Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.138
1.
Oncoimmunology ; 13(1): 2363000, 2024.
Article En | MEDLINE | ID: mdl-38846085

NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between ß-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that ß-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with ß-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of ß-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. ß-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-ß expression and reduced TGF-ß cytokine expression, along with increased CD95 and CD54 surface markers. ß-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into ß-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by ß-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the ß-Lap-induced antitumor activity against NQO1-positive murine tumors.


NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Neutrophils , Tumor Microenvironment , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Neutrophil Infiltration/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Female , Phenotype
2.
Front Immunol ; 15: 1377409, 2024.
Article En | MEDLINE | ID: mdl-38846945

Introduction: Neutrophil extracellular traps (NETs) constitute a crucial element of the immune system, and dysfunction in immune responses is implicated in the susceptibility and progression of Parkinson's disease (PD). Nevertheless, the mechanism connecting PD and NETs remains unclear. This study aims to uncover potential NETs-related immune biomarkers and elucidate their role in PD pathogenesis. Methods: Through differential gene analysis of PD and NETs in GSE7621 datasets, we identified two PD subtypes and explored potential biological pathways. Subsequently, using ClusterWGCNA, we pinpointed pertinent genes and developed clinical diagnostic models. We then optimized the chosen model and evaluated its association with immune infiltration. Validation was conducted using the GSE20163 dataset. Screening the single-cell dataset GSE132758 revealed cell populations associated with the identified gene. Results: Our findings identified XGB as the optimal diagnostic model, with CAP2 identified as a pivotal gene. The risk model effectively predicted overall diagnosis rates, demonstrating a robust correlation between infiltrating immune cells and genes related to the XGB model. Discussion: In conclusions, we identified PD subtypes and diagnostic genes associated with NETs, highlighting CAP2 as a pivotal gene. These findings have significant implications for understanding potential molecular mechanisms and treatments for PD.


Extracellular Traps , Parkinson Disease , Humans , Parkinson Disease/immunology , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Extracellular Traps/immunology , Extracellular Traps/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Biomarkers , Gene Expression Profiling
3.
Sci Rep ; 14(1): 12873, 2024 06 05.
Article En | MEDLINE | ID: mdl-38834610

Acute Respiratory Distress Syndrome (ARDS) is a critical form of Acute Lung Injury (ALI), challenging clinical diagnosis and severity assessment. This study evaluates the potential utility of various hematological markers in burn-mediated ARDS, including Neutrophil-to-Lymphocyte Ratio (NLR), Mean Platelet Volume (MPV), MPV-to-Lymphocyte Ratio (MPVLR), Platelet count, and Platelet Distribution Width (PDW). Employing a retrospective analysis of data collected over 12 years, this study focuses on the relationship between these hematological markers and ARDS diagnosis and severity in hospitalized patients. The study establishes NLR as a reliable systemic inflammation marker associated with ARDS severity. Elevated MPV and MPVLR also emerged as significant markers correlating with adverse outcomes. These findings suggest these economical, routinely measured markers can enhance traditional clinical criteria, offering a more objective approach to ARDS diagnosis and severity assessment. Hematological markers such as NLR, MPV, MPVLR, Platelet count, and PDW could be invaluable in clinical settings for diagnosing and assessing ARDS severity. They offer a cost-effective, accessible means to improve diagnostic accuracy and patient stratification in ARDS. However, further prospective studies are necessary to confirm these findings and investigate their integration with other diagnostic tools in diverse clinical settings.


