Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.564
1.
Neurosurg Focus ; 56(6): E10, 2024 Jun.
Article En | MEDLINE | ID: mdl-38823056

OBJECTIVE: Hoffmann's sign testing is a commonly used physical examination in clinical practice for patients with cervical spondylotic myelopathy (CSM). However, the pathophysiological mechanisms underlying its occurrence and development have not been thoroughly investigated. Therefore, the present study aimed to explore whether a positive Hoffmann's sign (PHS) in CSM patients is associated with spinal cord and brain remodeling and to identify potential neuroimaging biomarkers with diagnostic value. METHODS: Seventy-six patients with CSM and 40 sex- and age-matched healthy controls (HCs) underwent multimodal MRI. Based on the results of the Hoffmann's sign examination, patients were divided into two groups: those with a PHS (n = 38) and those with a negative Hoffmann's sign (NHS; n = 38). Quantification of spinal cord and brain structural and functional parameters of the participants was performed using various methods, including functional connectivity analysis, voxel-based morphometry, and atlas-based analysis based on functional MRI and structural MRI data. Furthermore, this study conducted a correlation analysis between neuroimaging metrics and neurological function and utilized a support vector machine (SVM) algorithm for the classification of PHS and NHS. RESULTS: In comparison with the NHS and HC groups, PHS patients exhibited significant reductions in the cross-sectional area and fractional anisotropy (FA) of the lateral corticospinal tract (CST), reticulospinal tract (RST), and fasciculus cuneatus, concomitant with bilateral reductions in the volume of the lateral pallidum. The functional connectivity analysis indicated a reduction in functional connectivity between the left lateral pallidum and the right angular gyrus in the PHS group. The correlation analysis indicated a significant positive association between the CST and RST FA and the volume of the left lateral pallidum in PHS patients. Furthermore, all three variables exhibited a positive correlation with the patients' motor function. Finally, using multimodal neuroimaging metrics in conjunction with the SVM algorithm, PHS and NHS were classified with an accuracy rate of 85.53%. CONCLUSIONS: This research revealed a correlation between structural damage to the pallidum and RST and the presence of Hoffmann's sign as well as the motor function in patients with CSM. Features based on neuroimaging indicators have the potential to serve as biomarkers for assessing the extent of neuronal damage in CSM patients.


Magnetic Resonance Imaging , Neuroimaging , Spinal Cord Diseases , Spondylosis , Humans , Male , Female , Middle Aged , Spondylosis/diagnostic imaging , Neuroimaging/methods , Spinal Cord Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Adult , Cervical Vertebrae/diagnostic imaging
2.
J Clin Invest ; 134(11)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828729

Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.


Substance-Related Disorders , Humans , Substance-Related Disorders/diagnostic imaging , Substance-Related Disorders/metabolism , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Positron-Emission Tomography , Neuroimaging/methods , Receptors, GABA/metabolism , Receptors, GABA/analysis , Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging , Inflammation/diagnostic imaging
3.
BMC Med ; 22(1): 223, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831366

