Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.533
Filter
1.
Neurosignals ; 31(1): 1-25, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38967556

ABSTRACT

Hallucination is a sensory perception that occurs in the absence of external stimuli during abnormal neurological disturbances and various mental diseases. Hallucination is recognized as a core psychotic symptom and is particularly more prevalent in individuals with schizophrenia. Strikingly, a significant number of subjects with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and other neurological diseases like cerebral stroke and epileptic seizure also experience hallucination. While aberrant neurotransmission has been linked to the neuropathogenic events of schizophrenia, the precise cellular mechanism accounting for hallucinations remains obscure. Neurogenesis is a cellular process of producing new neurons from the neural stem cells (NSC)-derived neuroblasts in the brain that contribute to the regulation of pattern separation, mood, olfaction, learning, and memory in adulthood. Impaired neurogenesis in the hippocampus of the adult brain has been linked to stress, anxiety, depression, and dementia. Notably, many neurodegenerative disorders are characterized by the mitotic and functional activation of neuroblasts and cell cycle re-entry of mature neurons leading to a drastic alteration in neurogenic process, known as reactive neuroblastosis. Considering their neurophysiological properties, the abnormal integration of neuroblasts into the existing neural network or withdrawal of their connections can lead to abnormal synaptogenesis, and neurotransmission. Eventually, this would be expected to result in altered perception accounting for hallucination. Thus, this article emphasizes a hypothesis that aberrant neurogenic processes at the level of reactive neuroblastosis could be an underlying mechanism of hallucination in schizophrenia and other neurological diseases.


Subject(s)
Hallucinations , Hippocampus , Neurogenesis , Neuronal Plasticity , Schizophrenia , Humans , Schizophrenia/pathology , Schizophrenia/physiopathology , Hallucinations/pathology , Hallucinations/physiopathology , Neuronal Plasticity/physiology , Hippocampus/pathology , Neurogenesis/physiology , Animals , Neural Stem Cells/pathology , Neurons/pathology , Neurons/metabolism
2.
Biochemistry (Mosc) ; 89(6): 1045-1060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981700

ABSTRACT

Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene expression and mitochondrial function. Astrocytic NMDARs are involved in calcium signaling in astrocytes and can act through the ionotropic and metabotropic pathways. Astrocytic NMDARs participate in the interactions of the neuroglia, thus affecting synaptic plasticity. They are also engaged in the astrocyte-vascular interactions and contribute to the regulation of vascular tone. Astrocytic NMDARs are involved in various pathologies, such as ischemia and hyperammonemia, and their blockade prevents negative changes in astrocytes during these diseases.


Subject(s)
Astrocytes , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Astrocytes/metabolism , Humans , Animals , Calcium Signaling , Neuronal Plasticity
3.
Hand Clin ; 40(3): 409-420, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972685

ABSTRACT

Electrical stimulation is emerging as a perioperative strategy to improve peripheral nerve regeneration and enhance functional recovery. Despite decades of research, new insights into the complex multifaceted mechanisms of electrical stimulation continue to emerge, providing greater understanding of the neurophysiology of nerve regeneration. In this study, we summarize what is known about how electrical stimulation modulates the molecular cascades and cellular responses innate to nerve injury and repair, and the consequential effects on axonal growth and plasticity. Further, we discuss how electrical stimulation is delivered in preclinical and clinical studies and identify knowledge gaps that may provide opportunities for optimization.


Subject(s)
Electric Stimulation Therapy , Nerve Regeneration , Peripheral Nerve Injuries , Humans , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/physiopathology , Animals , Neuronal Plasticity/physiology
5.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953282

ABSTRACT

The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2-Db (MHCI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Knockout , Purkinje Cells , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/genetics , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Purkinje Cells/metabolism , Neuronal Plasticity , Male , Learning
6.
Trials ; 25(1): 441, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956594

