Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.419
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 237-242, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097868

ABSTRACT

Recently, nanocarriers have been utilized for encapsulating and sustained release of agrochemicals specifically auxins. Due to their potential applications such as increased bioavailability and improved crop yield and nutritional quality. Herein, the efficacy of alginate/chitosan nanocapsules as a nanocarrier for the hormone indole-3-butyric acid (IBA) loading and its effect on rooting tobacco plants has been carried out in the present study. The average particle size of IBA-alginate/chitosan nanocapsules was measured by Dynamic light scattering analysis at 321 nm. Scanning electron microscope studies revealed the spherical shape of nanoparticles with an average size of 97 nm. The average particle size of IBA-alginate/chitosan nanocapsules was measured by Dynamic light scattering analysis at 321 nm. The characteristic peaks of IBA on alginate/chitosan nanocapsules were identified by Fourier transform infrared spectroscopic analysis. Also, high efficiency (35%) of IBA hormone loading was observed. The findings indicated that the concentration of 3 mgL-1 of IBA-alginate/chitosan nanocapsules has the highest efficiency in increasing the rooting in tobacco (Nicotiana tabacum) plants compared to other treatments. According to our results, we can introduce alginate/chitosan nanocapsules as an efficient nanocarrier in IBA hormone transfer applications and their use in agriculture.


Subject(s)
Alginates , Chitosan , Indoles , Nanocapsules , Nicotiana , Plant Roots , Chitosan/chemistry , Nicotiana/drug effects , Nicotiana/growth & development , Nicotiana/metabolism , Alginates/chemistry , Indoles/chemistry , Nanocapsules/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Particle Size , Spectroscopy, Fourier Transform Infrared , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry
2.
Nat Commun ; 15(1): 6512, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095395

ABSTRACT

Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.


Subject(s)
Aegilops , Ascomycota , Disease Resistance , Plant Diseases , Plant Proteins , Triticum , Triticum/microbiology , Triticum/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Disease Resistance/genetics , Aegilops/genetics , Aegilops/metabolism , Plants, Genetically Modified , Protein Kinases/metabolism , Protein Kinases/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Nicotiana/genetics , Nicotiana/microbiology , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant
3.
Methods Mol Biol ; 2841: 131-143, 2024.
Article in English | MEDLINE | ID: mdl-39115772

ABSTRACT

Time-lapse imaging of the subcellular localization and dynamic behavior of proteins is critical to understand their biological functions in cells. With the advent of various methodologies and computational tools, the precise tracking and quantification of protein spatiotemporal dynamics have become feasible. Kymograph analysis, in particular, has been extensively adopted for the quantitative assessment of proteins, vesicles, and organelle movements. However, conventional kymograph analysis, which is based on a single linear trajectory, may not comprehensively capture the complexity of proteins that alter their course during intracellular transport and activity. In this chapter, we introduced an advanced protocol for whole-cell kymograph analysis that allows for three-dimensional (3D) tracking of protein dynamics. This method was validated through the analysis of tip-focused endocytosis and exocytosis processes in growing tobacco pollen tubes by employing both the advanced whole-cell and classical kymograph methods. In addition, we enhanced this method by integrating pseudo-colored kymographs that enables the direct visualization of changes in protein fluorescence intensity with fluorescence recovery after photobleaching to advance our understanding of protein localization and dynamics. This comprehensive method offers a novel insight into the intricate dynamics of protein activity within the cellular context.


Subject(s)
Kymography , Kymography/methods , Endocytosis , Exocytosis , Fluorescence Recovery After Photobleaching/methods , Nicotiana/metabolism , Time-Lapse Imaging/methods , Protein Transport , Image Processing, Computer-Assisted/methods , Plant Proteins/metabolism
4.
Mol Plant Pathol ; 25(8): e13502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118198