BACKGROUND: The trajectory of attention-deficit hyperactivity disorder (ADHD) symptoms in children and adolescents, encompassing descending, stable, and ascending patterns, delineates their ADHD status as remission, persistence or late onset. However, the neural and genetic underpinnings governing the trajectory of ADHD remain inadequately elucidated. METHODS: In this study, we employed neuroimaging techniques, behavioral assessments, and genetic analyses on a cohort of 487 children aged 6-15 from the Children School Functions and Brain Development project at baseline and two follow-up tests for 1 year each (interval 1: 1.14 ± 0.32 years; interval 2: 1.14 ± 0.30 years). We applied a Latent class mixed model (LCMM) to identify the developmental trajectory of ADHD symptoms in children and adolescents, while investigating the neural correlates through gray matter volume (GMV) analysis and exploring the genetic underpinnings using polygenic risk scores (PRS). RESULTS: This study identified three distinct trajectories (ascending-high, stable-low, and descending-medium) of ADHD symptoms from childhood through adolescence. Utilizing the linear mixed-effects (LME) model, we discovered that attention hub regions served as the neural basis for these three developmental trajectories. These regions encompassed the left anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), responsible for inhibitory control; the right inferior parietal lobule (IPL), which facilitated conscious focus on exogenous stimuli; and the bilateral middle frontal gyrus/precentral gyrus (MFG/PCG), accountable for regulating both dorsal and ventral attention networks while playing a crucial role in flexible modulation of endogenous and extrinsic attention. Furthermore, our findings revealed that individuals in the ascending-high group exhibited the highest PRS for ADHD, followed by those in the descending-medium group, with individuals in the stable-low group displaying the lowest PRS. Notably, both ascending-high and descending-medium groups had significantly higher PRS compared to the stable-low group. CONCLUSIONS: The developmental trajectory of ADHD symptoms in the general population throughout childhood and adolescence can be reliably classified into ascending-high, stable-low, and descending-medium groups. The bilateral MFG/PCG, left ACC/mPFC, and right IPL may serve as crucial brain regions involved in attention processing, potentially determining these trajectories. Furthermore, the ascending-high pattern of ADHD symptoms exhibited the highest PRS for ADHD.


Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/physiopathology , Child , Adolescent , Male , Female , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/growth & development , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuroimaging , Cohort Studies
4.
Hum Brain Mapp ; 45(7): e26702, 2024 May.
Article En | MEDLINE | ID: mdl-38726998

Imaging studies of subthreshold depression (StD) have reported structural and functional abnormalities in a variety of spatially diverse brain regions. However, there is no consensus among different studies. In the present study, we applied a multimodal meta-analytic approach, the Activation Likelihood Estimation (ALE), to test the hypothesis that StD exhibits spatially convergent structural and functional brain abnormalities compared to healthy controls. A total of 31 articles with 25 experiments were included, collectively representing 1001 subjects with StD. We found consistent differences between StD and healthy controls mainly in the left insula across studies with various neuroimaging methods. Further exploratory analyses found structural atrophy and decreased functional activities in the right pallidum and thalamus in StD, and abnormal spontaneous activity converged to the middle frontal gyrus. Coordinate-based meta-analysis found spatially convergent structural and functional impairments in StD. These findings provide novel insights for understanding the neural underpinnings of subthreshold depression and enlighten the potential targets for its early screening and therapeutic interventions in the future.


Depression , Humans , Depression/diagnostic imaging , Depression/physiopathology , Depression/pathology , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology , Magnetic Resonance Imaging , Neuroimaging/methods
5.
Article En | MEDLINE | ID: mdl-38791762

Patients with mild cognitive impairment (MCI) have a relatively high risk of developing Alzheimer's dementia (AD), so early identification of the risk for AD conversion can lessen the socioeconomic burden. In this study, 18F-Florapronol, newly developed in Korea, was used for qualitative and quantitative analyses to assess amyloid positivity. We also investigated the clinical predictors of the progression from MCI to dementia over 2 years. From December 2019 to December 2022, 50 patients with MCI were recruited at a single center, and 34 patients were included finally. Based on visual analysis, 13 (38.2%) of 34 participants were amyloid-positive, and 12 (35.3%) were positive by quantitative analysis. Moreover, 6 of 34 participants (17.6%) converted to dementia after a 2-year follow-up (p = 0.173). Among the 15 participants who were positive for amyloid in the posterior cingulate region, 5 (33.3%) patients developed dementia (p = 0.066). The Clinical Dementia Rating-Sum of Boxes (CDR-SOB) at baseline was significantly associated with AD conversion in multivariate Cox regression analyses (p = 0.043). In conclusion, these results suggest that amyloid positivity in the posterior cingulate region and higher CDR-SOB scores at baseline can be useful predictors of AD conversion in patients with MCI.


Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Neuroimaging , Positron-Emission Tomography , Humans , Cognitive Dysfunction/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Male , Female , Aged , Republic of Korea , Aged, 80 and over , Amyloid/metabolism , Middle Aged
6.
Comput Biol Med ; 176: 108564, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744010

Alzheimer's disease (AD) is a progressive neurodegenerative condition, and early intervention can help slow its progression. However, integrating multi-dimensional information and deep convolutional networks increases the model parameters, affecting diagnosis accuracy and efficiency and hindering clinical diagnostic model deployment. Multi-modal neuroimaging can offer more precise diagnostic results, while multi-task modeling of classification and regression tasks can enhance the performance and stability of AD diagnosis. This study proposes a Hierarchical Attention-based Multi-task Multi-modal Fusion model (HAMMF) that leverages multi-modal neuroimaging data to concurrently learn AD classification tasks, cognitive score regression, and age regression tasks using attention-based techniques. Firstly, we preprocess MRI and PET image data to obtain two modal data, each containing distinct information. Next, we incorporate a novel Contextual Hierarchical Attention Module (CHAM) to aggregate multi-modal features. This module employs channel and spatial attention to extract fine-grained pathological features from unimodal image data across various dimensions. Using these attention mechanisms, the Transformer can effectively capture correlated features of multi-modal inputs. Lastly, we adopt multi-task learning in our model to investigate the influence of different variables on diagnosis, with a primary classification task and a secondary regression task for optimal multi-task prediction performance. Our experiments utilized MRI and PET images from 720 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The results show that our proposed model achieves an overall accuracy of 93.15% for AD/NC recognition, and the visualization results demonstrate its strong pathological feature recognition performance.


Alzheimer Disease , Magnetic Resonance Imaging , Alzheimer Disease/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Diagnosis, Computer-Assisted/methods , Male , Positron-Emission Tomography/methods , Female , Aged , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
7.
Comput Biol Med ; 176: 108530, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749324

As an autoimmune-mediated inflammatory demyelinating disease of the central nervous system, multiple sclerosis (MS) is often confused with cerebral small vessel disease (cSVD), which is a regional pathological change in brain tissue with unknown pathogenesis. This is due to their similar clinical presentations and imaging manifestations. That misdiagnosis can significantly increase the occurrence of adverse events. Delayed or incorrect treatment is one of the most important causes of MS progression. Therefore, the development of a practical diagnostic imaging aid could significantly reduce the risk of misdiagnosis and improve patient prognosis. We propose an interpretable deep learning (DL) model that differentiates MS and cSVD using T2-weighted fluid-attenuated inversion recovery (FLAIR) images. Transfer learning (TL) was utilized to extract features from the ImageNet dataset. This pioneering model marks the first of its kind in neuroimaging, showing great potential in enhancing differential diagnostic capabilities within the field of neurological disorders. Our model extracts the texture features of the images and achieves more robust feature learning through two attention modules. The attention maps provided by the attention modules provide model interpretation to validate model learning and reveal more information to physicians. Finally, the proposed model is trained end-to-end using focal loss to reduce the influence of class imbalance. The model was validated using clinically diagnosed MS (n=112) and cSVD (n=321) patients from the Beijing Tiantan Hospital. The performance of the proposed model was better than that of two commonly used DL approaches, with a mean balanced accuracy of 86.06 % and a mean area under the receiver operating characteristic curve of 98.78 %. Moreover, the generated attention heat maps showed that the proposed model could focus on the lesion signatures in the image. The proposed model provides a practical diagnostic imaging aid for the use of routinely available imaging techniques such as magnetic resonance imaging to classify MS and cSVD by linking DL to human brain disease. We anticipate a substantial improvement in accurately distinguishing between various neurological conditions through this novel model.