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a leading cause of disability worldwide across domains of health and cognition, affecting overall quality of life. Approximately one third of individuals with depression do not fully respond to treatments (e.g., conventional antidepressants, psychotherapy) and alternative strategies are needed. Recent early phase trials suggest psilocybin may be a safe and efficacious intervention with rapid-acting antidepressant properties. Psilocybin is thought to exert therapeutic benefits by altering brain network connectivity and inducing neuroplastic changes that endure for weeks post-treatment. Although early clinical results are encouraging, psilocybin's acute neurobiological effects on neuroplasticity have not been fully investigated. We aim to examine for the first time how psilocybin acutely (intraday) and subacutely (weeks) alters functional brain networks implicated in depression. METHODS: Fifty participants diagnosed with MDD or persistent depressive disorder (PDD) will be recruited from a tertiary mood disorders clinic and undergo 1:1 randomization into either an experimental or control arm. Participants will be given either 25 mg psilocybin or 25 mg microcrystalline cellulose (MCC) placebo for the first treatment. Three weeks later, those in the control arm will transition to receiving 25 mg psilocybin. We will investigate whether treatments are associated with changes in arterial spin labelling and blood oxygenation level-dependent contrast neuroimaging assessments at acute and subacute timepoints. Primary outcomes include testing whether psilocybin demonstrates acute changes in (1) cerebral blood flow and (2) functional brain activity in networks associated with mood regulation and depression when compared to placebo, along with changes in MADRS score over time compared to placebo. Secondary outcomes include changes across complementary clinical psychiatric, cognitive, and functional scales from baseline to final follow-up. Serum peripheral neurotrophic and inflammatory biomarkers will be collected at baseline and follow-up to examine relationships with clinical response, and neuroimaging measures. DISCUSSION: This study will investigate the acute and additive subacute neuroplastic effects of psilocybin on brain networks affected by depression using advanced serial neuroimaging methods. Results will improve our understanding of psilocybin's antidepressant mechanisms versus placebo response and whether biological measures of brain function can provide early predictors of treatment response. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06072898. Registered on 6 October 2023.


Subject(s)
Affect , Brain , Depressive Disorder, Major , Psilocybin , Randomized Controlled Trials as Topic , Humans , Psilocybin/therapeutic use , Psilocybin/adverse effects , Psilocybin/administration & dosage , Psilocybin/pharmacology , Affect/drug effects , Brain/diagnostic imaging , Brain/drug effects , Brain/physiopathology , Depressive Disorder, Major/drug therapy , Magnetic Resonance Imaging , Time Factors , Treatment Outcome , Adult , Neuronal Plasticity/drug effects , Young Adult , Male , Antidepressive Agents/therapeutic use , Female , Middle Aged
7.
Sci Adv ; 10(27): eadm7373, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959316

ABSTRACT

Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Down Syndrome , Gene Expression Regulation , Synapses , Down Syndrome/genetics , Down Syndrome/metabolism , Animals , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Synapses/metabolism , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Neuronal Plasticity/genetics , Disease Models, Animal , Gene Dosage , Protein Binding
8.
Braz J Med Biol Res ; 57: e13736, 2024.
Article in English | MEDLINE | ID: mdl-38985082

ABSTRACT

The present study utilized the spared nerve injury (SNI) to create a mouse model of depression to investigate the impact of esketamine on depressive-like behaviors, on the expression of PSD-95 and CRMP2 proteins, and on changes in neuronal dendritic spine plasticity in the prefrontal cortex (PFC). Depressive-like behavioral tests were performed 1 h after esketamine treatment, and the PFC tissues were obtained on the fourth day after completing the behavioral tests. Then, dendritic spine density and morphology in the PFC were measured using Golgi staining, and CRMP2 and PSD-95 proteins were obtained from PFC tissue by western blotting. The results of this study showed that esketamine significantly increased the immobility time in the forced swimming test and tail suspension test. In the open field test, esketamine increased the time spent in the open arms, the time spent in the central area, and the total distance covered. It also increased the protein expression levels of CRMP2 and PSD-95 in addition to the total and mature dendritic spine density of the PFC in SNI-depressed mice. Esketamine can significantly improve depression-like behaviors in SNI-depressed mice and promote an increase in dendritic spine density and maturation in the PFC. These effects may be associated with changes in CRMP2 and PSD-95 expression.