ABSTRACT

Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a major disease of banana plants worldwide. Effector proteins play critical roles in banana-Foc TR4 interaction. Our previous studies highlighted a ribonuclease protein belonging to the T2 family (named as FocRnt2) in the Foc TR4 secretome, which was predicted to be an effector. However, its biological function in Foc TR4 infection is still unclear. Herein, we observed significant expression of FocRnt2 during the early stage of fungal infection in planta. A yeast signal sequence trap assay showed that FocRnt2 contained a functional signal peptide for secretion. FocRnt2 possessed ribonuclease activity that could degrade the banana total RNA in vitro. Subcellular localization showed that FocRnt2 was localized in the nucleus and cytoplasm of Nicotiana benthamiana leaves. Transient expression of FocRnt2 suppressed the expression of salicylic acid- and jasmonic acid-signalling marker genes, reactive oxygen species accumulation, and BAX-mediated cell death in N. benthamiana. FocRnt2 deletion limited fungal penetration, reduced fusaric acid biosynthesis in Foc TR4, and attenuated fungal virulence against banana plants, but had little effect on Foc TR4 growth and sensitivity to various stresses. Furthermore, FocRnt2 deletion mutants induced higher expression of the defence-related genes in banana plants. These results suggest that FocRnt2 plays an important role in full virulence of Foc TR4, further improving our understanding of effector-mediated Foc TR4 pathogenesis.


Subject(s)
Fusarium , Musa , Nicotiana , Plant Diseases , Fusarium/pathogenicity , Virulence , Plant Diseases/microbiology , Musa/microbiology , Nicotiana/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ribonucleases/metabolism , Ribonucleases/genetics , Reactive Oxygen Species/metabolism , Endoribonucleases
5.
Se Pu ; 42(8): 749-757, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086243

ABSTRACT

Tobacco flavors are extensively utilized in traditional tobacco products, electronic nicotine, heated tobacco products, and snuff. To inhibit fungal growth arising from high moisture content, preservatives such as benzoic acid (BA), sorbic acid (SA), and parabens are often incorporated into tobacco flavors. Nonetheless, consuming preservatives beyond safety thresholds may pose health risks. Therefore, analytical determination of these preservatives is crucial for both quality assurance and consumer protection. For example, BA and SA can induce adverse reactions in susceptible individuals, including asthma, urticaria, metabolic acidosis, and convulsions. Parabens, because of their endocrine activity, are classified as endocrine-disrupting chemicals. Despite extensive research, the concurrent quantification of trace-level hydrophilic (BA and SA) and hydrophobic (methylparaben, ethylparaben, isopropylparaben, propylparaben, butylparaben, isobutylparaben, and benzylparaben) preservatives in tobacco flavors remains challenging. Traditional liquid phase extraction coupled with high performance liquid chromatography (HPLC) often results in high false positive rates and inadequate sensitivity. In contrast, tandem mass spectrometry offers high sensitivity and specificity; however, its widespread application is limited by laborious sample preparation and significant operational costs. Therefore, it is crucial to establish a fast and sensitive sample pretreatment and analysis method for the nine preservatives in tobacco flavors. In this study, a method for the simultaneous determination of the nine preservatives (SA, BA and seven parabens) in tobacco flavor was established based on three phase-hollow fiber-liquid phase microextraction (3P-HF-LPME) technology combined with HPLC. To obtain the optimal pretreatment conditions, extraction solvent type, sample phase pH, acceptor phase pH, sample phase volume, extraction time, and mass fraction of sodium chloride, were examined. Additionally, the HPLC parameters, including UV detection wavelength and mobile phase composition, were refined. The optimal extraction conditions were as follows: dihexyl ether was used as extraction solvent, 15 mL sample solution (pH 4) was used as sample phase, sodium hydroxide aqueous solution (pH 12) was used as acceptor phase, and the extraction was carried out at 800 r/min for 30 min. Chromatographic separation was accomplished using an Agilent Poroshell 120 EC-C18 column (100 mm×3 mm, 2.7 µm) and a mobile phase comprising methanol, 0.02 mol/L ammonium acetate aqueous solution (containing 0.5% acetic acid), and acetonitrile for gradient elution. Under the optimized conditions, the nine target analytes showed good linear relationships in their respective linear ranges, the correlation coefficients (r) were ≥0.9967, limits of detection (LODs) and quantification (LOQs) were 0.02-0.07 mg/kg and 0.08-0.24 mg/kg, respectively. Under two spiked levels, the enrichment factors (EFs) and extraction recoveries (ERs) of the nine target analytes were 30.6-91.1 and 6.1%-18.2%, respectively. The recoveries of the nine target analytes ranged from 82.2% to 115.7% and the relative standard deviations (RSDs) (n=5) were less than 14.5% at low, medium and high levels. The developed method is straightforward, precise, sensitive, and well-suited for the rapid screening of preservatives in tobacco flavor samples.