Cerebral Small Vessel Diseases , Deep Learning , Multiple Sclerosis , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Male , Magnetic Resonance Imaging/methods , Female , Neural Networks, Computer , Image Interpretation, Computer-Assisted/methods , Middle Aged , Adult , Neuroimaging/methods
8.
J Integr Neurosci ; 23(5): 100, 2024 May 14.
Article En | MEDLINE | ID: mdl-38812383

BACKGROUND: Multiple radiomics models have been proposed for grading glioma using different algorithms, features, and sequences of magnetic resonance imaging. The research seeks to assess the present overall performance of radiomics for grading glioma. METHODS: A systematic literature review of the databases Ovid MEDLINE PubMed, and Ovid EMBASE for publications published on radiomics for glioma grading between 2012 and 2023 was performed. The systematic review was carried out following the criteria of Preferred Reporting Items for Systematic Reviews and Meta-Analysis. RESULTS: In the meta-analysis, a total of 7654 patients from 40 articles, were assessed. R-package mada was used for modeling the joint estimates of specificity (SPE) and sensitivity (SEN). Pooled event rates across studies were performed with a random-effects meta-analysis. The heterogeneity of SPE and SEN were based on the χ2 test. Overall values for SPE and SEN in the differentiation between high-grade gliomas (HGGs) and low-grade gliomas (LGGs) were 84% and 91%, respectively. With regards to the discrimination between World Health Organization (WHO) grade 4 and WHO grade 3, the overall SPE was 81% and the SEN was 89%. The modern non-linear classifiers showed a better trend, whereas textural features tend to be the best-performing (29%) and the most used. CONCLUSIONS: Our findings confirm that present radiomics' diagnostic performance for glioma grading is superior in terms of SEN and SPE for the HGGs vs. LGGs discrimination task when compared to the WHO grade 4 vs. 3 task.


Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Neoplasm Grading , Glioma/diagnostic imaging , Glioma/pathology , Humans , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Neuroimaging/standards , Neuroimaging/methods , Radiomics
9.
Neuroimage Clin ; 42: 103611, 2024.
Article En | MEDLINE | ID: mdl-38703470

Automated segmentation of brain white matter lesions is crucial for both clinical assessment and scientific research in multiple sclerosis (MS). Over a decade ago, we introduced an engineered lesion segmentation tool, LST. While recent lesion segmentation approaches have leveraged artificial intelligence (AI), they often remain proprietary and difficult to adopt. As an open-source tool, we present LST-AI, an advanced deep learning-based extension of LST that consists of an ensemble of three 3D U-Nets. LST-AI explicitly addresses the imbalance between white matter (WM) lesions and non-lesioned WM. It employs a composite loss function incorporating binary cross-entropy and Tversky loss to improve segmentation of the highly heterogeneous MS lesions. We train the network ensemble on 491 MS pairs of T1-weighted and FLAIR images, collected in-house from a 3T MRI scanner, and expert neuroradiologists manually segmented the utilized lesion maps for training. LST-AI also includes a lesion location annotation tool, labeling lesions as periventricular, infratentorial, and juxtacortical according to the 2017 McDonald criteria, and, additionally, as subcortical. We conduct evaluations on 103 test cases consisting of publicly available data using the Anima segmentation validation tools and compare LST-AI with several publicly available lesion segmentation models. Our empirical analysis shows that LST-AI achieves superior performance compared to existing methods. Its Dice and F1 scores exceeded 0.62, outperforming LST, SAMSEG (Sequence Adaptive Multimodal SEGmentation), and the popular nnUNet framework, which all scored below 0.56. Notably, LST-AI demonstrated exceptional performance on the MSSEG-1 challenge dataset, an international WM lesion segmentation challenge, with a Dice score of 0.65 and an F1 score of 0.63-surpassing all other competing models at the time of the challenge. With increasing lesion volume, the lesion detection rate rapidly increased with a detection rate of >75% for lesions with a volume between 10 mm3 and 100 mm3. Given its higher segmentation performance, we recommend that research groups currently using LST transition to LST-AI. To facilitate broad adoption, we are releasing LST-AI as an open-source model, available as a command-line tool, dockerized container, or Python script, enabling diverse applications across multiple platforms.


