Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 544
Filter
1.
Yale J Biol Med ; 97(2): 141-152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947105

ABSTRACT

Nodal regions, areas of intensive contact between Schwann cells and axons, may be exceptionally vulnerable to diabetes-induced changes because they are exposed to and impacted by the metabolic implications of diabetes. Insulin receptors, glucose transporters, Na+ and K+ channels, and mitochondria are abundant in nodes, all of which have been linked to the development and progression of Diabetic Peripheral Neuropathy (DPN) and Type 1 Diabetes Mellitus (T1DM)-associated cognitive impairment. Our study aimed to evaluate if the administration of Nigella sativa (NS) and Cassia angustifolia (CA) prevented diabetes-associated nervous system deficits in hyperglycemic mice. We developed T1DM mice through Streptozotocin (STZ) injections and validated the elevations in blood glucose levels. NS and CA were administered immediately upon the induction of diabetes. Behavioral analysis, histopathological evaluations, and assessment of molecular biomarkers (NR2A, MPZ, NfL) were performed to assess neuropathy and cognitive impairment. Improvements in memory, myelin loss, and the expression of synaptic proteins, even with the retention of hyperglycemia, were evident in the mice who were given a dose of herbal products upon the detection of hyperglycemia. NS was more beneficial in preventing memory impairments, demyelination, and synaptic dysfunction. The findings indicate that including these herbs in the diets of diabetic as well as pre-diabetic patients can reduce complications associated with T1DM, notably diabetic peripheral neuropathy and cognitive deficits associated with T1DM.


Subject(s)
Cognitive Dysfunction , Diabetic Neuropathies , Nigella sativa , Animals , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/prevention & control , Nigella sativa/chemistry , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Senna Plant
2.
BMC Complement Med Ther ; 24(1): 266, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997638

ABSTRACT

The growing global threat of antimicrobial resistance endangers both human and animal life, necessitating the urgent discovery of novel antimicrobial solutions. Medicinal plants hold promise as sources of potential antimicrobial compounds. In this study, we investigated the phytochemical constituents and microbicidal capabilities of the ethanolic extract from Nigella sativa (black seed). Gas chromatography analysis (GC) identified 11 compounds, among them thymoquinone, and thymol, contributing to antimicrobial and antioxidant properties. Antimicrobial assays demonstrated notable inhibition zones against broad spectra of bacteria, including Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterobacter, and Bacillus subtilis, along with potent antifungal activity against Aspergillus niger, Penicillium, and Candida albicans. Notably, when combined with antibiotics, the extract displayed exceptional synergistic antimicrobial efficacy. The black seed extract demonstrated membrane-damaging activity and disrupted virulence factors that protect microbes from antimicrobial agents, including the formation of bacterial biofilm and protease secretion. Thymoquinone, the primary active constituent of the extract, exhibited similar antimicrobial and ant virulence properties. In silico analysis targeting key regulators of quorum sensing and biofilm formation in P. aeruginosa, such as RhlG, LasR, and PqsR, showed a remarkable affinity of thymol and thymoquinone for these targets. Moreover, the N. sativa extract exhibited dose-dependent cytotoxicity against both the promastigote and amastigote forms of Leishmania tropica parasites, hinting at potential antiparasitic activity. In addition to its antimicrobial properties, the extract displayed potential antioxidant activity at a concentration of 400 µg/mL.


Subject(s)
Antioxidants , Nigella sativa , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Animals , Bacteria/drug effects , Seeds/chemistry
3.
J Food Sci ; 89(7): 4522-4534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38853293