Biomarkers , Burns , Respiratory Distress Syndrome , Severity of Illness Index , Humans , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/diagnosis , Retrospective Studies , Female , Male , Biomarkers/blood , Middle Aged , Adult , Burns/blood , Burns/complications , Neutrophils/metabolism , Mean Platelet Volume , Platelet Count , Lymphocytes/metabolism , Aged
4.
J Transl Med ; 22(1): 526, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822352

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Antigens, CD34 , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/cytology , Antigens, CD34/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Proteomics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Gene Editing , Cell Degranulation , Stem Cells/metabolism , Stem Cells/cytology , Cytokines/metabolism , Phenotype
5.
Sci Rep ; 14(1): 12747, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830924

Cell directed therapy is an evolving therapeutic approach to treat organ dysfunction arising from hyperinflammation and cytokine storm by processing immune cells in an extracorporeal circuit. To investigate the mechanism of action of the Selective Cytopheretic Device (SCD), in vitro blood circuits were utilized to interrogate several aspects of the immunomodulatory therapy. SCD immunomodulatory activity is due to its effects on circulating neutrophils and monocytes in a low ionized calcium (iCa, Ca2+) blood circuit. Activated neutrophils adhere to the SCD fibers and degranulate with release of the constituents of their exocytotic vesicles. Adhered neutrophils in the low iCa environment display characteristics of apoptotic senescence. These neutrophils are subsequently released and returned back to circulation, demonstrating a clear potential for in vivo feedback. For monocytes, SCD treatment results in the selective adhesion of more pro-inflammatory subsets of the circulating monocyte pool, as demonstrated by both cell surface markers and cytokine secretory rates. Once bound, over time a subset of monocytes are released from the membrane with a less inflammatory functional phenotype. Similar methods to interrogate mechanism in vitro have been used to preliminarily confirm comparable findings in vivo. Therefore, the progressive amelioration of circulating leukocyte activation and immunomodulation of excessive inflammation observed in SCD clinical trials to date is likely due to this continuous autologous leukocyte processing.


Immunomodulation , Inflammation , Monocytes , Humans , Monocytes/immunology , Monocytes/metabolism , Inflammation/metabolism , Inflammation/immunology , Neutrophils/metabolism , Neutrophils/immunology , Cytokines/metabolism , Cell Adhesion , Cell- and Tissue-Based Therapy/methods , Calcium/metabolism
6.
Lipids Health Dis ; 23(1): 179, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862998

BACKGROUND: Dry eye disease (DED) is a complication of dyslipidemia (DLP) that is caused by metabolic syndrome and increased inflammation. This research aimed to assess leukocyte and systemic inflammation index ratios as potential biomarkers for systemic inflammation in dyslipidemia patients with dry eye disease (DLP-DED). METHODS: Several blood biomarkers were studied in 32 patients with DLP-DED (study group) and 63 patients with DLP-only (control group). The evaluated blood biomarkers included specific systemic inflammation index ratios, such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte and platelet ratio (NLPR), and lipid profiles, such as total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride (TG), albumin (ALB), and C-reactive protein (CRP) levels. RESULTS: Lymphocyte levels were significantly greater in the DLP-DED group than in the DLP-only group (P = 0.044). In addition, a significant negative correlation between HDL and the NLPR (P = 0.007; r= -0.428) and a significant negative correlation between the serum ALB concentration and the PLR (P = 0.008; r= -0.420) were identified as potential inflammatory predictors of DLP-DED. CONCLUSION: The findings of this study suggest that patients with DLP-DED may benefit from routine blood monitoring of their elevated lipid profile and blood inflammatory biomarkers, such as CRP, leukocytes, and systemic inflammation index ratios (NLR, PLR, MLR, and NLPR), to reduce the complications of DLP on ocular health. The correlation data suggest that the NLPR, PLR, serum ALB concentration, and serum HDL concentration may be valuable inflammatory biomarkers in DLP-DED patients. More research is required to ascertain the significance of the NLR, PLR, MLR, and NLPR and the additive role that leukocytes play.


Biomarkers , Dry Eye Syndromes , Dyslipidemias , Inflammation , Humans , Dyslipidemias/blood , Male , Female , Dry Eye Syndromes/blood , Middle Aged , Inflammation/blood , Case-Control Studies , Retrospective Studies , Biomarkers/blood , Aged , Cholesterol, HDL/blood , Triglycerides/blood , C-Reactive Protein/metabolism , Leukocytes/metabolism , Lymphocytes , Neutrophils/metabolism , Cholesterol, LDL/blood , Adult , Blood Platelets/pathology , Blood Platelets/metabolism
7.
Front Immunol ; 15: 1377817, 2024.
Article En | MEDLINE | ID: mdl-38868781

Background: Sepsis, causing serious organ and tissue damage and even death, has not been fully elucidated. Therefore, understanding the key mechanisms underlying sepsis-associated immune responses would lead to more potential therapeutic strategies. Methods: Single-cell RNA data of 4 sepsis patients and 2 healthy controls in the GSE167363 data set were studied. The pseudotemporal trajectory analyzed neutrophil clusters under sepsis. Using the hdWGCNA method, key gene modules of neutrophils were explored. Multiple machine learning methods were used to screen and validate hub genes for neutrophils. SCENIC was then used to explore transcription factors regulating hub genes. Finally, quantitative reverse transcription-polymerase chain reaction was to validate mRNA expression of hub genes in peripheral blood neutrophils of two mice sepsis models. Results: We discovered two novel neutrophil subtypes with a significant increase under sepsis. These two neutrophil subtypes were enriched in the late state during neutrophils differentiation. The hdWGCNA analysis of neutrophils unveiled that 3 distinct modules (Turquoise, brown, and blue modules) were closely correlated with two neutrophil subtypes. 8 machine learning methods revealed 8 hub genes with high accuracy and robustness (ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2). The SCENIC analysis revealed that APLP, CD177, GAPDH, S100A9, and STXBP2 were significant associated with various transcriptional factors. Finally, ALPL, CD177, S100A8, S100A9, and STXBP2 significantly up regulated in peripheral blood neutrophils of CLP and LPS-induced sepsis mice models. Conclusions: Our research discovered new clusters of neutrophils in sepsis. These five hub genes provide novel biomarkers targeting neutrophils for the treatment of sepsis.


Biomarkers , Neutrophils , Sepsis , Sepsis/immunology , Sepsis/genetics , Sepsis/blood , Sepsis/diagnosis , Neutrophils/immunology , Neutrophils/metabolism , Animals , Humans , Mice , Artificial Intelligence , Disease Models, Animal , Male , Machine Learning , Gene Expression Profiling , Mice, Inbred C57BL , Gene Regulatory Networks , Computational Biology/methods , Transcriptome , Multiomics
8.
Front Immunol ; 15: 1410158, 2024.
Article En | MEDLINE | ID: mdl-38873611

Background: Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic respiratory diseases and the fourth cause of mortality globally. Neutrophilic inflammation has a vital role in the occurrence and progression of COPD. This study aimed to identify the novel hub genes involved in neutrophilic inflammation in COPD through bioinformatic prediction and experimental validation. Methods: Both the single-cell RNA sequencing (scRNA-seq) dataset (GSE173896) and the RNA sequencing (RNA-seq) dataset (GSE57148) were downloaded from the Gene Expression Omnibus (GEO) database. The Seurat package was used for quality control, dimensions reduction, and cell identification of scRNA-seq. The irGSEA package was used for scoring individual cells. The Monocle2 package was used for the trajectory analysis of neutrophils. The CIBERSORT algorithm was used for analysis of immune cell infiltration in the lungs of COPD patients and controls in RNA-seq dataset, and weighted gene co-expression network analysis (WGCNA) correlated gene modules with neutrophil infiltration. The Mendelian randomization (MR) analysis explored the causal relationship between feature DEGs and COPD. The protein-protein interaction (PPI) network of novel hub genes was constructed, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate novel hub genes in clinical specimens. Results: In scRNA-seq, the gene sets upregulated in COPD samples were related to the neutrophilic inflammatory response and TNF-α activation of the NF-κB signaling pathway. In RNA-seq, immune infiltration analysis showed neutrophils were upregulated in COPD lung tissue. We combined data from differential and modular genes and identified 51 differential genes associated with neutrophilic inflammation. Using MR analysis, 6 genes were explored to be causally associated with COPD. Meanwhile, 11 hub genes were identified by PPI network analysis, and all of them were upregulated. qRT-PCR experiments validated 9 out of 11 genes in peripheral blood leukocytes of COPD patients. Furthermore, 5 genes negatively correlated with lung function in COPD patients. Finally, a network of transcription factors for NAMPT and PTGS2 was constructed. Conclusion: This study identified nine novel hub genes related to the neutrophilic inflammation in COPD, and two genes were risk factors of COPD, which may serve as potential biomarkers for the clinical severity of COPD.