Deep Learning , Magnetic Resonance Imaging , Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Image Processing, Computer-Assisted/methods , Female , Neuroimaging/methods , Neuroimaging/standards , Male , Adult
10.
Article En | MEDLINE | ID: mdl-38705507

BACKGROUND: Skin-picking disorder (SPD) is conceptualized as an obsessive-compulsive and related disorder (OCRD). Patients with SPD excessively manipulate their skin, which leads to skin lesions, psychological distress, and functional impairment. The neuroanatomical facets of this disorder are still poorly understood. METHODS: A total of 220 participants (123 patients with a primary diagnosis of SPD and 97 healthy controls; mean age = 30 years, 80% female) were recruited for a voxel-based morphometry (VBM) study. VBM data were compared between patients and controls, and between three SPD subgroups, each characterized by a distinct age of symptom onset (before puberty, during puberty, adulthood). RESULTS: Relative to the healthy comparison group, patients with SPD had significantly less grey matter volume (GMV) in regions of interest (ROIs: insula, orbitofrontal cortex, pallidum, cerebellum, supramarginal gyrus) and in the frontal pole and occipital regions (whole-brain findings). Early onset of symptoms (before puberty) was associated with elevated levels of focused skin-picking, in addition to less GMV in specific ROIs (insula, orbitofrontal cortex) as well as in paracingulate/ superior temporal regions (whole-brain findings). CONCLUSIONS: SPD-related reductions in GMV were identified in brain regions involved in interoception, emotion regulation, and motor control. This partially aligns with findings for OCD. The detection of different age-of-onset groups based on clinical as well as morphometric data points to the heterogeneity of the disorder and warrants further investigation.


Brain , Gray Matter , Magnetic Resonance Imaging , Neuroimaging , Obsessive-Compulsive Disorder , Humans , Female , Male , Adult , Magnetic Resonance Imaging/methods , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/pathology , Neuroimaging/methods , Gray Matter/diagnostic imaging , Gray Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Skin/diagnostic imaging , Skin/pathology , Young Adult
11.
Curr Opin Psychiatry ; 37(4): 301-308, 2024 07 01.
Article En | MEDLINE | ID: mdl-38770914

PURPOSE OF REVIEW: Environmental factors such as climate, urbanicity, and exposure to nature are becoming increasingly important influencers of mental health. Incorporating data gathered from real-life contexts holds promise to substantially enhance laboratory experiments by providing a more comprehensive understanding of everyday behaviors in natural environments. We provide an up-to-date review of current technological and methodological developments in mental health assessments, neuroimaging and environmental sensing. RECENT FINDINGS: Mental health research progressed in recent years towards integrating tools, such as smartphone based mental health assessments or mobile neuroimaging, allowing just-in-time daily assessments. Moreover, they are increasingly enriched by dynamic measurements of the environment, which are already being integrated with mental health assessments. To ensure ecological validity and accuracy it is crucial to capture environmental data with a high spatio-temporal granularity. Simultaneously, as a supplement to experimentally controlled conditions, there is a need for a better understanding of cognition in daily life, particularly regarding our brain's responses in natural settings. SUMMARY: The presented overview on the developments and feasibility of "real-life" approaches for mental health and brain research and their potential to identify relationships along the mental health-environment-brain axis informs strategies for real-life individual and dynamic assessments.


Brain , Mental Health , Humans , Brain/diagnostic imaging , Brain/physiology , Environment , Neuroimaging/methods
12.
Comput Med Imaging Graph ; 115: 102386, 2024 Jul.
Article En | MEDLINE | ID: mdl-38718562

A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI), can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE). Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive, inspiring the epilepsy community to devise ways to predict which TBI patients will develop PTE and to identify potential biomarkers. In response to this need, our study collected comprehensive, longitudinal multimodal data from 48 TBI patients across multiple participating institutions. A supervised binary classification task was created, contrasting data from LPTS patients with those without LPTS. To accommodate missing modalities in some subjects, we took a two-pronged approach. Firstly, we extended a graphical model-based Bayesian estimator to directly classify subjects with incomplete modality. Secondly, we explored conventional imputation techniques. The imputed multimodal information was then combined, following several fusion and dimensionality reduction techniques found in the literature, and subsequently fitted to a kernel- or a tree-based classifier. For this fusion, we proposed two new algorithms: recursive elimination of correlated components (RECC) that filters information based on the correlation between the already selected features, and information decomposition and selective fusion (IDSF), which effectively recombines information from decomposed multimodal features. Our cross-validation findings showed that the proposed IDSF algorithm delivers superior performance based on the area under the curve (AUC) score. Ultimately, after rigorous statistical comparisons and interpretable machine learning examination using Shapley values of the most frequently selected features, we recommend the two following magnetic resonance imaging (MRI) abnormalities as potential biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the right middle temporal gyrus in functional MRI (fMRI).


Biomarkers , Brain Injuries, Traumatic , Machine Learning , Neuroimaging , Humans , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/complications , Neuroimaging/methods , Male , Female , Magnetic Resonance Imaging/methods , Adult , Algorithms , Epilepsy, Post-Traumatic/diagnostic imaging , Epilepsy, Post-Traumatic/etiology , Multimodal Imaging/methods , Seizures/diagnostic imaging , Bayes Theorem , Middle Aged
13.
Front Neural Circuits ; 18: 1345692, 2024.
Article En | MEDLINE | ID: mdl-38694272

Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer's disease, facilitating the comprehensive whole-brain study of pathological features.


Alzheimer Disease , Brain , Mice, Transgenic , Animals , Brain/metabolism , Brain/diagnostic imaging , Mice , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Immunohistochemistry , Neuroimaging/methods , Amyloid beta-Peptides/metabolism , Mice, Inbred C57BL
14.
Radiographics ; 44(6): e230069, 2024 Jun.
Article En | MEDLINE | ID: mdl-38696321

Cytokines are small secreted proteins that have specific effects on cellular interactions and are crucial for functioning of the immune system. Cytokines are involved in almost all diseases, but as microscopic chemical compounds they cannot be visualized at imaging for obvious reasons. Several imaging manifestations have been well recognized owing to the development of cytokine therapies such as those with bevacizumab (antibody against vascular endothelial growth factor) and chimeric antigen receptor (CAR) T cells and the establishment of new disease concepts such as interferonopathy and cytokine release syndrome. For example, immune effector cell-associated neurotoxicity is the second most common form of toxicity after CAR T-cell therapy toxicity, and imaging is recommended to evaluate the severity. The emergence of COVID-19, which causes a cytokine storm, has profoundly impacted neuroimaging. The central nervous system is one of the systems that is most susceptible to cytokine storms, which are induced by the positive feedback of inflammatory cytokines. Cytokine storms cause several neurologic complications, including acute infarction, acute leukoencephalopathy, and catastrophic hemorrhage, leading to devastating neurologic outcomes. Imaging can be used to detect these abnormalities and describe their severity, and it may help distinguish mimics such as metabolic encephalopathy and cerebrovascular disease. Familiarity with the neuroimaging abnormalities caused by cytokine storms is beneficial for diagnosing such diseases and subsequently planning and initiating early treatment strategies. The authors outline the neuroimaging features of cytokine-related diseases, focusing on cytokine storms, neuroinflammatory and neurodegenerative diseases, cytokine-related tumors, and cytokine-related therapies, and describe an approach to diagnosing cytokine-related disease processes and their differentials. ©RSNA, 2024 Supplemental material is available for this article.


COVID-19 , Cytokine Release Syndrome , Neuroimaging , SARS-CoV-2 , Humans , Neuroimaging/methods , Cytokine Release Syndrome/diagnostic imaging , Cytokine Release Syndrome/etiology , COVID-19/diagnostic imaging , Cytokines
15.
Prim Care ; 51(2): 283-297, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692775

Cerebrovascular disease is a common and potentially life-threatening illness if not triaged and/or treated appropriately. The diagnosis is made based on a combination of clinical history and neuroimaging studies. The majority of strokes can be prevented, and this process often begins in the primary care office through the careful assessment of vascular risk factors. Appropriate workup aims to pinpoint a pathogenic mechanism and guide therapy. Stroke treatment has rapidly advanced over the past several years, resulting in improved outcomes.