ABSTRACT

Diabetes causes elevated blood sugar levels, and it has been categorized as one of the most frequent causes of death worldwide. This work aimed to analyze and compare the nutraceutical and therapeutic efficacy of fenugreek seeds (FSs) (Trigonella foenum-graecum) and black cumin seeds (BCSs) (Nigella sativa) against streptozotocin-induced diabetes mellitus in albino rats. FS and BCSs were evaluated for proximate analysis, phytochemicals, and antioxidant activities. Male albino rats were used to evaluate the in vivo antidiabetic activities of these medicinal plants for 42 days. Blood samples were drawn at regular intervals of 1 week to analyze blood glucose, plasma insulin, and cholesterol levels and to determine the homeostatic model assessment of insulin resistance (HOMA IR) index. At the end of the trial, pancreas tissue was also collected for histological examination. Results of the proximate analysis showed the significant presence of moisture, ash, fat, protein, and fiber. Antioxidant parameters like 2,2-diphenyl-1-picrylhydrazyl, total phenolic content, and total flavonoid content were found to be significant. There was a significant (p < 0.05) decrease in blood glucose level, serum cholesterol level, and insulin resistance in treatment groups T3-T5. Insulin and body weight results of treatment groups were significant (p < 0.05) compared to streptozotocin-intoxicated animals. Histological examination revealed the nutraceutical impact of selected herbal plants due to enhancing impact on the size and the number of ß-cells in the pancreas. Findings of current research work explore the antidiabetic capacity of selected nutraceutical and medicinal plants.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Dietary Supplements , Hypoglycemic Agents , Insulin , Nigella sativa , Plant Extracts , Seeds , Trigonella , Animals , Trigonella/chemistry , Nigella sativa/chemistry , Male , Rats , Seeds/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Blood Glucose/metabolism , Antioxidants/pharmacology , Antioxidants/analysis , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance , Rats, Wistar , Cholesterol/blood , Flavonoids/analysis , Flavonoids/pharmacology
4.
Mol Biol Rep ; 51(1): 769, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886257

ABSTRACT

BACKGROUND: Sleep and stress interact bidirectionally by acting on brain circuits that affect metabolism. Sleep and its alterations have impact on blood leptin levels, metabolic hormone that regulates appetite. Brain expresses the receptors for the peptide hormone leptin produced from adipocytes. The hypothalamic orexin neurons are low during sleep and active when awake, influenced by a complex interaction with leptin. Thymoquinone was found to be the major bioactive component of Nigella sativa. The aim of this study was to study the role of thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. METHODS AND RESULTS: 30 adult male Wistar rats were divided into 5 groups with 6 animals in each group: Control; Thymoquinone (TQ); Corn oil; Chronic Sleep restriction (CSR); and CSR + TQ. After 30 days, behavioral analysis, antioxidant, lipid profile, glucose level, liver and kidney function test, neurotransmitters, neuropeptides, and mRNA expression in in vivo studies were also assessed and pharmacokinetic and docking were done for thymoquinone. Thymoquinone has also shown good binding affinity to the target proteins. CSR has induced oxidative stress in the discrete brain regions and plasma. Current study has shown many evidences that sleep restriction has altered the neurobehavioral, antioxidant status, lipid profile, neurotransmitters, neuropeptide levels, and feeding behavior which damage the Orexin-leptin system which regulates the sleep and feeding that leads to metabolic dysfunction. CONCLUSION: The potentiality of Thymoquinone was revealed in in silico studies, and its action in in vivo studies has proved its effectiveness. The study concludes that Thymoquinone has exhibited its effect by diminishing the metabolic dysfunction by its neuroprotective, antioxidant, and hypolipidemic properties.


Subject(s)
Benzoquinones , Brain , Leptin , Rats, Wistar , Signal Transduction , Sleep Deprivation , Animals , Benzoquinones/pharmacology , Male , Leptin/metabolism , Leptin/blood , Rats , Signal Transduction/drug effects , Brain/metabolism , Brain/drug effects , Sleep Deprivation/metabolism , Sleep Deprivation/drug therapy , Oxidative Stress/drug effects , Molecular Docking Simulation , Sleep/drug effects , Sleep/physiology , Nigella sativa/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism
5.
Sci Rep ; 14(1): 14509, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914674

ABSTRACT

In this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N. sativa's plastome with ten other species from various genera in the Ranunculaceae family reveals substantial structural variations. The contraction of the inverted repeat region in N. sativa influences the boundaries of single-copy regions, resulting in a shorter plastome size than other species. When comparing the plastome of N. sativa with those of its related species, significant divergence is observed, particularly except for N. damascena. Among these, the plastome of A. glaucifolium displays the highest average pairwise sequence divergence (0.2851) with N. sativa, followed by A. raddeana (0.2290) and A. coerulea (0.1222). Furthermore, the study identified 12 distinct hotspot regions characterized by elevated Pi values (> 0.1). These regions include trnH-GUG-psbA, matK-trnQ-UUG, psbK-trnR-UCU, atpF-atpI, rpoB-psbD, ycf3-ndhJ, ndhC-cemA, petA-psaJ, trnN-GUU-ndhF, trnV-GAC-rps12, ycf2-trnI-CAU, and ndhA-ycf1. Approximately, 24 tandem and 48 palindromic and forward repeats were detected in N. sativa plastome. The analysis revealed 32 microsatellites with the majority being mononucleotide repeats. In the N. sativa plastome, phenylalanine had the highest number of codons (1982 codons), while alanine was the least common amino acid with 260 codons. A phylogenetic tree, constructed using protein-coding genes, revealed a distinct monophyletic clade comprising N. sativa and N. damascene, closely aligned with the Cimicifugeae tribe and exhibiting robust support. This plastome provides valuable genetic information for precise species identification, phylogenetic resolution, and evolutionary studies of N. sativa.


Subject(s)
Nigella sativa , Phylogeny , Nigella sativa/genetics , Nigella sativa/chemistry , Genome, Plastid
6.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902620

ABSTRACT

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Subject(s)
Anti-Infective Agents , Anti-Inflammatory Agents , Nigella sativa , Plant Extracts , Seeds , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Ferric Compounds/chemistry , Green Chemistry Technology
7.
Drug Des Devel Ther ; 18: 1917-1932, 2024.
Article in English | MEDLINE | ID: mdl-38828022

ABSTRACT

The oral cavity is an excellent place for various microorganisms to grow. Spectrococcus mutans and Spectrococcus sanguinis are Gram-negative bacteria found in the oral cavity as pioneer biofilm formers on the tooth surface that cause caries. Caries treatment has been done with antibiotics and therapeutics, but the resistance level of S. mutans and S. sanguinis bacteria necessitates the exploration of new drug compounds. Black cumin (Nigella sativa Linn.) is known to contain secondary metabolites that have antioxidant, antibacterial, anti-biofilm, anti-inflammatory and antifungal activities. The purpose of this review article is to present data on the potential of Nigella sativa Linn seeds as anti-biofilm. This article will discuss biofilm-forming bacteria, the resistance mechanism of antibiotics, the bioactivity of N. sativa extracts and seed isolates together with the Structure Activity Relationship (SAR) review of N. sativa compound isolates. We collected data from reliable references that will illustrate the potential of N. sativa seeds as anti-biofilm drug.


Subject(s)
Anti-Bacterial Agents , Biofilms , Dental Caries , Nigella sativa , Phytochemicals , Seeds , Biofilms/drug effects , Nigella sativa/chemistry , Seeds/chemistry , Dental Caries/microbiology , Dental Caries/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Microbial Sensitivity Tests , Structure-Activity Relationship
8.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892617

ABSTRACT

Non-communicable diseases (NCDs) place a significant burden on global health and the healthcare systems which support it. Metabolic syndrome is a major risk factor for a large number of NCDs; however, treatments remain limited. Previous research has shown the protective benefits of edible dietary spices on key components of metabolic syndrome. Therefore we performed a 12-week double-blind, placebo-controlled, randomized, clinical trial to evaluate the effect of ginger (Zingiber officinale), cinnamon (Cinnamomum), and black seed (Nigella sativa) consumption on blood glucose, lipid profiles, and body composition in 120 participants with, or at risk of, metabolic syndrome. Each participant consumed 3 g/day of powder (spice or placebo). Data related to different parameters were collected from participants at the baseline, midpoint, and endpoint of the intervention. Over the 12-week interventions, there was an improvement in a number of biochemical indices of metabolic syndrome, including fasting blood glucose, HbA1c, LCL, and total cholesterol associated with supplementation with the spices when compared to a placebo. This study provides evidence to support the adjunct use of supplementation for those at risk of metabolic syndrome and its sequelae.


