Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 846
1.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836885

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Newcastle Disease , Newcastle disease virus , Temperature , Viral Vaccines , Newcastle disease virus/immunology , Newcastle disease virus/chemistry , Pilot Projects , Newcastle Disease/prevention & control , Newcastle Disease/virology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Vacuum , Animals , Chickens , Desiccation , China , Drug Stability , Viral Load
2.
Viruses ; 16(5)2024 05 16.
Article En | MEDLINE | ID: mdl-38793675

The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.


Genetic Variation , Genotype , Newcastle Disease , Newcastle disease virus , Phylogeny , Newcastle disease virus/genetics , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Africa/epidemiology , Animals , Genome, Viral , Vaccination/veterinary , Chickens/virology , Viral Vaccines/genetics , Viral Vaccines/immunology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Phylogeography
3.
Sci Rep ; 14(1): 10741, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730036

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Columbidae , Genome, Viral , Newcastle Disease , Newcastle disease virus , Phylogeny , Animals , Columbidae/virology , China/epidemiology , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Newcastle disease virus/classification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Genotype , Farms , Meat/virology
4.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38708767

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Newcastle disease virus/pathogenicity , Newcastle disease virus/genetics , Newcastle disease virus/classification , Animals , Newcastle Disease/virology , Newcastle Disease/epidemiology , Angola/epidemiology , Virulence , Poultry Diseases/virology , Poultry Diseases/epidemiology , Hot Temperature
5.
Vet Res ; 55(1): 58, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715081

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
6.
Viruses ; 16(4)2024 04 10.
Article En | MEDLINE | ID: mdl-38675926

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Newcastle disease virus , Viral Proteins , Virus Replication , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Newcastle disease virus/metabolism , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Newcastle Disease/virology , Newcastle Disease/metabolism , Cell Line , Gene Expression Regulation, Viral , RNA, Viral/genetics , RNA, Viral/metabolism , Chickens , Virulence , Protein Binding , Mutation
7.
J Virol ; 98(5): e0001624, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563732

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Calcineurin , Calcium , Immunity, Innate , Newcastle disease virus , Protein Serine-Threonine Kinases , Virus Replication , Animals , Humans , Calcineurin/metabolism , Calcium/metabolism , Calcium Signaling , Cell Line , HEK293 Cells , Interferon Type I/metabolism , Interferon Type I/immunology , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/metabolism , Newcastle disease virus/immunology , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
8.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38334327

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Macrophages , Newcastle Disease , Newcastle disease virus , Signal Transduction , Virus Internalization , Animals , Endocytosis , Gangliosides/metabolism , Macrophages/metabolism , Macrophages/virology , Newcastle Disease/virology , Newcastle disease virus/physiology , rho GTP-Binding Proteins/metabolism
9.
J Virol ; 97(5): e0032423, 2023 05 31.
Article En | MEDLINE | ID: mdl-37042750

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Newcastle Disease , Peptide Hydrolases , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Antibodies, Viral , Chickens , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle disease virus/physiology , Peptide Hydrolases/metabolism , Poultry Diseases/immunology , Poultry Diseases/virology , Vaccines, Attenuated , Viral Vaccines/administration & dosage , Virulence
10.
J Virol ; 97(3): e0001623, 2023 03 30.
Article En | MEDLINE | ID: mdl-36794935