Subject(s)
Dendritic Spines , Depression , Disease Models, Animal , Ketamine , Neuronal Plasticity , Prefrontal Cortex , Animals , Prefrontal Cortex/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Male , Dendritic Spines/drug effects , Mice , Depression/drug therapy , Nerve Tissue Proteins/metabolism , Disks Large Homolog 4 Protein/metabolism , Intercellular Signaling Peptides and Proteins , Neurons/drug effects , Behavior, Animal/drug effects , Blotting, Western
9.
Crit Rev Oncog ; 29(4): 19-32, 2024.
Article in English | MEDLINE | ID: mdl-38989735

ABSTRACT

Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.


Subject(s)
Depressive Disorder, Major , Neuronal Plasticity , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/metabolism , Brain/physiopathology , Brain/metabolism , Animals
10.
Commun Biol ; 7(1): 861, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004677

ABSTRACT

Oxidative stress is a key contributor to AD pathology. However, the earliest role of pre-plaque neuronal oxidative stress, remains elusive. Using laser microdissected hippocampal neurons extracted from McGill-R-Thy1-APP transgenic rats we found that intraneuronal amyloid beta (iAß)-burdened neurons had increased expression of genes related to oxidative stress and DNA damage responses including Ercc2, Fancc, Sod2, Gsr, and Idh1. DNA damage was further evidenced by increased neuronal levels of XPD (Ercc2) and γH2AX foci, indicative of DNA double stranded breaks (DSBs), and by increased expression of Ercc6, Rad51, and Fen1, and decreased Sirt6 in hippocampal homogenates. We also found increased expression of synaptic plasticity genes (Grin2b (NR2B), CamkIIα, Bdnf, c-fos, and Homer1A) and increased protein levels of TOP2ß. Our findings indicate that early accumulation of iAß, prior to Aß plaques, is accompanied by incipient oxidative stress and DSBs that may arise directly from oxidative stress or from maladaptive synaptic plasticity.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , DNA Damage , Disease Models, Animal , Hippocampus , Neurons , Oxidative Stress , Rats, Transgenic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Hippocampus/metabolism , Hippocampus/pathology , Neurons/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Rats , Male , Neuronal Plasticity
11.
Adv Neurobiol ; 38: 273-302, 2024.
Article in English | MEDLINE | ID: mdl-39008021

ABSTRACT

Engram labelling and manipulation methodologies are now a staple of contemporary neuroscientific practice, giving the impression that the physical basis of engrams has been discovered. Despite enormous progress, engrams have not been clearly identified, and it is unclear what they should look like. There is an epistemic bias in engram neuroscience toward characterizing biological changes while neglecting the development of theory. However, the tools of engram biology are exciting precisely because they are not just an incremental step forward in understanding the mechanisms of plasticity and learning but because they can be leveraged to inform theory on one of the fundamental mysteries in neuroscience-how and in what format the brain stores information. We do not propose such a theory here, as we first require an appreciation for what is lacking. We outline a selection of issues in four sections from theoretical biology and philosophy that engram biology and systems neuroscience generally should engage with in order to construct useful future theoretical frameworks. Specifically, what is it that engrams are supposed to explain? How do the different building blocks of the brain-wide engram come together? What exactly are these component parts? And what information do they carry, if they carry anything at all? Asking these questions is not purely the privilege of philosophy but a key to informing scientific hypotheses that make the most of the experimental tools at our disposal. The risk for not engaging with these issues is high. Without a theory of what engrams are, what they do, and the wider computational processes they fit into, we may never know when they have been found.


Subject(s)
Brain , Animals , Humans , Learning/physiology , Memory/physiology , Neuronal Plasticity/physiology , Neurosciences
12.
Brain Behav ; 14(7): e3618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010692

ABSTRACT

BACKGROUND: High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been found to ameliorate cognitive impairment. However, the effects of HF-rTMS remain unknown in chronic cerebral hypoperfusion (CCH). AIM: To investigate the effects of HF-rTMS on cognitive improvement and its potential mechanisms in CCH mice. MATERIALS AND METHODS: Daily HF-rTMS therapy was delivered after bilateral carotid stenosis (BCAS) and continued for 14 days. The mice were randomly assigned to three groups: the sham group, the model group, and the HF-rTMS group. The Y maze and the new object recognition test were used to assess cognitive function. The expressions of MAP-2, synapsis, Myelin basic protein(MBP), and brain-derived growth factors (BDNF) were analyzed by immunofluorescence staining and western blot to evaluate neuronal plasticity and white matter myelin regeneration. Nissl staining and the expression of caspase-3, Bax, and Bcl-2 were used to observe neuronal apoptosis. In addition, the activation of microglia and astrocytes were evaluated by fluorescence staining. The inflammation levels of IL-1ß, IL-6, and Tumor Necrosis Factor(TNF)-α were detected by qPCR in the hippocampus of mice in each group. RESULTS: Via behavioral tests, the BCAS mice showed reduced a rate of new object preference and decreased a rate of spontaneous alternations, while HF-rTMS significantly improved hippocampal learning and memory deficits. In addition, the mice in the model group showed decreased levels of MAP-2, synapsis, MBP, and BDNF, while HF-rTMS treatment reversed these effects. As expected, activated microglia and astrocytes increased in the model group, but HF-rTMS treatment suppressed these changes. HF-rTMS decreased BCAS-induced neuronal apoptosis and the expression of pro-apoptotic protein (Caspase-3 and Bax) and increased the expression of anti-apoptotic protein (Bcl-2). In addition, HF-rTMS inhibited the expression of inflammatory cytokines (IL-1ß, IL-6, and TNF-α). CONCLUSIONS: HF-rTMS alleviates cognitive impairment in CCH mice by enhancing neuronal plasticity and inhibiting inflammation, thus serving as a potential method for vascular cognitive impairment.


Subject(s)
Memory Disorders , Neuroinflammatory Diseases , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Mice , Male , Memory Disorders/therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuroinflammatory Diseases/therapy , Hippocampus/metabolism , Disease Models, Animal , Carotid Stenosis/therapy , Carotid Stenosis/physiopathology , Mice, Inbred C57BL , Brain-Derived Neurotrophic Factor/metabolism , Microglia/metabolism , Neuronal Plasticity/physiology , Apoptosis , Astrocytes/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology
13.
J Biomed Sci ; 31(1): 69, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992696

ABSTRACT

BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.


Subject(s)
Neuronal Plasticity , RNA-Binding Proteins , Synaptic Transmission , Vesicular Glutamate Transport Protein 2 , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Mice, Knockout , Axons/metabolism , Axons/physiology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Protein Biosynthesis
14.
Nat Commun ; 15(1): 5887, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003305

ABSTRACT

Memory engrams are a subset of learning activated neurons critical for memory recall, consolidation, extinction and separation. While the transcriptional profile of engrams after learning suggests profound neural changes underlying plasticity and memory formation, little is known about how memory engrams are selected and allocated. As epigenetic factors suppress memory formation, we developed a CRISPR screening in the hippocampus to search for factors controlling engram formation. We identified histone lysine-specific demethylase 4a (Kdm4a) as a negative regulator for engram formation. Kdm4a is downregulated after neural activation and controls the volume of mossy fiber boutons. Mechanistically, Kdm4a anchors to the exonic region of Trpm7 gene loci, causing the stalling of nascent RNAs and allowing burst transcription of Trpm7 upon the dismissal of Kdm4a. Furthermore, the YTH domain containing protein 2 (Ythdc2) recruits Kdm4a to the Trpm7 gene and stabilizes nascent RNAs. Reducing the expression of Kdm4a in the hippocampus via genetic manipulation or artificial neural activation facilitated the ability of pattern separation in rodents. Our work indicates that Kdm4a is a negative regulator of engram formation and suggests a priming state to generate a separate memory.