Biomarkers , Neutrophils , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Gene Regulatory Networks , Protein Interaction Maps , Inflammation/genetics , Gene Expression Profiling , Computational Biology/methods , Male , Transcriptome , Databases, Genetic
9.
J Matern Fetal Neonatal Med ; 37(1): 2334850, 2024 Dec.
Article En | MEDLINE | ID: mdl-38839425

OBJECTIVES: Scientific evidence provides a widened view of differences in immune response between male and female neonates. The X-chromosome codes for several genes important in the innate immune response and neonatal innate immune cells express receptors for, and are inhibited by, maternal sex hormones. We hypothesized that sex differences in innate immune responses may be present in the neonatal population which may contribute to the increased susceptibility of premature males to sepsis. We aimed to examine the in vitro effect of pro-inflammatory stimuli and hormones in neutrophils and monocytes of male and female neonates, to examine the expression of X-linked genes involved in innate immunity and the miRNA profiles in these populations. METHODS: Preterm infants (n = 21) and term control (n = 19) infants were recruited from the Coombe Women and Infants University Hospital Dublin with ethical approval and explicit consent. The preterm neonates (eight female, 13 male) were recruited with a mean gestation at birth (mean ± SD) of 28 ± 2 weeks and corrected gestation at the time of sampling was 30 + 2.6 weeks. The mean birth weight of preterm neonates was 1084 ± 246 g. Peripheral blood samples were used to analyze immune cell phenotypes, miRNA human panel, and RNA profiles for inflammasome and inflammatory genes. RESULTS: Dividing neutrophil results by sex showed no differences in baseline CD11b between sexes among either term or preterm neonates. Examining monocyte CD11b by sex shows, that at baseline, total and classical monocytes have higher CD11b in preterm females than preterm males. Neutrophil TLR2 did not differ between sexes at baseline or following lipopolysaccharide (LPS) exposure. CD11b expression was higher in preterm male non-classical monocytes following Pam3CSK treatment when compared to females, a finding which is unique to our study. Preterm neonates had higher TLR2 expression at baseline in total monocytes, classical monocytes and non-classical monocytes than term. A sex difference was evident between preterm females and term females in TLR2 expression only. Hormone treatment showed no sex differences and there was no detectable difference between males and females in X-linked gene expression. Two miRNAs, miR-212-3p and miR-218-2-3p had significantly higher expression in preterm female than preterm male neonates. CONCLUSIONS: This study examined immune cell phenotypes and x-linked gene expression in preterm neonates and stratified according to gender. Our findings suggest that the responses of females mature with advancing gestation, whereas male term and preterm neonates have very similar responses. Female preterm neonates have improved monocyte activation than males, which likely reflects improved innate immune function as reflected clinically by their lower risk of sepsis. Dividing results by sex showed changes in preterm and term infants at baseline and following LPS stimulation, a difference which is reflected clinically by infection susceptibility. The sex difference noted is novel and may be limited to the preterm or early neonatal population as TLR2 expression on monocytes of older children does not differ between males and females. The differences shown in female and male innate immune cells likely reflect a superior innate immune defense system in females with sex differences in immune cell maturation. Existing human studies on sex differences in miRNA expression do not include preterm patients, and most frequently use either adult blood or cord blood. Our findings suggest that miRNA profiles are similar in neonates of opposite sexes at term but require further investigation in the preterm population. Our findings, while novel, provide only very limited insights into sex differences in infection susceptibility in the preterm population leaving many areas that require further study. These represent important areas for ongoing clinical and laboratory study and our findings represent an important contribution to exiting literature.


Immunity, Innate , Infant, Premature , Humans , Female , Male , Infant, Newborn , Immunity, Innate/genetics , Infant, Premature/immunology , Case-Control Studies , Neutrophils/metabolism , Neutrophils/immunology , Sex Factors , Monocytes/immunology , Monocytes/metabolism , MicroRNAs/genetics , Gonadal Steroid Hormones/blood , Genes, X-Linked
10.
Cell Commun Signal ; 22(1): 308, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831451

Gasdermin D (GSDMD) is emerging as an important player in autoimmune diseases, but its exact role in lupus nephritis (LN) remains controversial. Here, we identified markedly elevated GSDMD in human and mouse LN kidneys, predominantly in CD11b+ myeloid cells. Global or myeloid-conditional deletion of GSDMD was shown to exacerbate systemic autoimmunity and renal injury in lupus mice with both chronic graft-versus-host (cGVH) disease and nephrotoxic serum (NTS) nephritis. Interestingly, RNA sequencing and flow cytometry revealed that myeloid GSDMD deficiency enhanced granulopoiesis at the hematopoietic sites in LN mice, exhibiting remarkable enrichment of neutrophil-related genes, significant increases in total and immature neutrophils as well as granulocyte/macrophage progenitors (GMPs). GSDMD-deficient GMPs and all-trans-retinoic acid (ATRA)-stimulated human promyelocytes NB4 were further demonstrated to possess enhanced clonogenic and differentiation abilities compared with controls. Mechanistically, GSDMD knockdown promoted self-renewal and granulocyte differentiation by restricting calcium influx, contributing to granulopoiesis. Functionally, GSDMD deficiency led to increased pathogenic neutrophil extracellular traps (NETs) in lupus peripheral blood and bone marrow-derived neutrophils. Taken together, our data establish that GSDMD deletion accelerates LN development by promoting granulopoiesis in a calcium influx-regulated manner, unraveling its unrecognized critical role in LN pathogenesis.


Calcium , Lupus Nephritis , Phosphate-Binding Proteins , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/genetics , Animals , Humans , Mice , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/deficiency , Calcium/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Neutrophils/metabolism , Granulocytes/metabolism , Myeloid Cells/metabolism , Mice, Inbred C57BL , Female , Extracellular Traps/metabolism , Cell Differentiation , Gasdermins
11.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830855

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Galectin 3 , Lipopolysaccharides , Mice, Inbred C57BL , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Galectin 3/metabolism , Galectin 3/genetics , Neutrophils/immunology , Neutrophils/metabolism , Humans , Mice , Pseudomonas Infections/immunology , Male , Female , Respiratory Insufficiency/metabolism , Mice, Knockout , Phagocytosis , Immunity, Innate , Galectins/metabolism , Galectins/genetics
12.
Cells ; 13(11)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38891092

Binge drinking in obese patients positively correlates with accelerated liver damage and liver-related death. However, the underlying mechanism and the effect of alcohol use on the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) remain unexplored. Here, we show that short-term feeding of a metabolic-dysfunction-associated steatohepatitis (MASH) diet plus daily acute alcohol binges for three days induce liver injury and activation of the NLRP3 inflammasome. We identify that a MASH diet plus acute alcohol binges promote liver inflammation via increased infiltration of monocyte-derived macrophages, neutrophil recruitment, and NET release in the liver. Our results suggest that both monocyte-derived macrophages and neutrophils are activated via NLRP3, while the administration of MCC950, an NLRP3 inhibitor, dampens these effects.In this study, we reveal important intercellular communication between hepatocytes and neutrophils. We discover that the MASH diet plus alcohol induces IL-1ß via NLRP3 activation and that IL-1ß acts on hepatocytes and promotes the production of CXCL1 and LCN2. In turn, the increase in these neutrophils recruits chemokines and causes further infiltration and activation of neutrophils in the liver. In vivo administration of the NLRP3 inhibitor, MCC950, improves the early phase of MetALD by preventing liver damage, steatosis, inflammation, and immune cells recruitment.


Interleukin-1beta , Liver , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophil Infiltration , Neutrophils , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Liver/pathology , Liver/metabolism , Liver/drug effects , Interleukin-1beta/metabolism , Neutrophil Infiltration/drug effects , Male , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL , Mice , Inflammasomes/metabolism , Binge Drinking/pathology , Binge Drinking/complications , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Cell Communication/drug effects , Sulfones/pharmacology , Sulfonamides/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Furans/pharmacology , Humans , Indenes/pharmacology , Diet , Signal Transduction/drug effects , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Fatty Liver/pathology , Fatty Liver/metabolism , Sulfoxides/pharmacology
13.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38842874

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Antimicrobial Cationic Peptides , Cathelicidins , Diabetic Retinopathy , Extracellular Traps , Mice, Inbred C57BL , Neutrophils , Receptors, Formyl Peptide , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Extracellular Traps/metabolism , Animals , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Humans , Neutrophils/metabolism , Mice , Antimicrobial Cationic Peptides/metabolism , Male , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/genetics , Diabetes Mellitus, Experimental/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism , Female , Middle Aged
14.
Brain Res Bull ; 214: 111006, 2024 Aug.
Article En | MEDLINE | ID: mdl-38852654

BACKGROUND: Limb remote ischemic postconditioning (LRIP) and paeoniflorin (PF) both can ameliorate cerebral ischemia reperfusion (I/R) injury. At present, whether LRIP combined with PF can achieve better therapeutic effect is unknown. PURPOSE: This study explored the alleviating effect and mechanism of LRIP in combination with PF on cerebral I/R injury in rats. METHODS: Middle cerebral artery occlusion (MCAO) surgery was performed on rats except Sham group. Then PF (2.5 mg/kg, 5 mg/kg, 10 mg/kg) was administrated by intraperitoneal injection 10 min before the start of reperfusion. LRIP was operated on the left femoral artery at 0 h of reperfusion. Behavioral testing was used to assess neurological impairment, while TTC staining was used to examine infarct volume. Protein expression of MyD88, TRAF6, p38-MAPK and phosphorylation of p47phox in neutrophils from rat peripheral blood were tested by Western blot. Rat bone marrow neutrophils were extracted and incubated for 24 h with serum from rats after LRIP combined with PF. p38 MAPK inhibitor group was administrated SB203580 while the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor group was administrated Apocynin. Neutrophils were stimulated by fMLP (10 µM). Reactive oxygen species (ROS) production and protein expression of MyD88, TRAF6, p38 MAPK, and p47phox (ser 304 and ser 345) were detected. RESULTS: LRIP combined with PF (5 mg/kg) reduced cerebral infarct volume, ameliorated neurological deficit score (NDS), decreased fMLP-stimulated ROS release and downregulated the protein expression of MyD88, TRAF6, p38-MAPK and phosphorylation of p47phox (ser 304 and ser 345) in neutrophils. CONCLUSION: The protective effect of LRIP combined with PF on cerebral I/R injury was better than either alone. Taken together, we provided solid evidence to demonstrate that the combination of LRIP and PF had potential to alleviate cerebral I/R injury, which was regulated by MyD88-TRAF6-p38 MAPK pathway and neutrophil NADPH oxidase pathway.


Brain Ischemia , Glucosides , Ischemic Postconditioning , Monoterpenes , Neutrophils , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Neutrophils/drug effects , Neutrophils/metabolism , Male , Ischemic Postconditioning/methods , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Glucosides/pharmacology , Rats , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , NADPH Oxidases/metabolism , Infarction, Middle Cerebral Artery , p38 Mitogen-Activated Protein Kinases/metabolism , NADP/metabolism , Signal Transduction/drug effects
15.
Redox Biol ; 74: 103231, 2024 Aug.
Article En | MEDLINE | ID: mdl-38861835

Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.


Cathepsin C , Extracellular Traps , Histones , Macrophages, Alveolar , Neutrophils , Reactive Oxygen Species , Reperfusion Injury , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Macrophages, Alveolar/metabolism , Extracellular Traps/metabolism , Animals , Histones/metabolism , Neutrophils/metabolism , Cathepsin C/metabolism , Cathepsin C/genetics , Reactive Oxygen Species/metabolism , Mice , NADPH Oxidases/metabolism , Male , Humans , Lung/metabolism , Lung/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/etiology , p38 Mitogen-Activated Protein Kinases/metabolism , Primary Graft Dysfunction/metabolism , Primary Graft Dysfunction/pathology
16.
J Hematol Oncol ; 17(1): 43, 2024 Jun 09.
Article En | MEDLINE | ID: mdl-38853260

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Inflammation , Janus Kinase 2 , Myeloproliferative Disorders , Neutrophils , Animals , Neutrophils/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Calreticulin/genetics , Calreticulin/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Cytokines/metabolism
17.
ACS Nano ; 18(24): 15432-15451, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38842256

Neutrophil extracellular traps (NETs) severely affect tumor metastasis through a self-perpetuating feedback loop involving two key steps: (1) mitochondrial aerobic respiration-induced hypoxia promotes NET formation and (2) NETs enhance mitochondrial metabolism to exacerbate hypoxia. Herein, we propose a two-pronged approach with the activity of NET-degrading and mitochondrion-damaging by simultaneously targeting drugs to NETs and tumor mitochondria of this loop. In addition to specifically recognizing and eliminating extant NETs, the NET-targeting nanoparticle also reduces NET-induced mitochondrial biogenesis, thus inhibiting the initial step of the feedback loop and mitigating extant NETs' impact on tumor metastasis. Simultaneously, the mitochondrion-targeting system intercepts mitochondrial metabolism and alleviates tumor hypoxia, inhibiting neutrophil infiltration and subsequent NET formation, which reduces the source of NETs and disrupts another step of the self-amplifying feedback loop. Together, the combination significantly reduces the formation of NET-tumor cell clusters by disrupting the interaction between NETs and tumor mitochondria, thereby impeding the metastatic cascade including tumor invasion, hematogenous spread, and distant colonization. This work represents an innovative attempt to disrupt the feedback loop in tumor metastasis, offering a promising therapeutic approach restraining NET-assisted metastasis.


Extracellular Traps , Mitochondria , Neoplasm Metastasis , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Mice , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Nanoparticles/chemistry , Feedback, Physiological , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Drug Delivery Systems
18.
Sci Rep ; 14(1): 14216, 2024 06 20.
Article En | MEDLINE | ID: mdl-38902284

Breast cancer, as the most common cancer, has surpassed lung cancer worldwide. The neutrophil-to-lymphocyte ratio (NLR) has been linked to the onset of cancer and its prognosis in recent studies. However, quite a few studies have shown that there is a link between NLR and lymph node metastases in cN0 hormone receptor-positive (HR(+)) breast cancer. The purpose of this study was to evaluate the correlation between NLR and lymph node metastases in cN0 HR(+) breast cancer patients. From January 2012 to January 2022, 220 patients with cN0 HR(+) invasive breast cancers were enrolled in this study. The relationship between NLR and pathological data was statistically examined. The receiver operating characteristic (ROC) curve was used to determine the optimal cutoff of NLR, a chi-squared test was used for the univariate analysis, and logistic analysis was used for the multivariate analysis. The NLR had an optimal cutoff of 2.4 when the Jorden index was at a maximum. Patients with axillary lymph node metastases had a higher NLR (P < 0.05). A Univariate analysis showed that there were significant differences in cN0 HR(+) breast cancer with axillary lymph node metastasis among different clinical stages, histological grades, Ki-67 levels, tumor sizes, and NLR levels (P < 0.05). Clinical stage, tumor size, and NLR were found to be independent risk factors for lymph node metastases in multifactorial analysis. In cN0 HR(+) breast cancer, NLR is an independent risk factor for lymph node metastases. An NLR ≥ 2.4 indicates an increased probability of lymph node metastases. An elevated preoperative NLR has a high predictive value for axillary lymph node metastases.


Breast Neoplasms , Lymphatic Metastasis , Lymphocytes , Neutrophils , Humans , Breast Neoplasms/pathology , Breast Neoplasms/blood , Breast Neoplasms/metabolism , Female , Neutrophils/metabolism , Neutrophils/pathology , Middle Aged , Lymphocytes/metabolism , Lymphocytes/pathology , Adult , Aged , Prognosis , ROC Curve , Receptors, Estrogen/metabolism , Preoperative Period , Lymph Nodes/pathology , Retrospective Studies , Neoplasm Staging
19.
Cell Commun Signal ; 22(1): 340, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38907234

BACKGROUND: Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood. METHODS: Clinical data were analyzed to investigate the role of neutrophils in breast cancer. In vivo mouse model and in vitro co-culture system were used for mechanism researches. Blocking experiments were further performed to identify therapeutic agents against TNBC. RESULTS: TNBC cells secreted GM-CSF to sustain the survival of mature neutrophils and upregulated CD11b expression. Through CD11b, neutrophils specifically binded to ICAM1 on TNBC cells, facilitating adhesion. Transcriptomic sequencing combined with human and murine functional experiments revealed that neutrophils, through direct CD11b-ICAM1 interactions, activated the MAPK signaling pathway in TNBC cells, thereby enhancing tumor cell invasion and migration. Atorvastatin effectively inhibited ICAM1 expression in tumor cells, and tumor cells with ICAM1 knockout or treated with atorvastatin were unresponsive to neutrophil activation. The MAPK pathway and MMP9 expression were significantly inhibited in the tumor tissues of TNBC patients treated with atorvastatin. CONCLUSIONS: Targeting CD11b-ICAM1 with atorvastatin represented a potential clinical approach to reduce the malignant characteristics of TNBC.


CD11b Antigen , Cell Adhesion , Intercellular Adhesion Molecule-1 , Neutrophils , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Neutrophils/metabolism , Humans , Animals , CD11b Antigen/metabolism , CD11b Antigen/genetics , Female , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Mice , Cell Line, Tumor , Disease Progression , Cell Movement
20.
Cell Commun Signal ; 22(1): 341, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38907250

BACKGROUND: Pseudomonas aeruginosa (PA) is an opportunistic pathogen that can cause sight threatening infections in the eye and fatal infections in the cystic fibrosis airway. Extracellular vesicles (EVs) are released by host cells during infection and by the bacteria themselves; however, there are no studies on the composition and functional role of host-derived EVs during PA infection of the eye or lung. Here we investigated the composition and capacity of EVs released by PA infected epithelial cells to modulate innate immune responses in host cells. METHODS: Human telomerase immortalized corneal epithelial cells (hTCEpi) cells and human telomerase immortalized bronchial epithelial cells (HBECs) were treated with a standard invasive test strain of Pseudomonas aeruginosa, PAO1, for 6 h. Host derived EVs were isolated by qEV size exclusion chromatography. EV proteomic profiles during infection were compared using mass spectrometry and functional studies were carried out using hTCEpi cells, HBECs, differentiated neutrophil-like HL-60 cells, and primary human neutrophils isolated from peripheral blood. RESULTS: EVs released from PA infected corneal epithelial cells increased pro-inflammatory cytokine production in naïve corneal epithelial cells and induced neutrophil chemotaxis independent of cytokine production. The EVs released from PA infected bronchial epithelial cells were also chemotactic although they failed to induce cytokine secretion from naïve HBECs. At the proteomic level, EVs derived from PA infected corneal epithelial cells exhibited lower complexity compared to bronchial epithelial cells, with the latter having reduced protein expression compared to the non-infected control. CONCLUSIONS: This is the first study to comprehensively profile EVs released by corneal and bronchial epithelial cells during Pseudomonas infection. Together, these findings show that EVs released by PA infected corneal and bronchial epithelial cells function as potent mediators of neutrophil migration, contributing to the exuberant neutrophil response that occurs during infection in these tissues.


Epithelial Cells , Extracellular Vesicles , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/physiology , Extracellular Vesicles/metabolism , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Cytokines/metabolism , HL-60 Cells
...