Subject(s)
Liquid Phase Microextraction , Parabens , Preservatives, Pharmaceutical , Chromatography, High Pressure Liquid , Parabens/analysis , Liquid Phase Microextraction/methods , Preservatives, Pharmaceutical/analysis , Benzoic Acid/analysis , Nicotiana/chemistry , Sorbic Acid/analysis , Flavoring Agents/analysis , Tobacco Products/analysis
6.
Se Pu ; 42(8): 805-811, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086250

ABSTRACT

Tobacco flavor, an important tobacco additive, is an essential raw material in cigarette production that can effectively improve the quality of tobacco products, add aroma and taste, and increase the suction flavor. The quality consistency of tobacco flavors affects the quality stability of branded cigarettes. Therefore, the quality control of tobacco flavors is a major concern for cigarette and flavor manufacturers. Physical and chemical indices, odor similarity, and sensory efficacy are employed to evaluate the quality of tobacco flavors, and the analysis of chemical components in tobacco flavors is usually conducted using gas chromatography (GC) and high performance liquid chromatography (HPLC). However, because the composition of tobacco flavors is complex, their quality cannot be fully reflected using a single component or combination of components. Therefore, establishing an objective analytical method for the quality control of tobacco flavors is of extreme importance. Chromatographic fingerprint analysis is routinely used for the discriminative analysis of tobacco flavors. Chromatographic fingerprints refer to the general characteristics of the concentration profiles of different chemical compounds. In the daily procurement process, fingerprints established by GC and HPLC are effective for the evaluation and identification of tobacco flavors. However, given continuous improvements in aroma-imitation technology, some flavors with high similarity cannot be directly distinguished using existing methods. In this study, a method for the determination of organic acids and inorganic anions in tobacco flavors based on ion chromatography (IC) was developed to ensure the quality consistency of tobacco flavors. A 1.0 g sample of tobacco flavors and 10 mL of deionized water were mixed and vibrated for 30 min. The aqueous sample solution was passed through a 0.45 µm membrane filter and RP pretreatment column in succession to eliminate interferences and then subjected to IC. Standard solutions containing nine organic acids and seven inorganic anions were used to identify the anions in the tobacco flavors, and satisfactory reproducibility was obtained. The relative standard deviations (RSDs) for retention times and peak areas were <0.71% and <6.02%, respectively. The chromatographic fingerprints of four types of tobacco flavors (samples A-D) from five different batches were obtained. Nine tobacco flavor samples from different manufacturers (samples AY1-AY3, BY1-BY2, CY1-CY2, DY1-DY2) were also analyzed to obtain their chromatographic fingerprints. Hierarchical cluster and similarity analyses were used to evaluate the quality of tobacco flavors from different manufacturers. Hierarchical clustering refers to the process of subdividing a group of samples into clusters that exhibit a high degree of intracluster similarity and intercluster dissimilarity. The dendrograms obtained using SPSS 12.0 indicated good quality consistency among the samples in different batches. Samples AY3, BY2, CY2, and DY1 clustered with the batches of standard tobacco flavors. Therefore, hierarchical cluster analysis can effectively distinguish the quality of products from different manufacturers. The Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (version 2.0) was used to evaluate the similarity between the standard tobacco flavors and products from different manufacturers. Among the samples analyzed, samples AY3, BY2, CY2, and DY1 showed the highest similarity values (>97.7%), which was consistent with the results of the hierarchical cluster analysis. This finding indicates that IC combined with chromatographic fingerprint analysis could accurately determine the quality of tobacco flavors. GC combined with ultrasonic-assisted liquid-liquid extraction was also used to analyze the tobacco flavors and verify the accuracy of the proposed method. Compared with GC coupled with ultrasonic-assisted liquid-liquid extraction, IC demonstrated more significant quality differences among certain tobacco flavors.


Subject(s)
Nicotiana , Quality Control , Nicotiana/chemistry , Flavoring Agents/analysis , Tobacco Products/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Gas/methods , Chromatography, Ion Exchange/methods
7.
BMC Plant Biol ; 24(1): 756, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107683

ABSTRACT

BACKGROUND: Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS: TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS: Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.


Subject(s)
Metal Nanoparticles , Nicotiana , Plant Diseases , Plant Extracts , Silver , Tobacco Mosaic Virus , Tobacco Mosaic Virus/physiology , Silver/pharmacology , Plant Diseases/virology , Plant Diseases/genetics , Plant Extracts/pharmacology , Nicotiana/genetics , Nicotiana/virology , Disease Resistance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
8.
Physiol Plant ; 176(4): e14461, 2024.
Article in English | MEDLINE | ID: mdl-39105262

ABSTRACT

Trichomes are known to be important biofactories that contribute to the production of secondary metabolites, such as terpenoids. C2H2-zinc finger proteins (C2H2-ZFPs) are vital transcription factors of plants' trichome development. However, little is known about the function of Artemisia annua C2H2-ZFPs in trichome development. To explore the roles of this gene family in trichome development, two C2H2-ZFP transcription factors, named AaZFP8L and AaGIS3, were identified; both are hormonally regulated in A. annua. Overexpression of AaZFP8L in tobacco led to a significant increase in the density and length of glandular trichomes, and improved terpenoid content. In contrast, AaGIS3 was found to positively regulate non-glandular trichome initiation and elongation, which reduces terpenoid accumulation. In addition, ABA contents significantly increased in AaZFP8L-overexpressing tobacco lines and AaZFP8L also can directly bind the promoter of the ABA biosynthesis genes. This study lays the foundation for further investigating A. annua C2H2-ZFPs in trichome development and terpenoid accumulation.


Subject(s)
Artemisia annua , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Transcription Factors , Trichomes , Trichomes/metabolism , Trichomes/growth & development , Trichomes/genetics , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Artemisia annua/genetics , Artemisia annua/metabolism , Artemisia annua/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Terpenes/metabolism , Abscisic Acid/metabolism , Promoter Regions, Genetic/genetics
9.
Planta ; 260(4): 80, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192071

ABSTRACT

MAIN CONCLUSION: Mutation at A126 in lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards ß-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A126 in stigma-specific lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards ß-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of ß-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced ß-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA4/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.


Subject(s)
Biomass , Carotenoids , Crocus , Mutation , Stress, Physiological , Crocus/genetics , Crocus/physiology , Crocus/enzymology , Carotenoids/metabolism , Stress, Physiological/genetics , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , Plants, Genetically Modified , beta Carotene/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Cyclohexenes/metabolism , Terpenes/metabolism , Lycopene/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cyclohexane Monoterpenes , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Gene Expression Regulation, Plant , Glucosides
10.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201361

ABSTRACT

Plant recognition of pathogen-associated molecular patterns (PAMPs) is pivotal in triggering immune responses, highlighting their potential as inducers of plant immunity. However, the number of PAMPs identified and applied in such contexts remains limited. In this study, we characterize a novel PAMP, designated Ss4368, which is derived from Scleromitrula shiraiana. Ss4368 is specifically distributed among a few fungal genera, including Botrytis, Monilinia, and Botryotinia. The transient expression of Ss4368 elicits cell death in a range of plant species. The signaling peptides, three conserved motifs, and cysteine residues (C46, C88, C112, C130, and C148) within Ss4368 are crucial for inducing robust cell death. Additionally, these signaling peptides are essential for the protein's localization to the apoplast. The cell death induced by Ss4368 and its homologous protein, Bc4368, is independent of the SUPPRESSOR OF BIR1-1 (SOBIR1), BRI1-ASSOCIATED KINASE-1 (BAK1), and salicylic acid (SA) pathways. Furthermore, the immune responses triggered by Ss4368 and Bc4368 significantly enhance the resistance of Nicotiana benthamiana to Phytophthora capsici. Therefore, we propose that Ss4368, as a novel PAMP, holds the potential for developing strategies to enhance plant resistance against P. capsici.


Subject(s)
Cell Death , Disease Resistance , Nicotiana , Pathogen-Associated Molecular Pattern Molecules , Phytophthora , Plant Diseases , Plant Immunity , Phytophthora/pathogenicity , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Nicotiana/microbiology , Nicotiana/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Plant Cells/metabolism , Plant Cells/microbiology
11.
Plant Cell Rep ; 43(9): 210, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126530

ABSTRACT

KEY MESSAGE: Redesigning the N- and C-capping repeats of the native DARPin G3 significantly improved its stability, and may facilitate its purification from the total soluble proteins of high-temperature dried leaf materials of transplastomic plants. Designed ankyrin repeat proteins (DARPins) constitute a promising class of binding molecules that can overcome the limitations of monoclonal antibodies and enable the development of novel therapeutic approaches. Despite their inherent stability, detailed studies have revealed that the original capping repeats derived from natural ankyrin repeat proteins impair the stability of the initial DARPin design. Consequently, the development of thermodynamically stabilized antibody mimetics may facilitate the development of innovative drugs in the future. In this study, we replaced the original N- and C-capping repeats with improved caps to enhance the thermostability of native DARPin G3. Computational analyses suggested that the redesigned thermostable DARPin G3 structure possessed optimal quality and stability. Molecular dynamics simulations verified the stability of the redesigned thermostable DARPin G3 at high temperatures. The redesigned thermostable DARPin G3 was expressed at high levels in tobacco transplastomic plants and subsequently purified from high-temperature dried leaf materials. Thermal denaturation results revealed that the redesigned thermostable DARPin G3 had a higher Tm value than the native DARPin G3, with a Tm of 35.51 °C greater than that of native DARPin G3. The results of the in vitro bioassays confirmed that the purified thermostable DARPin G3 from high-temperature dried leaf materials maintained its binding activity without any loss of affinity and specifically bound to the HER2 receptor on the cell surface. These findings demonstrate the successful improvement in the thermostability of DARPin G3 without compromising its biological activity.


Subject(s)
Ankyrin Repeat , Nicotiana , Plants, Genetically Modified , Protein Stability , Nicotiana/genetics , Nicotiana/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Molecular Dynamics Simulation , Hot Temperature , Protein Engineering/methods
12.
Sci Rep ; 14(1): 18781, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138326

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight in rice. Polyhydroxyalkanoates (PHAs) consitute a diverse group of biopolyesters synthesized by bacteria under nutrient-limited conditions. The phaC gene is important for PHA polymerization. We investigated the effects of phaC gene mutagensis in Xoo strain PXO99A. The phaC gene knock-out mutant exhibited reduced swarming ability relative to that of the wild-type. Under conditions where glucose was the sole sugar source, extracellular polysaccharide (EPS) production by ΔphaC declined by 44.8%. ΔphaC showed weak hypersensitive response (HR) induction in the leaves of non-host Nicotiana tabacum, concomitant with downregulation of hpa1 gene expression. When inoculated in rice leaves by the leaf-clipping method, ΔphaC displayed reduced virulence in terms of lesion length compared with the wild-type strain. The complemented strain showed no significant difference from the wild-type strain, suggesting that the deletion of phaC in Xoo induces significant alterations in various physiological and biological processes. These include bacterial swarming ability, EPS production, transcription of hrp genes, and glucose metabolism. These changes are intricately linked to the energy utilization and virulence of Xoo during plant infection. These findings revealed involvement of phaC in Xoo is in the maintaining carbon metabolism by functioning in the PHA metabolic pathway.


Subject(s)
Bacterial Proteins , Carbon , Oryza , Plant Diseases , Polysaccharides, Bacterial , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/genetics , Xanthomonas/metabolism , Oryza/microbiology , Carbon/metabolism , Plant Diseases/microbiology , Virulence/genetics , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Gene Expression Regulation, Bacterial , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/metabolism , Nicotiana/microbiology , Plant Leaves/microbiology
14.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39104199

ABSTRACT

AIMS: The Gα subunit is a major component of heterotrimeric G proteins, which play a crucial role in the development and pathogenicity of several model fungi. However, its detailed function in the causal agent of pear black spot (Alternaria alternata) is unclear. Our aim was to understand the characteristics and functions of AaGA1 in A. alternata. METHODS AND RESULTS: AaGA1 was cloned from A. alternata in this study, which encodes 353 amino acids and has a "G-alpha" domain. Mutant ΔAaGA1 resulted in reduced vegetative growth, conidiation, and spore germination. Especially, mutant ΔAaGA1 produced only fewer conidia on the V8A medium, and spore formation-related genes AbaA, BrlA, and WetA were significantly downregulated. More tolerance against cell wall-inhibiting agents was observed after the deletion of AaGA1. Moreover, AaGA1 deletion led to a significant reduction in melanin and toxin production. Interestingly, deletion of AaGA1 resulted in defective appressorium-like formations, complete loss of the ability to penetrate cellophane, and decreased infection on non-wound inoculated tobacco leaves. Cell wall-degrading enzyme-related genes PME, CL, Cut2, and LC were significantly downregulated in mutant ΔAaGA1 mutant, significantly reducing virulence on wound-inoculated pear fruits. CONCLUSIONS: The G protein alpha subunit AaGA1 is indispensable for fungal development, appressorium-like formations, and pathogenicity in A. alternata.


Subject(s)
Alternaria , Fungal Proteins , GTP-Binding Protein alpha Subunits , Plant Diseases , Spores, Fungal , Alternaria/genetics , Alternaria/growth & development , Alternaria/pathogenicity , Plant Diseases/microbiology , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics , Virulence/genetics , Pyrus/microbiology , Nicotiana/microbiology , Gene Expression Regulation, Fungal
15.
New Phytol ; 243(6): 2311-2331, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39091140

ABSTRACT

Chloroplasts play a crucial role in plant defense against pathogens, making them primary targets for pathogen effectors that suppress host immunity. This study characterizes the Plasmopara viticola CRN-like effector, PvCRN20, which interacts with DEG5 in the cytoplasm but not with its interacting protein, DEG8, which is located in the chloroplast. By transiently overexpressing in tobacco leaves, we show that PvCRN20 could inhibit INF1- and Bax-triggered cell death. Constitutive expression of PvCRN20 suppresses the accumulation of reactive oxygen species (ROS) and promotes pathogen colonization. PvCRN20 reduces DEG5 entry into chloroplasts, thereby disrupting DEG5 and DEG8 interactions in chloroplasts. Overexpression of VvDEG5 and VvDEG8 induces ROS accumulation and enhances grapevine resistance to P. viticola, whereas knockout of VvDEG8 represses ROS production and promotes P. viticola colonization. Consistently, ectopic expression of VvDEG5 and VvDEG8 in tobacco promotes chloroplast-derived ROS accumulation, whereas co-expression of PvCRN20 counteracted this promotion by VvDEG5. Therefore, DEG5 is essential for the virulence function of PvCRN20. Although PvCRN20 is located in both the nucleus and cytoplasm, only cytoplasmic PvCRN20 suppresses plant immunity and promotes pathogen infection. Our results reveal that PvCRN20 dampens plant defenses by repressing the chloroplast import of DEG5, thus reducing host ROS accumulation and facilitating pathogen colonization.


Subject(s)
Chloroplasts , Nicotiana , Plant Diseases , Plant Immunity , Plant Proteins , Protein Transport , Reactive Oxygen Species , Vitis , Chloroplasts/metabolism , Vitis/microbiology , Vitis/genetics , Vitis/metabolism , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Nicotiana/microbiology , Nicotiana/genetics , Nicotiana/immunology , Gene Expression Regulation, Plant , Oomycetes/pathogenicity , Plant Leaves/microbiology , Plant Leaves/metabolism , Plants, Genetically Modified , Disease Resistance/genetics
16.
J Agric Food Chem ; 72(33): 18507-18519, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39113497

ABSTRACT

Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.


Subject(s)
Botrytis , Genomics , Plant Diseases , Plant Immunity , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Proteins/genetics , Plant Proteins/immunology , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Immunity/genetics , Peptides/immunology , Peptides/chemistry , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation, Plant , Nicotiana/immunology , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Capsicum/immunology , Capsicum/genetics , Capsicum/microbiology , Capsicum/chemistry
17.
Nat Commun ; 15(1): 6905, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134523

ABSTRACT

Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.


Subject(s)
Chloroplasts , Gene Expression Regulation, Plant , Triticum , Ubiquitin-Protein Ligases , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Chloroplasts/metabolism , Disease Resistance/genetics , Nicotiana/metabolism , Nicotiana/genetics , Photosynthesis , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Immunity , Plants, Genetically Modified , Promoter Regions, Genetic , Proteolysis , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Triticum/cytology , Triticum/metabolism
18.
Sci Rep ; 14(1): 19229, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164410

ABSTRACT

A set of nine unique tobacco extract samples was analyzed using a self-developed electronic nose (E-nose) system, a commercial E-nose, and gas chromatography-mass spectrometry (GC-MS). The evaluation employed principal component analysis, statistical quality control, and soft independent modeling of class analogies (SIMCA). These multifaceted statistical methods scrutinized the collected data. Subsequently, a quality control model was devised to assess the stability of the sample quality. The results showed that the custom E-nose system could successfully distinguish between tobacco extracts with similar odors. After further training and the development of a quality control model for accepted tobacco extracts, it was possible to identify samples with normal and abnormal quality. To further validate our E-nose and extend its use within the tobacco industry, we collected and accurately classified the flavors of different tobacco leaf positions, with a remarkable accuracy rate of 0.9744. This finding facilitates the practical application of our E-nose system for the efficient identification of tobacco leaf positions.


Subject(s)
Electronic Nose , Gas Chromatography-Mass Spectrometry , Nicotiana , Plant Leaves , Nicotiana/chemistry , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Principal Component Analysis , Quality Control , Flavoring Agents/analysis
19.
Proc Natl Acad Sci U S A ; 121(35): e2403424121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39159367

ABSTRACT

Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.


Subject(s)
Carrier Proteins , Comovirus , Nicotiana , Plant Diseases , Plant Proteins , Vigna , Comovirus/metabolism , Comovirus/physiology , Comovirus/genetics , Vigna/virology , Vigna/metabolism , Nicotiana/virology , Nicotiana/metabolism , Nicotiana/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Diseases/virology , Cysteine Proteases/metabolism , Cysteine Proteases/genetics , Plants, Genetically Modified , Viral Proteins/metabolism , Viral Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Potyvirus/physiology , Potyvirus/metabolism , Endopeptidases
20.
Biomolecules ; 14(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39199365

ABSTRACT

Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus Ampelovirus, Closteroviridae family. Viral genes within the 3' proximal unique gene blocks (UGB) remain highly variable and poorly understood. The UGBs of Closteroviridae viruses include diverse open reading frames (ORFs) that have been shown to contribute to viral functions such as the suppression of the host RNA silencing defense response and systemic viral spread. This study investigates the role of GLRaV-3 ORF8, ORF9, and ORF10, which encode the proteins p21, p20A, and p20B, respectively. These genes represent largely unexplored facets of the GLRaV-3 genome. Here, we visualize the subcellular localization of wildtype and mutagenized GLRaV-3 ORFs 8, 9, and 10, transiently expressed in Nicotiana benthamiana. Our results indicate that p21 localizes to the cytosol, p20A associates with microtubules, and p20B is trafficked into the nucleus to carry out the suppression of host RNA silencing. The findings presented herein provide a foundation for future research aimed at the characterization of the functions of these ORFs. In the long run, it would also facilitate the development of innovative strategies to understand GLRaV-3, mitigate its spread, and impacts on grapevines and the global wine industry.


Subject(s)
Nicotiana , Viral Proteins , Nicotiana/genetics , Nicotiana/virology , Nicotiana/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Plant Diseases/virology , Plant Diseases/genetics , Open Reading Frames/genetics , Vitis/genetics , Vitis/virology , Vitis/metabolism , Closteroviridae/genetics , Closteroviridae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL