixed NSCLC with CRISPLD2-NRG1 fusion detected by RNA-based NGS, who responsed to Afatinib well after 1 month of treatment, and magnetic resonance imaging (MRI) showed shrinkage of intracranial lesions. Meanwhile, we also compiled previously reported NSCLC patients with NRG1 rare gene fusion mutation, in order to provide effective references for clinical diagnosis and treatment.
.


Subject(s)
Afatinib , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neuregulin-1 , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Neuregulin-1/genetics , Afatinib/therapeutic use , Oncogene Proteins, Fusion/genetics , Middle Aged , Male , Cell Adhesion Molecules/genetics , Female
4.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38918041

ABSTRACT

Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.


Subject(s)
Axons , Corpus Callosum , Neuregulin-1 , Signal Transduction , Animals , Neuregulin-1/metabolism , Neuregulin-1/genetics , Corpus Callosum/metabolism , Axons/metabolism , Mice , Schizophrenia/metabolism , Schizophrenia/genetics , Schizophrenia/etiology , Schizophrenia/pathology , Mice, Knockout , Neurons/metabolism , GAP-43 Protein/metabolism , GAP-43 Protein/genetics , Mice, Inbred C57BL
5.
J Pharm Biomed Anal ; 245: 116185, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723556

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is a key player in the pathogenesis and progression of breast cancer and is currently a primary target for breast cancer immunotherapy. Bioactivity determination is necessary to guarantee the safety and efficacy of therapeutic antibodies targeting HER2. Nevertheless, currently available bioassays for measuring the bioactivity of anti-HER2 mAbs are either not representative or have high variability. Here, we established a reliable reporter gene assay (RGA) based on T47D-SRE-Luc cell line that expresses endogenous HER2 and luciferase controlled by serum response element (SRE) to measure the bioactivity of anti-HER2 antibodies. Neuregulin-1 (NRG-1) can lead to the heterodimerization of HER2 on the cell membrane and induce the expression of downstream SRE-controlled luciferase, while pertuzumab can dose-dependently reverse the reaction, resulting in a good dose-response curve reflecting the activity of the antibody. After optimizing the relevant assay parameters, the established RGA was fully validated based on ICH-Q2 (R1), which demonstrated that the method had excellent specificity, accuracy, precision, linearity, and stability. In summary, this robust and innovative bioactivity determination assay can be applied in the development and screening, release control, biosimilar assessment and stability studies of anti-HER2 mAbs.


Subject(s)
Antibodies, Monoclonal, Humanized , Biological Assay , Genes, Reporter , Luciferases , Neuregulin-1 , Receptor, ErbB-2 , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Receptor, ErbB-2/antagonists & inhibitors , Humans , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/pharmacology , Biological Assay/methods , Luciferases/genetics , Neuregulin-1/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , Antineoplastic Agents, Immunological/pharmacology , Reproducibility of Results , Response Elements
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674054

ABSTRACT

Neuregulin-1 (Nrg1, gene symbol: Nrg1), a ligand of the ErbB receptor family, promotes intestinal epithelial cell proliferation and repair. However, the dynamics and accurate derivation of Nrg1 expression during colitis remain unclear. By analyzing the public single-cell RNA-sequencing datasets and employing a dextran sulfate sodium (DSS)-induced colitis model, we investigated the cell source of Nrg1 expression and its potential regulator in the process of epithelial healing. Nrg1 was majorly expressed in stem-like fibroblasts arising early in mouse colon after DSS administration, and Nrg1-Erbb3 signaling was identified as a potential mediator of interaction between stem-like fibroblasts and colonic epithelial cells. During the ongoing colitis phase, a significant infiltration of macrophages and neutrophils secreting IL-1ß emerged, accompanied by the rise in stem-like fibroblasts that co-expressed Nrg1 and IL-1 receptor 1. By stimulating intestinal or lung fibroblasts with IL-1ß in the context of inflammation, we observed a downregulation of Nrg1 expression. Patients with inflammatory bowel disease also exhibited an increase in NRG1+IL1R1+ fibroblasts and an interaction of NRG1-ERBB between IL1R1+ fibroblasts and colonic epithelial cells. This study reveals a novel potential mechanism for mucosal healing after inflammation-induced epithelial injury, in which inflammatory myeloid cell-derived IL-1ß suppresses the early regeneration of intestinal tissue by interfering with the secretion of reparative neuregulin-1 by stem-like fibroblasts.


Subject(s)
Colitis , Dextran Sulfate , Fibroblasts , Intestinal Mucosa , Neuregulin-1 , Signal Transduction , Animals , Humans , Male , Mice , Colitis/metabolism , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate/adverse effects , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelial Cells/metabolism , Fibroblasts/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Myeloid Cells/metabolism , Neuregulin-1/metabolism , Neuregulin-1/genetics , Receptor, ErbB-3/metabolism , Receptor, ErbB-3/genetics , Receptors, Interleukin-1 Type I/metabolism , Receptors, Interleukin-1 Type I/genetics
7.
Cell Rep ; 43(5): 114162, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38678558

ABSTRACT

Zebrafish have a lifelong cardiac regenerative ability after damage, whereas mammals lose this capacity during early postnatal development. This study investigated whether the declining expression of growth factors during postnatal mammalian development contributes to the decrease of cardiomyocyte regenerative potential. Besides confirming the proliferative ability of neuregulin 1 (NRG1), interleukin (IL)1b, receptor activator of nuclear factor kappa-Β ligand (RANKL), insulin growth factor (IGF)2, and IL6, we identified other potential pro-regenerative factors, with BMP7 exhibiting the most pronounced efficacy. Bmp7 knockdown in neonatal mouse cardiomyocytes and loss-of-function in adult zebrafish during cardiac regeneration reduced cardiomyocyte proliferation, indicating that Bmp7 is crucial in the regenerative stages of mouse and zebrafish hearts. Conversely, bmp7 overexpression in regenerating zebrafish or administration at post-mitotic juvenile and adult mouse stages, in vitro and in vivo following myocardial infarction, enhanced cardiomyocyte cycling. Mechanistically, BMP7 stimulated proliferation through BMPR1A/ACVR1 and ACVR2A/BMPR2 receptors and downstream SMAD5, ERK, and AKT signaling. Overall, BMP7 administration is a promising strategy for heart regeneration.


Subject(s)
Bone Morphogenetic Protein 7 , Cell Proliferation , Myocytes, Cardiac , Regeneration , Zebrafish , Animals , Female , Male , Mice , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Neuregulin-1/metabolism , Neuregulin-1/genetics , Signal Transduction , Smad5 Protein/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
8.
J Reprod Dev ; 70(3): 202-206, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479855

ABSTRACT

Ovarian fibrosis contributes to age-related ovarian dysfunction. In our previous study, we observed ovarian fibrosis in both obese and aging mice with intracellular lipid droplets in the fibrotic ovaries. Although the importance of mitochondria in ovarian fibrosis has been recognized in pharmacological studies, their role in lipid metabolism remains unclear. Globin peptide (GP), derived from hemoglobin, enhances lipid metabolism in obese mice. This study aimed to elucidate the importance of lipid metabolism in ovarian fibrosis by using GP. Treatment of ovarian stromal cells with GP increased mitochondrial oxygen consumption during ß-oxidation. Lipid accumulation was also observed in the ovaries of granulosa cell-specific Nrg1 knockout mice (gcNrg1KO), and the administration of GP to gcNrg1KO mice for two months reduced ovarian lipid accumulation and fibrosis in addition to restoring the estrous cycle. GP holds promise for mitigating lipid-related ovarian issues and provides a novel approach to safeguarding ovarian health by regulating fibrosis via lipid pathways.


Subject(s)
Aging , Fertility , Fibrosis , Globins , Granulosa Cells , Lipid Metabolism , Mice, Knockout , Neuregulin-1 , Animals , Female , Mice , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Fertility/drug effects , Lipid Metabolism/drug effects , Globins/metabolism , Globins/genetics , Neuregulin-1/metabolism , Neuregulin-1/genetics , Ovary/drug effects , Ovary/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Estrous Cycle/drug effects , Peptides/pharmacology
10.
Future Oncol ; 20(16): 1057-1067, 2024.
Article in English | MEDLINE | ID: mdl-38348690

ABSTRACT

Neuregulin 1 (NRG1) fusions are oncogenic drivers that have been detected in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC) and other solid tumors. NRG1 fusions are rare, occurring in less than 1% of solid tumors. Patients with NRG1 fusion positive (NRG1+) cancer have limited therapeutic options. Zenocutuzumab is a novel, bispecific IgG1 antibody that targets both HER2 and HER3 proteins and inhibits NRG1 binding through a 'Dock & Block®' mechanism of action. Here, we describe the rationale and design of the phase II component of the eNRGy trial, part of the overall, open-label phase I/II, multicenter trial exploring the safety, tolerability, pharmacokinetics, pharmacodynamics, immunogenicity and antitumor activity of zenocutuzumab in patients with NRG1+ NSCLC, PDAC or other solid tumors.


eNRGy: a clinical trial of zenocutuzumab for cancer caused by NRG1 gene fusionsNRG1 gene fusions are rare mutations that cause cancer cells to grow. These fusions are found in many different types of cancer. Tumors with NRG1 gene fusions do not respond well to standard treatment options. Zenocutuzumab, or Zeno, is a treatment that is being tested to see if it can stop cancer that is growing because of NRG1 gene fusions. Here, we describe the reasoning for and design of an ongoing clinical trial (eNRGy) designed to study the efficacy (how well it works) and safety of Zeno in patients with cancer that has NRG1 gene fusions. The eNRGy trial is recruiting patients with cancer that has NRG1 gene fusions, including non-small-cell lung cancer, pancreatic cancer and others. Patients who join this trial will receive Zeno once every 2 weeks until their cancer grows. The main goal (primary end point) of this trial is to determine the percentage of patients whose tumors decrease in size by 30% or more. The eNRGy trial is currently enrolling patients. For more information, refer to ClinicalTrials.gov (Identifier: NCT02912949), visit https://nrg1.com/, or call 1-833-NRG-1234.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Neuregulin-1 , Humans , Neuregulin-1/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Female , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/genetics , Male , Receptor, ErbB-3/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Oncogene Proteins, Fusion/genetics , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/adverse effects , Adult , Middle Aged
11.
Trends Cancer ; 10(5): 430-443, 2024 May.
Article in English | MEDLINE | ID: mdl-38378317

ABSTRACT

Gene fusions and rearrangements play a crucial role in tumor biology. They are rare events typically detected in KRAS wild-type (WT) pancreatic tumors. Their identification can inform clinical management by enabling precision oncology, as fusions involving BRAF, FGFR2, RET, NTRK, NRG1, and ALK represent actionable targets in KRAS-WT cancers, and serve diagnostic purposes since fusions involving PRKACA/B represent the diagnostic hallmark of intraductal oncocytic papillary neoplasms (IOPNs). Although they are rare, the therapeutic and diagnostic importance of these genomic events should not be underestimated, highlighting the need for quality-ensured molecular diagnostics in the management of cancer. Herein we review the existing literature on the role of fusion genes in pancreatic tumors and their clinical potential as effective biomarkers and therapeutic targets.


Subject(s)
Oncogene Proteins, Fusion , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Receptor, trkA/genetics , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins B-raf/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Neuregulin-1/genetics , Neuregulin-1/metabolism , Anaplastic Lymphoma Kinase/genetics , Gene Fusion
12.
BMC Med ; 22(1): 74, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369520

ABSTRACT

BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neoplasms , Neuregulin-1 , Receptor, ErbB-4 , Humans , Amyotrophic Lateral Sclerosis/genetics , Neoplasms/genetics , Neuregulin-1/genetics , Neuregulin-1/metabolism , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Signal Transduction
13.
mSphere ; 9(3): e0078523, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38376205

ABSTRACT

Candida albicans is one of the most common causes of superficial and invasive fungal diseases in humans. Its ability to cause disease is closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The extent to which C. albicans strains isolated from patients undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles for four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation but are predominately yeast phase under in vitro hypha induction; the two low-virulence strains (94015 and 78042) do not undergo filamentation well under either condition. In vitro, deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250, but only pseudohyphae are formed in the clinical isolates. Deletion of NRG1 modestly increased the virulence of 78042, which was accompanied by increased expression of hypha-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation in vivo, expression of candidalysin (ECE1), and virulence without dramatically altering establishment of infection. Thus, the function of the conserved repressor NRG1 in C. albicans shows strain-based heterogeneity during infection.IMPORTANCEClinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation and in the function of well-characterized transcriptional regulators of filamentation. Here, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard reference strains, has strain-dependent functions, particularly during infection. Most strikingly, loss of NRG1 function can reduce filamentation, hypha-specific gene expression such as the toxin candidalysin, and virulence in some strains. Our data emphasize that the functions of seemingly fundamental and well-conserved transcriptional regulators such as Nrg1 are contextual with respect to both environment and genetic backgrounds.


Subject(s)
Candida albicans , Candidiasis , Humans , Candidiasis/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence , Neuregulin-1/genetics , Neuregulin-1/metabolism
14.
Cell Death Dis ; 15(2): 167, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396027

ABSTRACT

Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.


Subject(s)
ErbB Receptors , Phosphatidylinositol 3-Kinases , Animals , Humans , Mice , ErbB Receptors/metabolism , gamma-Aminobutyric Acid , Hippocampus/metabolism , Neuregulin-1/genetics , Neurons/metabolism , Nitric Oxide Synthase Type I/genetics , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism
15.
Diagn Pathol ; 19(1): 28, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331905

ABSTRACT

OBJECTIVE: Benign nerve sheath tumors (BNSTs) present diagnostic challenges due to their heterogeneous nature. This study aimed to determine the significance of NRG1 as a novel diagnostic biomarker in BNST, emphasizing its involvement in the PI3K-Akt pathway and tumor immune regulation. METHODS: Differential genes related to BNST were identified from the GEO database. Gene co-expression networks, protein-protein interaction networks, and LASSO regression were utilized to pinpoint key genes. The CIBERSORT algorithm assessed immune cell infiltration differences, and functional enrichment analyses explored BNST signaling pathways. Clinical samples helped establish PDX models, and in vitro cell lines to validate NRG1's role via the PI3K-Akt pathway. RESULTS: Nine hundred eighty-two genes were upregulated, and 375 downregulated in BNST samples. WGCNA revealed the brown module with the most significant difference. Top hub genes included NRG1, which was also determined as a pivotal gene in disease characterization. Immune infiltration showed significant variances in neutrophils and M2 macrophages, with NRG1 playing a central role. Functional analyses confirmed NRG1's involvement in key pathways. Validation experiments using PDX models and cell lines further solidified NRG1's role in BNST. CONCLUSION: NRG1 emerges as a potential diagnostic biomarker for BNST, influencing the PI3K-Akt pathway, and shaping the tumor immune microenvironment.


Subject(s)
Nerve Sheath Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Proto-Oncogene Proteins c-akt , Algorithms , Biomarkers , Tumor Microenvironment , Neuregulin-1/genetics
16.
J Stroke Cerebrovasc Dis ; 33(3): 107581, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224792

ABSTRACT

OBJECTIVE: Moyamoya disease (MMD) is a rare and progressive stenosis of cerebral arteries characterized by abnormally proliferative vasculopathy. Current studies have demonstrated that Neuregulin 1 (NRG1) plays a key role in angiogenesis-related disorders. Thus, the aim of our study is to investigate the serum NRG1 levels and their clinical correlations in MMD patients. METHODS: In this study, thirty adult patients with MMD and age-gender matched healthy controls were enrolled from our hospital between July 2020 and April 2022. Peripheral blood samples were collected at baseline, and clinical data were obtained from the electronic medical record system. Serum NRG1 concentrations were measured by enzyme-linked immunosorbent assay. Sanger sequencing was applied to detect the RNF213 p.R4810K mutation. RESULTS: The serum NRG1 levels were significantly higher in MMD patients compared to controls (14.48 ± 10.81 vs.7.54 ± 6.35mmol/L, p < 0.001). No statistical difference in baseline clinical characteristics was found between both groups. Correlation analyses showed that NRG1 levels were positively associated with Suzuki staging (r = 0.4137, p = 0.023) while not related to other clinical features (reduced cerebral blood flow, posterior cerebral artery involvement, bilateral or unilateral steno-occlusive changes). Furthermore, subgroup analysis revealed that MMD patients with the RNF213 p.R4810K mutation presented with significantly higher NRG1 levels than those without the mutation (9.60 ± 0.929 vs. 25.89 ± 4.338 mmol/L, p = 0.001). CONCLUSIONS: Our study suggests that increased serum NRG1 levels may constitute a characteristic feature of MMD, indicating a potential positive correlation with disease progression and the presence of the RNF213 mutation. This positions NRG1 as a potentially crucial target for further studies aimed at comprehending the pathogenesis of MMD.


Subject(s)
Moyamoya Disease , Adult , Humans , Adenosine Triphosphatases/genetics , Biomarkers , Case-Control Studies , China , Disease Progression , Genetic Predisposition to Disease , Moyamoya Disease/diagnosis , Moyamoya Disease/genetics , Neuregulin-1/genetics , Ubiquitin-Protein Ligases/genetics
17.
Lung Cancer ; 188: 107469, 2024 02.
Article in English | MEDLINE | ID: mdl-38219288

ABSTRACT

OBJECTIVES: Neuregulin-1 (NRG1) fusions may drive oncogenesis via constitutive activation of ErbB signaling. Hence, NRG1 fusion-driven tumors may be susceptible to ErbB-targeted therapy. Afatinib (irreversible pan-ErbB inhibitor) has demonstrated activity in individual patients with NRG1 fusion-positive solid tumors. This study collected real-world data on demographics, clinical characteristics, and clinical outcomes in this patient population. MATERIALS AND METHODS: In this retrospective, multicenter, non-comparative cohort study, physicians in the US-based Cardinal Health Oncology Provider Extended Network collected data from medical records of patients with NRG1 fusion-positive solid tumors who received afatinib (afatinib cohort) or other systemic therapies (non-afatinib cohort) in any therapy line. Objectives included demographics, clinical characteristics, and outcomes (overall response rate [ORR], progression-free survival [PFS], and overall survival [OS]). RESULTS: Patients (N = 110) with a variety of solid tumor types were included; 72 received afatinib, 38 other therapies. In the afatinib cohort, 70.8 % of patients received afatinib as second-line treatment and Eastern Cooperative Oncology Group performance status (ECOG PS) was 2-4 in 69.4 % at baseline. In the non-afatinib cohort, 94.7 % of patients received systemic therapy as first-line treatment and ECOG PS was 2-4 in 31.6 % at baseline. In the afatinib cohort, ORR was 37.5 % overall (43.8 % when received as first-line therapy); median PFS and OS were 5.5 and 7.2 months, respectively. In the non-afatinib cohort, ORR was 76.3 %; median PFS and OS were 12.9 and 22.6 months, respectively. CONCLUSION: This study provides real-world data on the characteristics of patients with NRG1 fusion-positive solid tumors treated with afatinib or other therapies; durable responses were observed in both groups. However, there were imbalances between the cohorts, and the study was not designed to compare outcomes. Further prospective/retrospective trials are required.


Subject(s)
Lung Neoplasms , Humans , Afatinib/therapeutic use , Afatinib/pharmacology , Lung Neoplasms/drug therapy , Retrospective Studies , Cohort Studies , Gene Fusion , Mutation , Protein Kinase Inhibitors/therapeutic use , Neuregulin-1/genetics
18.
Diagn Pathol ; 19(1): 1, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173003

ABSTRACT

BACKGROUND: NRG1 fusion is a promising therapeutic target for various tumors but its prevalence is extremely low, and there are no standardized testing algorithms for genetic assessment. MOTHODS: In this study, we analyzed 3008 tumors using Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to screen for NRG1 translocation and p-HER3 expression. RESULTS: Our results demonstrated no cases with p-HER3 positivity through IHC. Nonetheless, 29 cases (0.96%) were identified positive for NRG1 translocation through FISH, with three different signal types. FISH-positive cases were subsequently subjected to next-generation sequencing (NGS) testing. However, only eight of these cases were confirmed with NRG1 fusion through NGS. Notably, we divided FISH into three types and FISH type C group was consistent with NGS results. All NGS NRG1 fusion tumors were adenocarcinomas, with a higher prevalence in females. Our findings indicate that although FISH has limitations in screening NRG1 gene rearrangements, NRG1 fusions can be reliably detected with signals exhibiting low copy numbers of the 5'-end of the gene and no fusion signals. CONCLUSION: Considering the high cost of NGS, FISH remains a useful method for screening NRG1 fusions in various types of tumors. This study provides valuable insights into the molecular mechanisms of NRG1 fusion and identifies potential treatment targets for patients suffering from this disease.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Female , Humans , Lung Neoplasms/pathology , In Situ Hybridization, Fluorescence/methods , Adenocarcinoma/pathology , Translocation, Genetic , Gene Rearrangement , Oncogene Proteins, Fusion/genetics , Neuregulin-1/genetics , Neuregulin-1/therapeutic use
19.
J Thorac Oncol ; 19(1): 106-118, 2024 01.
Article in English | MEDLINE | ID: mdl-37678511

ABSTRACT

INTRODUCTION: NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS: We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS: We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS: Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neuregulin-1/genetics , Neuregulin-1/metabolism , Receptor, ErbB-2 , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction
20.
Aging (Albany NY) ; 15(24): 15324-15339, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38157256

ABSTRACT

OBJECTIVE: To investigate the alteration of PV interneurons in ALS mainly focusing its dynamic changes and its relationship with motor neurons and ErbB4 signaling. METHODS: SOD1G93A mice were used as ALS model. ALS animals were divided into different groups according to birth age: symptomatic prophase (50~60 days), symptomatic phase (90~100 days), and symptomatic progression (130~140 days). Immunofluorescence was performed for measurement of PV-positive interneurons, MMP-9, ChAT, NeuN and ErbB4. RT-qPCR and western blot were used to determine the expression of PV and MMP-9. RESULTS: PV expression was remarkably higher in the anterior horn of gray matter compared with posterior horn and area in the middle of gray matter in control mice. In ALS mice, PV, MMP-9 and ErbB4 levels were gradually decreased along with onset. PV, MMP-9 and ErbB4 levels in ALS mice were significantly down-regulated than control mice after onset, indicating the alteration of PV interneurons, FαMNs and ErbB4. SαMNs levels only decreased remarkably at symptomatic progression in ALS mice compared with control mice, while γMNs levels showed no significant change during whole period in all mice. MMP-9 and ErbB4 were positively correlated with PV. NRG1 treatment significantly enhanced the expression of ErBb4, PV and MMP-9 in ALS mice. CONCLUSION: PV interneurons decrease is along with FαMNs and ErbB4 decrease in ALS mice.


Subject(s)
Amyotrophic Lateral Sclerosis , Interneurons , Animals , Mice , Amyotrophic Lateral Sclerosis/metabolism , Interneurons/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Transgenic , Parvalbumins/metabolism , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Neuregulin-1/genetics , Neuregulin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...