Subject(s)
Hippocampus , Memory , TRPM Cation Channels , Animals , Hippocampus/metabolism , Mice , Memory/physiology , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Humans , Down-Regulation/genetics , Neurons/metabolism , Male , Mice, Inbred C57BL , Rats , CRISPR-Cas Systems , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neuronal Plasticity/genetics , HEK293 Cells , Histone Demethylases
15.
Adv Neurobiol ; 38: 131-145, 2024.
Article in English | MEDLINE | ID: mdl-39008014

ABSTRACT

The concept of the engram refers to structural and/or physiological changes that underlie memory associations during learning. However, the precise biological basis of the engram remains elusive, with ongoing controversy regarding whether it resides at the cellular level or within the synaptic connections between activated cells. Here, we briefly review the studies investigating the cellular engram and the challenges they encounter. Subsequently, we delve into the biological basis of the engram within synaptic connections. In this regard, we introduce the history of synaptic engrams and discuss recent findings suggesting that synaptic plasticity serves as a substrate for memory. Additionally, we provide an overview of key technologies utilized in the study of synaptic plasticity.


Subject(s)
Memory , Neuronal Plasticity , Synapses , Neuronal Plasticity/physiology , Humans , Synapses/metabolism , Synapses/physiology , Memory/physiology , Animals , Learning/physiology , Neurons/metabolism , Neurons/physiology
16.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000230

ABSTRACT

In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.


Subject(s)
Drosophila melanogaster , Olfactory Receptor Neurons , Smell , Animals , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/metabolism , Drosophila melanogaster/physiology , Smell/physiology , Odorants , Calcium/metabolism , Neuronal Plasticity/physiology , Receptors, Odorant/metabolism , Mitochondria/metabolism
17.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000331

ABSTRACT

Arsenic-containing hydrocarbons (AsHCs) are common in marine organisms. However, there is little research on their effects on the central nervous system's advanced activities, such as cognition. Bidirectional synaptic plasticity dynamically regulates cognition through the balance of long-term potentiation (LTP) and long-term depression (LTD). However, the effects of AsHCs on bidirectional synaptic plasticity and the underlying molecular mechanisms remain unexplored. This study provides the first evidence that 15 µg As L-1 AsHC 360 enhances bidirectional synaptic plasticity, occurring during the maintenance phase rather than the baseline phase. Further calcium gradient experiments hypothesize that AsHC 360 may enhance bidirectional synaptic plasticity by affecting calcium ion levels. The enhancement of bidirectional synaptic plasticity by 15 µg As L-1 AsHC 360 holds significant implications in improving cognitive function, treating neuro-psychiatric disorders, promoting neural recovery, and enhancing brain adaptability.


Subject(s)
Arsenic , Hippocampus , Neuronal Plasticity , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiology , Arsenic/pharmacology , Arsenic/toxicity , Neuronal Plasticity/drug effects , Long-Term Potentiation/drug effects , Hydrocarbons/pharmacology , Calcium/metabolism , Rats , Male , Long-Term Synaptic Depression/drug effects
18.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000085

ABSTRACT

Fragile X syndrome (FXS) is an intellectual developmental disorder characterized, inter alia, by deficits in the short-term processing of neural information, such as sensory processing and working memory. The primary cause of FXS is the loss of fragile X messenger ribonucleoprotein (FMRP), which is profoundly involved in synaptic function and plasticity. Short-term synaptic plasticity (STSP) may play important roles in functions that are affected by FXS. Recent evidence points to the crucial involvement of the presynaptic calcium sensor synaptotagmin-7 (Syt-7) in STSP. However, how the loss of FMRP affects STSP and Syt-7 have been insufficiently studied. Furthermore, males and females are affected differently by FXS, but the underlying mechanisms remain elusive. The aim of the present study was to investigate possible changes in STSP and the expression of Syt-7 in the dorsal (DH) and ventral (VH) hippocampus of adult males and females in a Fmr1-knockout (KO) rat model of FXS. We found that the paired-pulse ratio (PPR) and frequency facilitation/depression (FF/D), two forms of STSP, as well as the expression of Syt-7, are normal in adult KO males, but the PPR is increased in the ventral hippocampus of KO females (6.4 ± 3.7 vs. 18.3 ± 4.2 at 25 ms in wild type (WT) and KO, respectively). Furthermore, we found no gender-related differences, but did find robust region-dependent difference in the STSP (e.g., the PPR at 50 ms: 50.0 ± 5.5 vs. 17.6 ± 2.9 in DH and VH of WT male rats; 53.1 ± 3.6 vs. 19.3 ± 4.6 in DH and VH of WT female rats; 48.1 ± 2.3 vs. 19.1 ± 3.3 in DH and VH of KO male rats; and 51.2 ± 3.3 vs. 24.7 ± 4.3 in DH and VH of KO female rats). AMPA receptors are similarly expressed in the two hippocampal segments of the two genotypes and in both genders. Also, basal excitatory synaptic transmission is higher in males compared to females. Interestingly, we found more than a twofold higher level of Syt-7, not synaptotagmin-1, in the dorsal compared to the ventral hippocampus in the males of both genotypes (0.43 ± 0.1 vs. 0.16 ± 0.02 in DH and VH of WT male rats, and 0.6 ± 0.13 vs. 0.23 ± 0.04 in DH and VH of KO male rats) and in the WT females (0.97 ± 0.23 vs. 0.31 ± 0.09 in DH and VH). These results point to the susceptibility of the female ventral hippocampus to FMRP loss. Importantly, the different levels of Syt-7, which parallel the higher score of the dorsal vs. ventral hippocampus on synaptic facilitation, suggest that Syt-7 may play a pivotal role in defining the striking differences in STSP along the long axis of the hippocampus.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Hippocampus , Neuronal Plasticity , Synaptotagmins , Animals , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Male , Female , Rats , Hippocampus/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Synaptotagmins/metabolism , Synaptotagmins/genetics
19.
Commun Biol ; 7(1): 852, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997325

ABSTRACT

Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.


Subject(s)
Astrocytes , Neuronal Plasticity , Reversal Learning , Animals , Astrocytes/physiology , Astrocytes/metabolism , Neuronal Plasticity/physiology , Mice , Reversal Learning/physiology , Serine/metabolism , Models, Neurological , Receptors, N-Methyl-D-Aspartate/metabolism
20.
Aging (Albany NY) ; 16(13): 10882-10904, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968172

ABSTRACT

BACKGROUND: Chronic heart failure (CHF) impairs cognitive function, yet its effects on brain structure and underlying mechanisms remain elusive. This study aims to explore the mechanisms behind cognitive impairment. METHODS: CHF models in rats were induced by ligation of the left anterior descending coronary artery. Cardiac function was analyzed by cardiac ultrasound and hemodynamics. ELISA, immunofluorescence, Western blot, Golgi staining and transmission electron microscopy were performed on hippocampal tissues. The alterations of intestinal flora under the morbid state were investigated via 16S rRNA sequencing. The connection between neuroinflammation and synapses is confirmed by a co-culture system of BV2 microglia and HT22 cells in vitro. Results: CHF rats exhibited deteriorated cognitive behaviors. CHF induced neuronal structural disruption, loss of Nissl bodies, and synaptic damage, exhibiting alterations in multiple parameters. CHF rats showed increased hippocampal levels of inflammatory cytokines and activated microglia and astrocytes. Furthermore, the study highlights dysregulated PDE4-dependent cAMP signaling and intestinal flora dysbiosis, closely associated with neuroinflammation, and altered synaptic proteins. In vitro, microglial neuroinflammation impaired synaptic plasticity via PDE4-dependent cAMP signaling. CONCLUSIONS: Neuroinflammation worsens CHF-related cognitive impairment through neuroplasticity disorder, tied to intestinal flora dysbiosis. PDE4 emerges as a potential therapeutic target. These findings provide insightful perspectives on the heart-gut-brain axis.


Subject(s)
Cognitive Dysfunction , Dysbiosis , Gastrointestinal Microbiome , Heart Failure , Neuroinflammatory Diseases , Neuronal Plasticity , Animals , Heart Failure/microbiology , Heart Failure/physiopathology , Cognitive Dysfunction/microbiology , Dysbiosis/microbiology , Rats , Male , Hippocampus/metabolism , Hippocampus/pathology , Rats, Sprague-Dawley , Disease Models, Animal , Chronic Disease , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL