Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.555
1.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835076

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Brain-Derived Neurotrophic Factor , Lipopolysaccharides , Receptor, trkB , Animals , Humans , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lipopolysaccharides/pharmacology , Mice , Neuroinflammatory Diseases/drug therapy , Cell Line, Tumor , Cyclopentane Monoterpenes/pharmacology , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Olive Oil/pharmacology , Olive Oil/chemistry , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Aldehydes , Membrane Glycoproteins , Phenols
2.
Nat Commun ; 15(1): 3987, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734698

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Blood-Brain Barrier , Brain , Cerebrovascular Circulation , Nanoparticles , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Vinca Alkaloids/pharmacokinetics , Vinca Alkaloids/administration & dosage , Vinca Alkaloids/chemistry , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Cerebrovascular Circulation/drug effects , Male , Brain/metabolism , Brain/drug effects , Brain/blood supply , Humans , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Tissue Distribution , Drug Delivery Systems , Mice, Transgenic
3.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731421

The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.


Chemistry, Pharmaceutical , Piperidines , Piperidines/chemistry , Chemistry, Pharmaceutical/methods , Humans , Drug Design , Molecular Structure , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
4.
Pak J Pharm Sci ; 37(1): 53-63, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741400

The study focused on the neuroprotective role of Sorghum bicolor and vitamin C in the amelioration of oxidative stress and anxiety-like behavoiur induced by tramadol in male albino rats. The study design involved 7 groups and a control group with 5 male albino rats in each group. Tramadol (40 mg/kg) treatment was administered for 21 days. Tramadol 40mg/kg was administered in all groups. Pretreatment with varying doses of Sorghum bicolor and Vitamin C was done in three of the groups. Behavioral assessment of anxiety and locomotors actions of the groups were compared using Elevated Plus Maze (EPM) and Open Field Test (OFT). In conclusion, Sorghum bicolor and Vitamin C tramadol ameliorated oxidative stress and anxiety-like behaviour induced by tramadol. Pretreatment with Sorghum bicolor or vitamin C (100mg) can also reduced anxiogenic responses in male albino rats that are induced by chronic tramadol use.


Anxiety , Ascorbic Acid , Behavior, Animal , Oxidative Stress , Sorghum , Tramadol , Animals , Tramadol/pharmacology , Oxidative Stress/drug effects , Male , Ascorbic Acid/pharmacology , Anxiety/prevention & control , Anxiety/chemically induced , Anxiety/drug therapy , Rats , Behavior, Animal/drug effects , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Rats, Wistar , Analgesics, Opioid/pharmacology , Anti-Anxiety Agents/pharmacology , Maze Learning/drug effects
5.
Neuropharmacology ; 253: 109986, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705569

Stroke, the leading cause of disability and cognitive impairment, is also the second leading cause of death worldwide. The drugs with multi-targeted brain cytoprotective effects are increasingly being advocated for the treatment of stroke. Irisin, a newly discovered myokine produced by cleavage of fibronectin type III domain 5, has been shown to regulate glucose metabolism, mitochondrial energy, and fat browning. A large amount of evidence indicated that irisin could exert anti-inflammatory, anti-apoptotic, and antioxidant properties in a variety of diseases such as myocardial infarction, inflammatory bowel disease, lung injury, and kidney or liver disease. Studies have found that irisin is widely distributed in multiple brain regions and also plays an important regulatory role in the central nervous system. The most common cause of a stroke is a sudden blockage of an artery (ischemic stroke), and in some circumstances, a blood vessel rupture can also result in a stroke (hemorrhagic stroke). After a stroke, complicated pathophysiological processes lead to serious brain injury and neurological dysfunction. According to recent investigations, irisin may protect elements of the neurovascular unit by acting on multiple pathological processes in stroke. This review aims to outline the currently recognized effects of irisin on stroke and propose possible directions for future research.


Fibronectins , Neuroprotective Agents , Stroke , Fibronectins/metabolism , Humans , Animals , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Stroke/drug therapy , Stroke/metabolism , Brain/metabolism , Brain/drug effects
6.
J Neuroinflammation ; 21(1): 116, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702778

BACKGROUND: Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS: SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS: The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION: In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.


Ferroptosis , Mice, Inbred C57BL , Neuroinflammatory Diseases , Subarachnoid Hemorrhage , Animals , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/complications , Ferroptosis/drug effects , Ferroptosis/physiology , Mice , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/metabolism , Neurons/drug effects , Neurons/pathology
7.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745307

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Encephalomyelitis, Autoimmune, Experimental , Interleukin-9 , Mice, Inbred C57BL , Microglia , Synapses , Tumor Necrosis Factor-alpha , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Interleukin-9/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Membrane Glycoproteins/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Disease Models, Animal
8.
J Transl Med ; 22(1): 447, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741132

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Apigenin , Mitochondrial Dynamics , Neuroprotective Agents , Reperfusion Injury , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mitochondrial Dynamics/drug effects , Male , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Models, Biological , Mice, Inbred C57BL
9.
J Ethnopharmacol ; 331: 118273, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38703874

ETHNOPHARMACOLOGICAL RELEVANCE: Uncaria rhynchophylla (Miq.) Miq.ex Havil. was a classical medicinal plant exhibiting the properties of extinguishing wind, arresting convulsions, clearing heat and pacifying the liver. Clinically, it could be utilized for the treatment of central nervous system-related diseases, such as Alzheimer's disease. U. rhynchophylla (UR) and its major ingredient alkaloid compounds (URA) have been proved to exert significant neuroprotective effects. However, the potential mechanism aren't fully understood. AIM OF THE STUDY: This study systematically examined the therapeutic effects of URA on AD pathology in APP-PS1 mice, and revealed the potential mechanism of action. MATERIALS AND METHODS: The cognitive ability was evaluated by morris water maze test in APP-PS1 mice. The H&E staining was used to observe the tissue pathological changes. The ELISA kits were used to detect the level of inflammatory factors. The flow cytometry was used to analyze the percentage of CD4+ effector T cells (Teffs) in spleen. The immunofluorescent staining was performed to count the Teffs and microglia in brain. The protein expression was analyzed by western blot. In vitro, the lymphocyte proliferation induced by ConA was performed by CCK-8 kits. The IFN-γ, IL-17, and TNF-α production were detected by ELISA kits. The effects of URA on glycolysis and the involvement of PI3K/Akt/mTOR signaling pathway was analyzed by Lactic Acid assay kit and western blot in ConA-induced naive T cell. RESULTS: URA treatment improved AD pathology effectively as demonstrated by enhanced cognitive ability, decreased Aß deposit and Tau phosphorylation, as well as reduced neuron apoptosis. Also, the neuroinflammation was significantly alleviated as evidenced by decreased IFN-γ, IL-17 and increased IL-10, TGF-ß. Notably, URA treatment down-regulated the percentage of Teffs (Th1 and Th17) in spleen, and reduced the infiltration of Teffs and microglia in brain. Meanwhile, the Treg cell was up-regulated both in spleen and brain. In vitro, URA was capable of attenuating the spleen lymphocyte proliferation and release of inflammatory factors provoked by ConA. Interestingly, glycolysis was inhibited by URA treatment as evidenced by the decrease in Lactic Acid production and expression of HK2 and GLUT1 via regulating PI3K/Akt/mTOR signaling pathway in ConA-induced naive T cell. CONCLUSION: This study proved that URA could improve AD pathology which was possibly attributable to the restraints of CD4+ T cell mediated neuroinflammation via inhibiting glycolysis.


Alkaloids , Alzheimer Disease , CD4-Positive T-Lymphocytes , Glycolysis , Neuroinflammatory Diseases , Uncaria , Animals , Uncaria/chemistry , Glycolysis/drug effects , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , CD4-Positive T-Lymphocytes/drug effects , Alkaloids/pharmacology , Male , Neuroinflammatory Diseases/drug therapy , Mice, Transgenic , Disease Models, Animal , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
10.
Int J Biol Macromol ; 269(Pt 2): 132179, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723817

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder, marked by the degeneration of dopamine (DA) neurons in the substantia nigra (SN). Current evidence strongly suggests that neuroinflammation, primarily mediated by microglia, contributes to PD pathogenesis. Triggering receptor expressed on myeloid cells 2 (TREM2) might serve as a promising therapeutic target for PD due to its ability to suppress neuroinflammation. Dihydroquercetin (DHQ) is an important natural dihydroflavone and confers apparent anti-inflammatory, antioxidant and anti-fibrotic effects. Recently, DHQ-mediated neuroprotection was exhibited. However, the specific mechanisms of its neuroprotective effects remain incompletely elucidated. METHODS: In this study, rat models were utilized to induce damage to DA neurons using lipopolysaccharide (LPS) and 6-hydroxydopamine (6-OHDA) to assess the impacts of DHQ on the loss of DA neurons. Furthermore, DA neuronal MN9D cells and microglial BV2 cells were employed to investigate the function of TREM2 in DHQ-mediated DA neuroprotection. Finally, TREM2 knockout mice were used to investigate whether the neuroprotective effects mediated by DHQ through a mechanism dependent on TREM2. RESULTS: The main findings demonstrated that DHQ effectively protected DA neurons against neurotoxicity induced by LPS and 6-OHDA and inhibited microglia-elicited neuroinflammation. Meanwhile, DHQ promoted microglial TREM2 signaling activation. Notably, DHQ failed to reduce inflammatory cytokines release and further present neuroprotection from DA neurotoxicity upon TREM2 silencing. Similarly, DHQ didn't exert DA neuroprotection in TREM2 knockout mice. CONCLUSIONS: These findings suggest that DHQ exerted DA neuroprotection by regulating microglia TREM2 activation.


Dopaminergic Neurons , Membrane Glycoproteins , Microglia , Neuroprotective Agents , Quercetin , Receptors, Immunologic , Animals , Quercetin/pharmacology , Quercetin/analogs & derivatives , Receptors, Immunologic/metabolism , Membrane Glycoproteins/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Rats , Neuroprotective Agents/pharmacology , Microglia/drug effects , Microglia/metabolism , Mice , Male , Lipopolysaccharides , Mice, Knockout , Oxidopamine , Rats, Sprague-Dawley , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Cell Line
11.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38768086

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Alzheimer Disease , Mice, Transgenic , Pericytes , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Pericytes/drug effects , Pericytes/metabolism , Pericytes/pathology , Mice , Reactive Oxygen Species/metabolism , Curcumin/pharmacology , Curcumin/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Nanoparticles/chemistry , Vascular Cell Adhesion Molecule-1/metabolism , Humans , Peptides/chemistry , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry
12.
Neurochem Res ; 49(7): 1838-1850, 2024 Jul.
Article En | MEDLINE | ID: mdl-38727984

Menaquinone-4 (MK-4) is an isoform of vitamin K2 that has been shown to exert various biological actions besides its functions in blood coagulation and bone metabolism. Here we examined the effect of MK-4 on a mouse model of intracerebral hemorrhage (ICH). Daily oral administration of 200 mg/kg MK-4 starting from 3 h after induction of ICH by intrastriatal collagenase injection significantly ameliorated neurological deficits. Unexpectedly, MK-4 produced no significant effects on various histopathological parameters, including the decrease of remaining neurons and the increase of infiltrating neutrophils within the hematoma, the increased accumulation of activated microglia/macrophages and astrocytes around the hematoma, as well as the injury volume and brain swelling by hematoma formation. In addition, ICH-induced increases in nitrosative/oxidative stress reflected by changes in the immunoreactivities against nitrotyrosine and heme oxygenase-1 as well as the contents of malondialdehyde and glutathione were not significantly affected by MK-4. In contrast, MK-4 alleviated axon tract injury in the internal capsule as revealed by neurofilament-H immunofluorescence. Enhanced preservation of the corticospinal tract by MK-4 was also confirmed by retrograde labeling of neurons in the primary motor cortex innervating the spinal cord. These results suggest that MK-4 produces therapeutic effect on ICH by protecting structural integrity of the corticospinal tract.


Cerebral Hemorrhage , Pyramidal Tracts , Vitamin K 2 , Animals , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Male , Vitamin K 2/analogs & derivatives , Vitamin K 2/pharmacology , Vitamin K 2/therapeutic use , Pyramidal Tracts/drug effects , Pyramidal Tracts/metabolism , Pyramidal Tracts/pathology , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Nervous System Diseases/etiology , Nervous System Diseases/drug therapy
13.
Int Immunopharmacol ; 134: 112188, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38728880

Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3ß and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3ß signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.


Glycogen Synthase Kinase 3 beta , Macrophages , Microglia , NF-kappa B , Nerve Regeneration , Recovery of Function , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Animals , Microglia/drug effects , Microglia/metabolism , Macrophages/drug effects , Macrophages/immunology , Nerve Regeneration/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , NF-kappa B/metabolism , Recombinant Proteins/therapeutic use , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Axons/metabolism , Axons/drug effects , Axons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phenotype , Rats , Humans , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
14.
Drug Des Devel Ther ; 18: 1399-1414, 2024.
Article En | MEDLINE | ID: mdl-38707612

Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.


Hydrogen , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Hydrogen/pharmacology , Hydrogen/chemistry , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
15.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Article En | MEDLINE | ID: mdl-38742857

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Aluminum Chloride , Flavanones , Memory Disorders , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Aluminum Chloride/toxicity , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
16.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750264

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Cadmium , Inflammation , Oxidative Stress , Pyroptosis , Quetiapine Fumarate , Oxidative Stress/drug effects , Pyroptosis/drug effects , Animals , Cadmium/toxicity , Quetiapine Fumarate/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
17.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731472

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Amyloid beta-Peptides , Nanowires , Silicon , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Nanowires/chemistry , Animals , PC12 Cells , Rats , Silicon/chemistry , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
18.
Molecules ; 29(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38731618

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Indoles , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Indoles/chemistry , Indoles/pharmacology , Indoles/therapeutic use , Neurodegenerative Diseases/drug therapy , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemistry
19.
J Med Life ; 17(1): 24-27, 2024 Jan.
Article En | MEDLINE | ID: mdl-38737662

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Amino Acids , Peptides , Amino Acids/pharmacology , Humans , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Animals
20.
Neurosciences (Riyadh) ; 29(2): 103-112, 2024 May.
Article En | MEDLINE | ID: mdl-38740397

OBJECTIVES: To investigate the fundamental mechanisms of the neuroprotective impact of Astaxanthin (AST) in a mouse model of Alzheimer's disease (AD) induced by scopolamine. METHODS: This research constituted an in vivo animal study encompassing 36 adult male mice, divided into 6 groups: Control, 100 mg/kg AST, 2 mg/kg scopolamine (AD group), 100 mg/kg AST+2 mg/kg scopolamine, 3 mg/kg galantamine+2 mg/kg scopolamine, and 100 mg/kg AST+3 mg/kg galantamine+2 mg/kg scopolamine. After 14 days, the mice's short-term memory, hippocampus tissue, oxidative and inflammatory markers were evaluated. RESULTS: The AST demonstrated a beneficial influence on short-term memory and a reduction in acetylcholinesterase activity in the brain. It exhibited neuroprotective and anti-amyloidogenic properties, significantly decreased pro-inflammatory markers and oxidative stress, and reversed the decline of the Akt-1 and phosphorylated Akt pathway, a crucial regulator of abnormal tau. Furthermore, AST enhanced the effect of galantamine in reducing inflammation and oxidative stress. CONCLUSION: The findings indicate that AST may offer therapeutic benefits against cognitive dysfunction in AD. This is attributed to its ability to reduce oxidative stress, control neuroinflammation, and enhance Akt-1 and pAkt levels, thereby underscoring its potential in AD treatment strategies.


Alzheimer Disease , Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Scopolamine , Xanthophylls , Animals , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Male , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Acetylcholinesterase/metabolism , Galantamine/pharmacology , Galantamine/therapeutic use , Memory, Short-Term/drug effects
...