Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.227
Filter
1.
Theranostics ; 14(9): 3439-3469, 2024.
Article in English | MEDLINE | ID: mdl-38948053

ABSTRACT

Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.


Subject(s)
Disease Progression , Etoposide , Neuroblastoma , Tumor Microenvironment , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Microenvironment/drug effects , Humans , Animals , Mice , Cell Line, Tumor , Etoposide/pharmacology , Etoposide/therapeutic use , Prognosis , Cellular Reprogramming/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Molecular Targeted Therapy/methods , Machine Learning , Apoptosis/drug effects , Metabolic Reprogramming
2.
Med Oncol ; 41(8): 194, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958814

ABSTRACT

Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.


Subject(s)
Antineoplastic Agents , HSP90 Heat-Shock Proteins , Neuroblastoma , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects
3.
Lancet Oncol ; 25(7): 922-932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936379

ABSTRACT

BACKGROUND: Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan-temozolomide and dasatinib-rapamycin (RIST) in patients with relapsed or refractory neuroblastoma. METHODS: The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1-25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan-temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2-4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin-dasatinib and irinotecan-temozolomide for four cycles over 8 weeks, then two courses of rapamycin-dasatinib followed by one course of irinotecan-temozolomide for 12 weeks) with irinotecan-temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual. FINDINGS: Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7-8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31-88), the median progression-free survival was 11 months (95% CI 7-17) in the RIST group and 5 months (2-8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4-24) in the RIST group versus 2 months (2-5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9-7) in the RIST group versus 8 months (4-15) in the control group (HR 0·84 [95% CI 0·51-1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure). INTERPRETATION: RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting. FUNDING: Deutsche Krebshilfe.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Dasatinib , Irinotecan , Neoplasm Recurrence, Local , Neuroblastoma , Sirolimus , Temozolomide , Humans , Temozolomide/administration & dosage , Temozolomide/therapeutic use , Irinotecan/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Male , Female , Neuroblastoma/drug therapy , Neuroblastoma/mortality , Neuroblastoma/pathology , Neuroblastoma/genetics , Child, Preschool , Child , Dasatinib/administration & dosage , Dasatinib/therapeutic use , Dasatinib/adverse effects , Adolescent , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Infant , Adult , Sirolimus/administration & dosage , Sirolimus/therapeutic use , Young Adult , Germany , Drug Resistance, Neoplasm , Progression-Free Survival
5.
Nutrients ; 16(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892725

ABSTRACT

Xanthohumol (Xn) is an antioxidant flavonoid mainly extracted from hops (Humulus lupulus), one of the main ingredients of beer. As with other bioactive compounds, their therapeutic potential against different diseases has been tested, one of which is Alzheimer's disease (AD). Adenosine is a neuromodulatory nucleoside that acts through four different G protein-coupled receptors: A1 and A3, which inhibit the adenylyl cyclases (AC) pathway, and A2A and A2B, which stimulate this activity, causing either a decrease or an increase, respectively, in the release of excitatory neurotransmitters such as glutamate. This adenosinergic pathway, which is altered in AD, could be involved in the excitotoxicity process. Therefore, the aim of this work is to describe the effect of Xn on the adenosinergic pathway using cell lines. For this purpose, two different cellular models, rat glioma C6 and human neuroblastoma SH-SY5Y, were exposed to a non-cytotoxic 10 µM Xn concentration. Adenosine A1 and A2A, receptor levels, and activities related to the adenosine pathway, such as adenylate cyclase, protein kinase A, and 5'-nucleotidase, were analyzed. The adenosine A1 receptor was significantly increased after Xn exposure, while no changes in A2A receptor membrane levels or AC activity were reported. Regarding 5'-nucleotidases, modulation of their activity by Xn was noted since CD73, the extracellular membrane attached to 5'-nucleotidase, was significantly decreased in the C6 cell line. In conclusion, here we describe a novel pathway in which the bioactive flavonoid Xn could have potentially beneficial effects on AD as it increases membrane A1 receptors while modulating enzymes related to the adenosine pathway in cell cultures.


Subject(s)
Adenosine , Flavonoids , Glioma , Humulus , Neuroblastoma , Propiophenones , Receptor, Adenosine A1 , Humans , Flavonoids/pharmacology , Rats , Propiophenones/pharmacology , Animals , Adenosine/metabolism , Adenosine/pharmacology , Cell Line, Tumor , Humulus/chemistry , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Glioma/metabolism , Glioma/drug therapy , Receptor, Adenosine A1/metabolism , Signal Transduction/drug effects , Adenylyl Cyclases/metabolism , Receptor, Adenosine A2A/metabolism
6.
J Physiol Investig ; 67(3): 103-106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38857206

ABSTRACT

A recent study investigated the correlation between telmisartan (TEL) exposure and Alzheimer's disease (AD) risk among African Americans (AAs) and European Americans. Their findings indicated that moderate-to-high TEL exposure was linked to a decreased incidence of AD among AAs. These results suggest a potential association between TEL and a reduced risk of AD specifically within the AA population. Here, we investigated the effects of TEL, either alone or in combination with ranolazine (Ran) or dapagliflozin (Dapa), on voltage-gated Na + currents ( INa ) in Neuro-2a cells. TEL, primarily used for treating hypertension and cardiovascular disorders, showed a stimulatory effect on INa , while Ran and Dapa reversed this stimulation. In Neuro-2a cells, we demonstrated that with exposure to TEL, the transient ( INa(T) ) and late ( INa(L) ) components of INa were differentially stimulated with effective EC 50 's of 16.9 and 3.1 µM, respectively. The research implies that TEL's impact on INa might be associated with enhanced neuronal excitability. This study highlights the complex interplay between TEL, Ran, and Dapa on INa and their potential implications for AD, emphasizing the need for further investigation to understand the mechanisms involved.


Subject(s)
Acetanilides , Benzhydryl Compounds , Benzimidazoles , Benzoates , Glucosides , Neuroblastoma , Piperazines , Ranolazine , Telmisartan , Telmisartan/pharmacology , Telmisartan/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Ranolazine/pharmacology , Ranolazine/therapeutic use , Benzoates/pharmacology , Benzoates/therapeutic use , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Cell Line, Tumor , Animals , Acetanilides/pharmacology , Piperazines/pharmacology , Piperazines/therapeutic use , Mice , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Neurons/drug effects , Neurons/metabolism , Ion Channel Gating/drug effects
7.
Cell Rep ; 43(5): 114165, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691450

ABSTRACT

The N6-methyladenosine (m6A) RNA modification is an important regulator of gene expression. m6A is deposited by a methyltransferase complex that includes methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). High levels of METTL3/METTL14 drive the growth of many types of adult cancer, and METTL3/METTL14 inhibitors are emerging as new anticancer agents. However, little is known about the m6A epitranscriptome or the role of the METTL3/METTL14 complex in neuroblastoma, a common pediatric cancer. Here, we show that METTL3 knockdown or pharmacologic inhibition with the small molecule STM2457 leads to reduced neuroblastoma cell proliferation and increased differentiation. These changes in neuroblastoma phenotype are associated with decreased m6A deposition on transcripts involved in nervous system development and neuronal differentiation, with increased stability of target mRNAs. In preclinical studies, STM2457 treatment suppresses the growth of neuroblastoma tumors in vivo. Together, these results support the potential of METTL3/METTL14 complex inhibition as a therapeutic strategy against neuroblastoma.


Subject(s)
Cell Differentiation , Cell Proliferation , Methyltransferases , Neuroblastoma , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Humans , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Animals , Mice , Gene Expression Regulation, Neoplastic/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology
8.
J Cell Mol Med ; 28(10): e18360, 2024 May.
Article in English | MEDLINE | ID: mdl-38785199

ABSTRACT

Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.


Subject(s)
B7 Antigens , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neuroblastoma , RNA, Long Noncoding , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Drug Resistance, Neoplasm/genetics , B7 Antigens/metabolism , B7 Antigens/genetics , RNA, Long Noncoding/genetics , Cisplatin/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Immune Evasion , Animals , Proteolysis/drug effects , Mice
10.
J Immunother Cancer ; 12(5)2024 May 23.
Article in English | MEDLINE | ID: mdl-38782540

ABSTRACT

BACKGROUND: Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS: To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS: In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION: These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.


Subject(s)
CD47 Antigen , Immunoglobulin A , Neuroblastoma , Neutrophils , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , CD47 Antigen/immunology , Humans , Neuroblastoma/immunology , Neuroblastoma/drug therapy , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Immunoglobulin A/immunology , Immunoglobulin A/pharmacology , Immunoglobulin A/metabolism , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Xenograft Model Antitumor Assays , Immunotherapy/methods , Female , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
11.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732012

ABSTRACT

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Subject(s)
Catechin , MicroRNAs , Neuroblastoma , RNA-Binding Proteins , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
13.
FASEB J ; 38(10): e23689, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38785406

ABSTRACT

Neuroblastoma, a prevalent extracranial solid tumor in children, arises from undifferentiated nerve cells. While tumor vasculature, often characterized by increased permeability, influences metastasis and recurrence, the direct impact of blood-borne molecules on tumor progression remains unclear. In the present study, we focused on the effect of exposure to albumin, one of the most abundant proteins in the serum, on human neuroblastoma cells. Albumin exposure elevated oxidative stress and led to mitochondria dysfunction via the activation of TGFß and PI3K pathways, accompanied by an increase in the metastatic and invasive properties of neuroblastoma cells. Proteins relevant to the induction of autophagy were upregulated in response to prolonged albumin exposure. Additionally, pre-exposure to albumin before treatment resulted in increased resistance to paclitaxel. Two valeriana-type iridoid glycosides, patrisophoroside and patrinalloside, recently isolated from Nardostachys jatamansi significantly mitigated the effect of albumin on oxidative stress, cell invasiveness, and chemoresistance. These findings illuminate the potential role of blood-borne molecules, such as albumin, in the progression and metastasis of neuroblastoma, as well as the possible therapeutic implications of valeriana-type iridoid glycosides in anti-cancer treatment.


Subject(s)
Drug Resistance, Neoplasm , Iridoid Glycosides , Neuroblastoma , Paclitaxel , Humans , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Drug Resistance, Neoplasm/drug effects , Paclitaxel/pharmacology , Iridoid Glycosides/pharmacology , Cell Line, Tumor , Neoplasm Invasiveness , Oxidative Stress/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Valerian/chemistry , Serum Albumin/metabolism
14.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792167

ABSTRACT

Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3ß, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aß) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.


Subject(s)
Apoptosis , Drug Synergism , Flavonoids , Metformin , Pyruvaldehyde , Reactive Oxygen Species , Metformin/pharmacology , Metformin/chemistry , Rats , Flavonoids/pharmacology , Flavonoids/chemistry , PC12 Cells , Animals , Structure-Activity Relationship , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Signal Transduction/drug effects
15.
JCO Clin Cancer Inform ; 8: e2400009, 2024 May.
Article in English | MEDLINE | ID: mdl-38815188

ABSTRACT

PURPOSE: Although the International Neuroblastoma Risk Group Data Commons (INRGdc) has enabled seminal large cohort studies, the research is limited by the lack of real-world, electronic health record (EHR) treatment data. To address this limitation, we evaluated the feasibility of extracting treatment data directly from EHRs using the REDCap Clinical Data Interoperability Services (CDIS) module for future submission to the INRGdc. METHODS: Patients enrolled on the Children's Oncology Group neuroblastoma biology study ANBL00B1 (ClinicalTrials.gov identifier: NCT00904241) who received care at the University of Chicago (UChicago) or the Vanderbilt University Medical Center (VUMC) after the go-live dates for the Fast Healthcare Interoperability Resources (FHIR)-compliant EHRs were identified. Antineoplastic drug orders were extracted using the CDIS module. To validate the CDIS output, antineoplastic agents extracted through FHIR were compared with those queried through EHR relational databases (UChicago's Clinical Research Data Warehouse and VUMC's Epic Clarity database) and manual chart review. RESULTS: The analytic cohort consisted of 41 patients at UChicago and 32 VUMC patients. Antineoplastic drug orders were identified in the extracted EHR records of 39 (95.1%) UChicago patients and 26 (81.3%) VUMC patients. Manual chart review confirmed that patients with missing (n = 8) or discontinued (n = 1) orders in the CDIS output did not receive antineoplastic agents during the timeframe of the study. More than 99% of the antineoplastic drug orders in the EHR relational databases were identified in the corresponding CDIS output. CONCLUSION: Our results demonstrate the feasibility of extracting EHR treatment data with high fidelity using HL7-FHIR via REDCap CDIS for future submission to the INRGdc.


Subject(s)
Electronic Health Records , Neuroblastoma , Humans , Neuroblastoma/drug therapy , Neuroblastoma/therapy , Female , Male , Child , Child, Preschool , Health Information Interoperability , Infant , Antineoplastic Agents/therapeutic use , Databases, Factual
16.
Biol Res ; 57(1): 33, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802872

ABSTRACT

BACKGROUND: There is a need for novel treatments for neuroblastoma, despite the emergence of new biological and immune treatments, since refractory pediatric neuroblastoma is still a medical challenge. Phyto cannabinoids and their hemisynthetic derivatives have shown evidence supporting their anticancer potential. The aim of this research was to examine Phytocannabinoids or hemisynthetic cannabinoids, which reduce the SHSY-5Y, neuroblastoma cell line's viability. METHODS: Hexane and acetyl acetate extracts were produced starting with Cannabis sativa L. as raw material, then, 9-tetrahidrocannabinol, its acid counterpart and CBN were isolated. In addition, acetylated derivatives of THC and CBN were synthesized. The identification and purity of the chemicals was determined by High Performance Liquid Chromatography and 1H y 13C Magnetic Nuclear Resonance. Then, the capacity to affect the viability of SHSY-5Y, a neuroblastoma cell line, was examined using the resazurin method. Finally, to gain insight into the mechanism of action of the extracts, phytocannabinoids and acetylated derivatives on the examined cells, a caspase 3/7 determination was performed on cells exposed to these compounds. RESULTS: The structure and purity of the isolated compounds was demonstrated. The extracts, the phytocannabinoids and their acetylated counterparts inhibited the viability of the SHSY 5Y cells, being CBN the most potent of all the tested molecules with an inhibitory concentration of 50 percent of 9.5 µM. CONCLUSION: Each of the evaluated molecules exhibited the capacity to activate caspases 3/7, indicating that at least in part, the cytotoxicity of the tested phytocannabinoids and their hemi-synthetic derivatives is mediated by apoptosis.


Subject(s)
Cannabinoids , Cannabis , Caspase 3 , Cell Survival , Neuroblastoma , Plant Extracts , Humans , Cannabis/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Neuroblastoma/drug therapy , Cell Survival/drug effects , Caspase 3/metabolism , Caspase 3/drug effects , Cannabinoids/pharmacology , Cannabinoids/chemistry , Caspase 7/metabolism , Apoptosis/drug effects , Acetylation/drug effects , Chromatography, High Pressure Liquid
17.
PLoS One ; 19(5): e0303643, 2024.
Article in English | MEDLINE | ID: mdl-38809883

ABSTRACT

Neuroblastoma is the most common solid extracranial tumour in children. Despite major advances in available therapies, children with drug-resistant and/or recurrent neuroblastoma have a dismal outlook with 5-year survival rates of less than 20%. Therefore, tackling relapsed tumour biology by developing and characterising clinically relevant models is a priority in finding targetable vulnerability in neuroblastoma. Using matched cisplatin-sensitive KellyLuc and resistant KellyCis83Luc cell lines, we developed a cisplatin-resistant metastatic MYCN-amplified neuroblastoma model. The average number of metastases per mouse was significantly higher in the KellyCis83Luc group than in the KellyLuc group. The vast majority of sites were confirmed as having lymph node metastasis. Their stiffness characteristics of lymph node metastasis values were within the range reported for the patient samples. Targeted transcriptomic profiling of immuno-oncology genes identified tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as a significantly dysregulated MYCN-independent gene. Importantly, differential TNFRSF4 expression was identified in tumour cells rather than lymphocytes. Low TNFRSF4 expression correlated with poor prognostic indicators in neuroblastoma, such as age at diagnosis, stage, and risk stratification and significantly associated with reduced probability of both event-free and overall survival in neuroblastoma. Therefore, TNFRSF4 Low expression is an independent prognostic factor of survival in neuroblastoma.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Neuroblastoma , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroblastoma/mortality , Neuroblastoma/metabolism , Humans , Drug Resistance, Neoplasm/genetics , Animals , Cisplatin/therapeutic use , Cisplatin/pharmacology , Mice , Cell Line, Tumor , Prognosis , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Gene Expression Regulation, Neoplastic , Female , Lymphatic Metastasis
18.
JCO Precis Oncol ; 8: e2300713, 2024 May.
Article in English | MEDLINE | ID: mdl-38810175