Viruses require host cell metabolic reprogramming to satisfy their replication demands; however, the mechanism by which the Newcastle disease virus (NDV) remodels nucleotide metabolism to support self-replication remains unknown. In this study, we demonstrate that NDV relies on the oxidative pentose phosphate pathway (oxPPP) and the folate-mediated one-carbon metabolic pathway to support replication. In concert with [1,2-13C2] glucose metabolic flow, NDV used oxPPP to promote pentose phosphate synthesis and to increase antioxidant NADPH production. Metabolic flux experiments using [2,3,3-2H] serine revealed that NDV increased one-carbon (1C) unit synthesis flux through the mitochondrial 1C pathway. Interestingly, methylenetetrahydrofolate dehydrogenase (MTHFD2) was upregulated as a compensatory mechanism for insufficient serine availability. Unexpectedly, direct knockdown of enzymes in the one-carbon metabolic pathway, except for cytosolic MTHFD1, significantly inhibited NDV replication. Specific complementation rescue experiments on small interfering RNA (siRNA)-mediated knockdown further revealed that only a knockdown of MTHFD2 strongly restrained NDV replication and was rescued by formate and extracellular nucleotides. These findings indicated that NDV replication relies on MTHFD2 to maintain nucleotide availability. Notably, nuclear MTHFD2 expression was increased during NDV infection and could represent a pathway by which NDV steals nucleotides from the nucleus. Collectively, these data reveal that NDV replication is regulated by the c-Myc-mediated 1C metabolic pathway and that the mechanism of nucleotide synthesis for viral replication is regulated by MTHFD2. IMPORTANCE Newcastle disease virus (NDV) is a dominant vector for vaccine and gene therapy that accommodates foreign genes well but can only infect mammalian cells that have undergone cancerous transformation. Understanding the remodeling of nucleotide metabolic pathways in host cells by NDV proliferation provides a new perspective for the precise use of NDV as a vector or in antiviral research. In this study, we demonstrated that NDV replication is strictly dependent on pathways involved in redox homeostasis in the nucleotide synthesis pathway, including the oxPPP and the mitochondrial one-carbon pathway. Further investigation revealed the potential involvement of NDV replication-dependent nucleotide availability in promoting MTHFD2 nuclear localization. Our findings highlight the differential dependence of NDV on enzymes for one-carbon metabolism, and the unique mechanism of action of MTHFD2 in viral replication, thereby providing a novel target for antiviral or oncolytic virus therapy.


Methylenetetrahydrofolate Dehydrogenase (NADP) , Newcastle Disease , Newcastle disease virus , Virus Replication , Animals , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Newcastle Disease/enzymology , Newcastle Disease/physiopathology , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , Nucleotides/metabolism , Serine/metabolism , Virus Replication/genetics , Cell Line , A549 Cells , Humans , Mesocricetus , Gene Knockdown Techniques , Protein Transport/genetics , Mitochondria/enzymology , Up-Regulation/physiology
11.
Arch Razi Inst ; 78(6): 1861-1867, 2023 Dec.
Article En | MEDLINE | ID: mdl-38828165

The Newcastle disease virus (NDV) is a member of the paramyxoviridea family and has great significance in the poultry production industry, which spends a huge amount of money every year on prevention and economic loss caused by this disease. A wide range of symptoms, including respiratory and nervous disorders, as well as hemorrhage lesions in the digestive system are observed in this disease. This research investigated the presence of NDV in 10 poultry farms with high mortality and respiratory symptoms in Kerman province, Iran (between January 2020 to October 2020). Tissue samples were collected from mortalities of 10 flocks in different parts of Kerman province and inoculated into embryonated eggs. The NDV was detected in the allantoic fluid by polymerization of partial F gene protein. The virus was positive in the samples of 5 flocks. The results of the phylogenetic analysis also showed that the sequence of isolates was related to genotype II (three isolates) and sub-genotype VIId (two isolates) of NDVs. It was also found that the amino acid sequences of sub-genotype VIId isolates in the 113 to 116 positions were RRQKR and in the 117 positions was the presence of F (phenylalanine). The other three isolates were grouped with B1, Clone, and LaSota vaccines, and the amino acid sequence in the cleavage site included GRQGRL. The similarity between the studied isolates was 99.6%-98.4%. In this study, virulent viruses were isolated and tracked in broiler farms that were vaccinated with live and killed vaccines. It is recommended to pay more attention to designing the vaccination program.


Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Animals , Newcastle disease virus/genetics , Newcastle Disease/virology , Newcastle Disease/epidemiology , Newcastle Disease/mortality , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/mortality , Iran/epidemiology , Phylogeny , Genotype
12.
Arch Razi Inst ; 78(6): 1794-1803, 2023 Dec.
Article En | MEDLINE | ID: mdl-38828167

Newcastle disease (ND) is an economically significant and extremely spreadable viral illness affecting a wide variety of avian species. ND can rapidly spread within poultry farms and result in considerable economic losses for the global poultry industry. This disease is endemic in Iran, and despite intensive vaccination efforts in the poultry industry, outbreaks of ND occur unexpectedly. This study aimed to isolate the Newcastle disease virus (NDV) from poultry farms with breathing problems in Markazi province, Iran, and investigate the evolutionary relationship and molecular characteristics of the isolates during 2017-2019. To this end, tissue samples (lung, brain, and trachea) were taken from 42 broiler farms exhibiting respiratory symptoms. The samples were inoculated into 9-11-day-old embryonated eggs, and the virus was isolated from 20 (47.6%) of the 42 farms. Subsequently, RT-PCR was used to amplify partial fusion gene sequences from the new isolates. The amplified products were sequenced and compared phylogenetically to the standard pilot dataset (125 selected sequences) generated by the NDV consortium. As determined by phylogenetic analysis, all nine isolates belonged to subgenotype VII.1.1 of genotype VII and were highly similar to isolates from other parts of Iran and China. Moreover, all isolates possessed a polybasic cleavage site motif (112RRQKRF117), characteristic of virulent strains. Furthermore, the present isolates shared a high nucleotide identity (96%) with viruses previously isolated from other provinces of Iran, as determined by BLAST searches and multiple alignments. In addition, they shared a high degree of sequence similarity but were distinct from the existing NDV vaccines. Therefore, the genetic dissimilarity between current vaccine strains and circulating NDVs must be considered in vaccination programs.


Chickens , Newcastle Disease , Newcastle disease virus , Phylogeny , Poultry Diseases , Animals , Iran/epidemiology , Newcastle disease virus/genetics , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Viral Fusion Proteins/genetics , Genotype
13.
PLoS One ; 17(2): e0264028, 2022.
Article En | MEDLINE | ID: mdl-35171961

Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a contagious disease that affects a variety of domestic and wild avian species. Though ND is vaccine-preventable, it is a persistent threat to poultry industry across the globe. The disease represents a leading cause of morbidity and mortality in chickens. To better understand the epidemiology of NDV among commercial and backyard chickens of Odisha, where chicken farming is being prioritized to assist with poverty alleviation, a cross-sectional study was conducted in two distinct seasons during 2018. Choanal swabs (n = 1361) from live birds (commercial layers, broilers, and backyard chicken) and tracheal tissues from dead birds (n = 10) were collected and tested by real-time reverse transcription polymerase chain reaction (RT-PCR) for the presence of matrix (M) and fusion (F) genes of NDV. Risk factors at the flock and individual bird levels (health status, ND vaccination status, geographical zone, management system, and housing) were assessed using multivariable logistic regression analyses. Of the 1371 samples tested, 160 were positive for M gene amplification indicating an overall apparent prevalence of 11.7% (95% CI 10.1-13.5%). Circulation of virulent NDV strains was also evident with apparent prevalence of 8.1% (13/160; 95% CI: 4.8-13.4%). In addition, commercial birds had significantly higher odds (75%) of being infected with NDV as compared to backyard poultry (p = 0.01). This study helps fill a knowledge gap in the prevalence and distribution of NDV in apparently healthy birds in eastern India, and provides a framework for future longitudinal research of NDV risk and mitigation in targeted geographies-a step forward for effective control of ND in Odisha.


Antibodies, Viral/blood , Newcastle Disease/epidemiology , Newcastle disease virus/isolation & purification , Poultry Diseases/epidemiology , Viral Proteins/genetics , Animals , Antibodies, Viral/immunology , Chickens , Cross-Sectional Studies , Female , India/epidemiology , Male , Newcastle Disease/genetics , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Poultry Diseases/genetics , Poultry Diseases/immunology , Poultry Diseases/virology , Risk Factors
14.
J Virol ; 96(2): e0162921, 2022 01 26.
Article En | MEDLINE | ID: mdl-34705566

The Newcastle disease virus (NDV) matrix (M) protein is the pivotal element for viral assembly, budding, and proliferation. It traffics through the cellular nucleus but performs its primary function in the cytoplasm. To investigate the biological importance of M protein nuclear-cytoplasmic trafficking and the mechanism involved, the regulatory motif nuclear export signal (NES) and nuclear localization signal (NLS) were analyzed. Here, two types of combined NLSs and NESs were identified within the NDV-M protein. The Herts/33-type M protein was found to mediate efficient nuclear export and stable virus-like particle (VLP) release, while the LaSota-type M protein was retained mostly in the nuclei and showed retarded VLP production. Two critical residues, namely, 247 and 263, within the motif were identified and associated with nuclear export efficiency. We identified, for the first time, residue 247 as an important monoubiquitination site, of which its modification regulates the nuclear-cytoplasmic trafficking of NDV-M. Subsequently, mutant LaSota strains were rescued via reverse genetics, which contained either single or double amino acid substitutions that were similar to the M of Herts/33. The rescued LaSota (rLaSota) strains rLaSota-R247K, -S263R, and -double mutation (DM) showed about 2-fold higher hemagglutination (HA) titers and 10-fold higher 50% egg infective dose (EID50) titers than wild-type (wt) rLaSota. Furthermore, the mean death time (MDT) and intracerebral pathogenicity index (ICPI) values of those recombinant viruses were slightly higher than those of wt rLaSota probably due to their higher proliferation rates. Our findings contribute to a better understanding of the molecular mechanism of the replication and pathogenicity of NDV and even those of all other paramyxoviruses. This information is beneficial for the development of vaccines and therapies for paramyxoviruses. IMPORTANCE Newcastle disease virus (NDV) is a pathogen that is lethal to birds and causes heavy losses in the poultry industry worldwide. The World Organization for Animal Health (OIE) ranked Newcastle disease (ND) as the third most significant poultry disease and the eighth most important wildlife disease in the World Livestock Disease Atlas in 2011. The matrix (M) protein of NDV is very important for viral assembly and maturation. It is interesting that M proteins enter the cellular nucleus before performing their primary function in the cytoplasm. We found that NDV-M has a combined nuclear import and export signal. The ubiquitin modification of a lysine residue within this signal is critical for quick, efficient nuclear export and subsequent viral production. Our findings shed new light on viral replication and open up new possibilities for therapeutics against NDV and other paramyxoviruses; furthermore, we demonstrate a novel approach for improving paramyxovirus vaccines.


Cell Nucleus/metabolism , Newcastle disease virus/physiology , Newcastle disease virus/pathogenicity , Ubiquitination , Viral Matrix Proteins/metabolism , Virus Replication , Animals , Chickens , Cytoplasm/metabolism , Lysine , Models, Molecular , Mutation , Newcastle Disease/metabolism , Newcastle Disease/virology , Newcastle disease virus/metabolism , Nuclear Export Signals , Nuclear Localization Signals , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virulence , Virus Release
15.
Vet Res ; 52(1): 147, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34930432

The fusion (F) and haemagglutinin-neuraminidase (HN) proteins of Newcastle disease virus (NDV) are viral entry proteins and are recognized as the major virulence determinants. Previously, a lentogenic NDV virus (CE16) was derived from a mesogenic strain (CI10) through sequential passages in chick embryos. Whole-genome sequence analysis revealed that the two homologous strains shared the same F protein but differed in HN with two amino acid (aa) substitutions (A215G and T430A). To elucidate the molecular reasons for virulence attenuation, two original plasmids (HN-CI10 and HN-CE16) and two single-point mutants (G215A and A430T) reverse-mutated from HN-CE16 were constructed to analyse the known biological functions of HN. The results showed that the A430T substitution significantly weakened the haemadsorption (HAd) activity, increased the neuraminidase (NA) activity, improved the fusion-promoting activity, and enhanced the cleavage-promoting activity of HN-CE16. However, G215A failed to induce obvious functional changes. Therefore, the aa residue HN430 may play a key role in determining virulence. To test this hypothesis, further studies on A430T were conducted through reverse genetics using an infectious cDNA clone. At the viral level, the A430T-mutated virus showed dramatic promotion of viral plaque formation, propagation, and pathogenicity in vitro and in vivo. This study demonstrates a new virulence site associated with HN protein functions, viral propagation, and pathogenicity. All these findings could lay a foundation for illuminating the molecular mechanism of NDV virulence.


Amino Acids , HN Protein , Newcastle Disease , Newcastle disease virus , Virulence , Amino Acids/genetics , Animals , Chick Embryo , Chickens , HN Protein/genetics , Mutation , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Virulence/genetics
16.
Viruses ; 13(12)2021 12 02.
Article En | MEDLINE | ID: mdl-34960678

The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.


Alternative Splicing , Chickens/genetics , Chickens/virology , Host Microbial Interactions , Poultry Diseases/genetics , Virus Diseases/veterinary , 3' Untranslated Regions , Animals , Cells, Cultured , Newcastle Disease/genetics , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Polyadenylation , Poultry Diseases/virology , RNA Splicing Factors/genetics , RNA-Seq , Spliceosomes/genetics , Transcriptome , Virus Diseases/virology
17.
Viruses ; 13(12)2021 12 06.
Article En | MEDLINE | ID: mdl-34960715

Newcastle disease virus (NDV) can infect over 250 bird species with variable pathogenicity; it can also infect humans in rare cases. The present study investigated an outbreak in feral pigeons in São Paulo city, Brazil, in 2019. Affected birds displayed neurological signs, and hemorrhages were observed in different tissues. Histopathology changes with infiltration of mononuclear inflammatory cells were also found in the brain, kidney, proventriculus, heart, and spleen. NDV staining was detected by immunohistochemistry. Twenty-seven out of thirty-four tested samples (swabs and tissues) were positive for Newcastle disease virus by RT-qPCR test, targeting the M gene. One isolate, obtained from a pool of positive swab samples, was characterized by the intracerebral pathogenicity index (ICPI) and the hemagglutination inhibition (HI) tests. This isolate had an ICPI of 0.99, confirming a virulent NDV strain. The monoclonal antibody 617/161, which recognizes a distinct epitope in pigeon NDV strains, inhibited the isolate with an HI titer of 512. A complete genome of NDV was obtained using next-generation sequencing. Phylogenetic analysis based on the complete CDS F gene grouped the detected isolate with other viruses from subgenotype VI.2.1.2, class II, including one previously reported in Southern Brazil in 2014. This study reports a comprehensive characterization of the subgenotype VI.2.1.2, which seems to have been circulating in Brazilian urban areas since 2014. Due to the zoonotic risk of NDV, virus surveillance in feral pigeons should also be systematically performed in urban areas.


Columbidae , Disease Outbreaks/veterinary , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Animals , Brazil/epidemiology , Genome, Viral , Genotype , High-Throughput Nucleotide Sequencing , Newcastle Disease/pathology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Newcastle disease virus/pathogenicity , Phylogeny , Virulence , Whole Genome Sequencing
18.
Microbiol Spectr ; 9(3): e0217321, 2021 12 22.
Article En | MEDLINE | ID: mdl-34937182

Newcastle disease virus (NDV) fusion protein mediates the virus's fusion activity, which is a determinant of NDV pathogenicity. The ectodomain of the F protein is known to have a major impact on fusion, and several reports have also indicated the role of the cytoplasmic tail (CT) in viral entry, F protein cleavage, and fusion, which are regulated by specific motifs. We found a highly conserved tyrosine residue located in the YLMY motif. The tyrosine residues at positions 524 and 527 have different roles in viral replication and pathogenicity and are associated with F protein intracellular processing. Tyrosine residues mutants affect the transportation of the F protein from the endoplasmic reticulum to the Golgi apparatus, resulting in different cleavage efficiencies. F protein is subsequently transported to the cell surface where it participates in viral budding, a process closely related to the distinctions in pathogenicity caused by the tyrosine residues. In addition, the different mutations all led to a hypofusogenic phenotype. We believe that the highly conserved tyrosine residue of the YLMY motif uses a similar mechanism to the tyrosine-based motif (YXXΦ) to regulate F protein transport and thus affect viral replication and pathogenicity. IMPORTANCE The amino-terminal cytoplasmic domains of paramyxovirus fusion glycoproteins include trafficking signals that influence protein processing and cell surface expression. This study clarified that tyrosine residues at different positions in the YLMY motif in the cytoplasmic region of the F protein regulate F protein transportation, thereby affecting viral replication and pathogenicity. This study has increased our understanding of how NDV virulence is mediated by the F protein and provides a fresh perspective on the role of CT in the virus's life cycle. This information may be useful in the development of NDV as an effective vaccine vector and oncolytic agent.


Newcastle Disease/virology , Newcastle disease virus/physiology , Newcastle disease virus/pathogenicity , Poultry Diseases/virology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virus Release , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Chickens , Gene Expression Regulation, Viral , Newcastle disease virus/chemistry , Newcastle disease virus/genetics , Sequence Alignment , Tyrosine/genetics , Tyrosine/metabolism , Viral Fusion Proteins/genetics , Virulence , Virus Replication
19.
Mol Biol Rep ; 48(11): 7281-7291, 2021 Nov.
Article En | MEDLINE | ID: mdl-34623594

BACKGROUND: Newcastle disease, is one of the most important diseases of the poultry industry, has many economic losses. The aim of this study was to isolate and determine the molecular identity of Newcastle disease virus in 40 broiler flocks with respiratory symptoms in four provinces of Iran. METHODS AND RESULTS: Samples of farms with respiratory symptoms were collected from different regions of Isfahan, East Azerbaijan, Golestan, and Khuzestan provinces and inoculated into 9-day-old embryonated chicken eggs. The Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect the Newcastle disease virus in allantoic fluid. Of the 40 flocks, the virus was isolated and identified in 16 flocks. The PCR products of 16 isolates were sequenced, and a phylogenetic tree was drawn. Accordingly, six isolates were in genotype II and ten isolates were in subgenotype VII.1.1 (VIId) of class II. CONCLUSION: Both genotypes were present in all four provinces. The isolates of Khuzestan province showed the greatest diversity compared to the other three provinces. The similarity of isolates belonging to genotype II in this study was observed with Pakistan, China, and Nigeria, and other isolates were similar to previous isolates in Iran. Also, the highest amino acid sequence in the F-protein cleavage site was 112RRQKR/F117 for VII.1.1 (VIId) genotype isolates and 112GRQGR/L117 for II genotype isolates.


Newcastle Disease/virology , Newcastle disease virus/isolation & purification , RNA, Viral , Animals , Chick Embryo , Chickens , Iran , Newcastle disease virus/genetics , Phylogeny , Poultry Diseases/virology , Sequence Analysis, RNA
20.
Viruses ; 13(10)2021 10 02.
Article En | MEDLINE | ID: mdl-34696415

Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.


Chicken anemia virus/immunology , Chickens/immunology , Newcastle disease virus/genetics , Animals , Antibodies, Viral/blood , Chicken anemia virus/pathogenicity , Chickens/virology , Genetic Vectors , Immunity/immunology , Immunity, Cellular , Newcastle Disease/virology , Newcastle disease virus/immunology , Newcastle disease virus/pathogenicity , Poultry Diseases/virology , Vaccination/methods , Viral Vaccines/immunology
...