Ischemic Attack, Transient , Primary Health Care , Stroke , Humans , Ischemic Attack, Transient/diagnosis , Ischemic Attack, Transient/therapy , Stroke/diagnosis , Stroke/therapy , Stroke/prevention & control , Risk Factors , Neuroimaging
16.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 56-63, 2024.
Article Ru | MEDLINE | ID: mdl-38696152

The most common cause of severe cognitive impairment in adults is Alzheimer's disease (AD). Depending on the age of onset, AD is divided into early (<65 years) and late (≥65 years) forms. Early-onset AD (EOAD) is significantly less common than later-onset AD (LOAD) and accounts for only about 5-10% of cases. However, its medical and social significance, as a disease leading to loss of ability to work and legal capacity, as well as premature death in patients aged 40-64 years, is extremely high. Patients with EOAD compared with LOAD have a greater number of atypical clinical variants - 25% and 6-12.5%, respectively, which complicates the differential diagnosis of EOAD with other neurodegenerative diseases. However, the typical classical amnestic variant predominates in both EOAD and LOAD. Also, patients with EOAD have peculiarities according to neuroimaging data: when performing MRI of the brain, patients with EOAD often have more pronounced parietal atrophy and less pronounced hippocampal atrophy compared to patients with LOAD. The article pays attention to the features of the clinical and neuroimaging data in patients with EOAD; a case of a patient with EOAD is presented.


Age of Onset , Alzheimer Disease , Magnetic Resonance Imaging , Neuroimaging , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Neuroimaging/methods , Middle Aged , Atrophy/diagnostic imaging , Diagnosis, Differential , Male , Brain/diagnostic imaging , Brain/pathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology
17.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38752981

Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.


Depressive Disorder, Major , Executive Function , Magnetic Resonance Imaging , Multimodal Imaging , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Adolescent , Executive Function/physiology , Male , Female , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuroimaging/methods , Cognition/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Neuropsychological Tests , Brain Mapping/methods
18.
Alzheimers Res Ther ; 16(1): 110, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755703

BACKGROUND: Plasma biomarkers of Alzheimer's disease (AD) pathology, neurodegeneration, and neuroinflammation are ideally suited for secondary prevention programs in self-sufficient persons at-risk of dementia. Plasma biomarkers have been shown to be highly correlated with traditional imaging biomarkers. However, their comparative predictive value versus traditional AD biomarkers is still unclear in cognitively unimpaired (CU) subjects and with mild cognitive impairment (MCI). METHODS: Plasma (Aß42/40, p-tau181, p-tau231, NfL, and GFAP) and neuroimaging (hippocampal volume, centiloid of amyloid-PET, and tau-SUVR of tau-PET) biomarkers were assessed at baseline in 218 non-demented subjects (CU = 140; MCI = 78) from the Geneva Memory Center. Global cognition (MMSE) was evaluated at baseline and at follow-ups up to 5.7 years. We used linear mixed-effects models and Cox proportional-hazards regression to assess the association between biomarkers and cognitive decline. Lastly, sample size calculations using the linear mixed-effects models were performed on subjects positive for amyloid-PET combined with tau-PET and plasma biomarker positivity. RESULTS: Cognitive decline was significantly predicted in MCI by baseline plasma NfL (ß=-0.55), GFAP (ß=-0.36), hippocampal volume (ß = 0.44), centiloid (ß=-0.38), and tau-SUVR (ß=-0.66) (all p < 0.05). Subgroup analysis with amyloid-positive MCI participants also showed that only NfL and GFAP were the only significant predictors of cognitive decline among plasma biomarkers. Overall, NfL and tau-SUVR showed the highest prognostic values (hazard ratios of 7.3 and 5.9). Lastly, we demonstrated that adding NfL to the inclusion criteria could reduce the sample sizes of future AD clinical trials by up to one-fourth in subjects with amyloid-PET positivity or by half in subjects with amyloid-PET and tau-PET positivity. CONCLUSIONS: Plasma NfL and GFAP predict cognitive decline in a similar manner to traditional imaging techniques in amyloid-positive MCI patients. Hence, even though they are non-specific biomarkers of AD, both can be implemented in memory clinic workups as important prognostic biomarkers. Likewise, future clinical trials might employ plasma biomarkers as additional inclusion criteria to stratify patients at higher risk of cognitive decline to reduce sample sizes and enhance effectiveness.


Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction , Positron-Emission Tomography , tau Proteins , Humans , Male , Female , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Aged , tau Proteins/blood , Amyloid beta-Peptides/blood , Middle Aged , Neuroimaging/methods , Neurofilament Proteins/blood , Hippocampus/diagnostic imaging , Hippocampus/pathology , Peptide Fragments/blood , Glial Fibrillary Acidic Protein/blood
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732157

Autism Spectrum Disorder (ASD) is an early onset neurodevelopmental disorder characterized by impaired social interaction and communication, and repetitive patterns of behavior. Family studies show that ASD is highly heritable, and hundreds of genes have previously been implicated in the disorder; however, the etiology is still not fully clear. Brain imaging and electroencephalography (EEG) are key techniques that study alterations in brain structure and function. Combined with genetic analysis, these techniques have the potential to help in the clarification of the neurobiological mechanisms contributing to ASD and help in defining novel therapeutic targets. To further understand what is known today regarding the impact of genetic variants in the brain alterations observed in individuals with ASD, a systematic review was carried out using Pubmed and EBSCO databases and following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This review shows that specific genetic variants and altered patterns of gene expression in individuals with ASD may have an effect on brain circuits associated with face processing and social cognition, and contribute to excitation-inhibition imbalances and to anomalies in brain volumes.


Autism Spectrum Disorder , Brain , Neuroimaging , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnostic imaging , Neuroimaging/methods , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Electroencephalography , Genetic Predisposition to Disease
20.
Alzheimers Res Ther ; 16(1): 113, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769578

BACKGROUND: The gut-derived metabolite Trimethylamine N-oxide (TMAO) and its precursors - betaine, carnitine, choline, and deoxycarnitine - have been associated with an increased risk of cardiovascular disease, but their relation to cognition, neuroimaging markers, and dementia remains uncertain. METHODS: In the population-based Rotterdam Study, we used multivariable regression models to study the associations between plasma TMAO, its precursors, and cognition in 3,143 participants. Subsequently, we examined their link to structural brain MRI markers in 2,047 participants, with a partial validation in the Leiden Longevity Study (n = 318). Among 2,517 participants, we assessed the risk of incident dementia using multivariable Cox proportional hazard models. Following this, we stratified the longitudinal associations by medication use and sex, after which we conducted a sensitivity analysis for individuals with impaired renal function. RESULTS: Overall, plasma TMAO was not associated with cognition, neuroimaging markers or incident dementia. Instead, higher plasma choline was significantly associated with poor cognition (adjusted mean difference: -0.170 [95% confidence interval (CI) -0.297;-0.043]), brain atrophy and more markers of cerebral small vessel disease, such as white matter hyperintensity volume (0.237 [95% CI: 0.076;0.397]). By contrast, higher carnitine concurred with lower white matter hyperintensity volume (-0.177 [95% CI: -0.343;-0.010]). Only among individuals with impaired renal function, TMAO appeared to increase risk of dementia (hazard ratio (HR): 1.73 [95% CI: 1.16;2.60]). No notable differences were observed in stratified analyses. CONCLUSIONS: Plasma choline, as opposed to TMAO, was found to be associated with cognitive decline, brain atrophy, and markers of cerebral small vessel disease. These findings illustrate the complexity of relationships between TMAO and its precursors, and emphasize the need for concurrent study to elucidate gut-brain mechanisms.


Cognition , Dementia , Magnetic Resonance Imaging , Methylamines , Neuroimaging , Humans , Methylamines/blood , Male , Female , Dementia/blood , Dementia/diagnostic imaging , Dementia/epidemiology , Aged , Middle Aged , Cognition/physiology , Brain/diagnostic imaging , Choline/blood , Biomarkers/blood , Prospective Studies
...