ABSTRACT

PURPOSE: Our study aimed to explore real-world treatment scenarios for children and adolescents with neurotrophic tropomyosin receptor kinase (NTRK)-fused tumors, emphasizing access, responses, side effects, and outcomes. PATIENTS AND METHODS: Pooled clinical data from 17 pediatric cases (11 soft-tissue sarcomas, five brain tumors, and one neuroblastoma) treated with larotrectinib and radiologic images for 14 patients were centrally reviewed. Testing for gene fusions was prompted by poor response to treatment, tumor progression, or aggressiveness. RESULTS: Six different NTRK fusion subtypes were detected, and various payment sources for testing and medication were reported. Radiologic review revealed objective tumor responses (OR) in 11 of 14 patients: Complete responses: two; partial responses: nine; and stable disease: three cases. Grades 1 or 2 Common Terminology Criteria for Adverse Events adverse effects were reported in five patients. Regarding the entire cohort's clinical information, 15 of 17 patients remain alive (median observation time: 25 months): four with no evidence of disease and 11 alive with disease (10 without progression). One patient developed resistance to the NTRK inhibitor and died from disease progression while another patient died due to an unrelated cause. CONCLUSION: This real-world study confirms favorable agnostic tumor OR rates to larotrectinib in children with NTRK-fused tumors. Better coordination to facilitate access to medication remains a challenge, particularly in middle-income countries like Brazil.


Subject(s)
Protein Kinase Inhibitors , Pyrazoles , Humans , Child , Male , Female , Adolescent , Pyrazoles/therapeutic use , Child, Preschool , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Infant , Receptor, trkB/genetics , Receptor, trkC/genetics , Clinical Trials as Topic
19.
Int Immunopharmacol ; 133: 112145, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38691920

ABSTRACT

Treatment strategies for paediatric neuroblastoma as well as many other cancers are limited by the unfavourable tumour microenvironment (TME). In this study, the TMEs of neuroblastoma were grouped by their genetic signatures into four distinct subtypes: immune enriched, immune desert, non-proliferative and fibrotic. An Immune Score and a Proliferation Score were constructed based on the molecular features of the subtypes to quantify the immune microenvironment or malignancy degree of cancer cells in neuroblastoma, respectively. The Immune Score correlated with a patient's response to immunotherapy; the Proliferation Score was an independent prognostic biomarker for neuroblastoma and proved to be more accurate than the existing clinical predictors. This double scoring system was further validated and the conserved molecular pattern associated with immune landscape and malignancy degree was confirmed. Axitinib and BI-2536 were confirmed as candidate drugs for neuroblastoma by the double scoring system. Both in vivo and in vitro experiments demonstrated that axitinib-induced pyroptosis of neuroblastoma cells activated anti-tumour immunity and inhibited tumour growth; BI-2536 induced cell cycle arrest at the S phase in neuroblastoma cells. The comprehensive double scoring system of neuroblastoma may predict prognosis and screen for therapeutic strategies which could provide personalized treatments.


Subject(s)
Axitinib , Immunotherapy , Neuroblastoma , Tumor Microenvironment , Neuroblastoma/immunology , Neuroblastoma/therapy , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Humans , Tumor Microenvironment/immunology , Prognosis , Animals , Immunotherapy/methods , Cell Line, Tumor , Axitinib/therapeutic use , Child , Male , Female , Child, Preschool , Mice , Infant , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...