Subject(s)
Blood Glucose , Cinnamomum zeylanicum , Metabolic Syndrome , Spices , Zingiber officinale , Humans , Male , Female , Double-Blind Method , Middle Aged , Cinnamomum zeylanicum/chemistry , Blood Glucose/drug effects , Blood Glucose/metabolism , Adult , Nigella sativa/chemistry , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Body Composition/drug effects , Aged , Lipids/blood , Dietary Supplements
9.
J Med Food ; 27(6): 552-562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935918

ABSTRACT

Malaria impedes the ability of primary cells of the immune system to generate an efficacious inflammatory and immune response. Black seed (Nigella sativa) is a core dietary supplement and food additive in folklore. This study investigated the antioxidant, immunomodulatory, and anti-inflammatory effects of N. sativa cookies in Plasmodium berghei-infected mice. Aqueous extract of black seed was prepared, and the total phenol and flavonoid contents were determined. The mice were infected with standard inoculum of the strain NK65 P. berghei. The mice weight and behavioral changes were observed. The mice were fed with the N. sativa cookies (2.5%, 5%, and 10%) and 10 mg/kg chloroquine for 5 consecutive days after the infection was established. The reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase, catalase, and hematological parameters (red cell indices, leukocytes, and its differentials) in the infected mice were determined. The inflammatory mediators, C-reactive protein (CRP), and myeloperoxidase (MPO) were also assayed. The result revealed that black seed had a total phenol content of 18.73 mgGAE/g and total flavonoid content of 0.36 mgQUE/g. The infected mice treated with N. sativa cookies showed significantly decreased parasitaemia, MDA, and ROS levels. Furthermore, the results showed significant suppression in proinflammatory mediators (CRP and MPO) levels and enhanced antioxidant status of infected mice treated with N. sativa. The study suggests that N. sativa could function as nutraceuticals in the management of Plasmodium infection associated with inflammatory and immunomodulatory disorders.


Subject(s)
Malaria , Nigella sativa , Oxidative Stress , Plant Extracts , Plasmodium berghei , Seeds , Animals , Plasmodium berghei/drug effects , Malaria/drug therapy , Malaria/immunology , Oxidative Stress/drug effects , Mice , Nigella sativa/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Antioxidants/pharmacology , Disease Models, Animal , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Food, Fortified , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Superoxide Dismutase/metabolism , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Peroxidase/metabolism
10.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727858

ABSTRACT

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Antioxidants , Diet , Dietary Supplements , Digestion , Nigella sativa , Seeds , Sheep, Domestic , Animals , Nigella sativa/chemistry , Animal Feed/analysis , Male , Seeds/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Dietary Supplements/analysis , Diet/veterinary , Digestion/drug effects , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Rumen/metabolism , Brassicaceae/chemistry , Random Allocation , Nutrients/analysis , Nutrients/metabolism
11.
Clin Nutr ESPEN ; 61: 168-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777430

ABSTRACT

BACKGROUND AND AIM: Several experiments have suggested that Nigella sativa (N. sativa) supplementation may have a beneficial effect on the lipid profile. However, the results from these trials have been inconclusive. Therefore, this study aimed to explore the impact of N. sativa supplementation on the lipid profile of adult participants. METHODS: We searched Scopus, Web of Science, PubMed, Cochrane, and Web of Science databases until December 2022. Random effects models were used, and pooled data were determined as standardized mean differences with a 95% confidence interval. RESULTS: The findings of 34 studies with 2278 participants revealed that N. sativa supplementation significantly reduced total cholesterol (TC) (SMD: -1.78; 95% CI: -2.20, -1.37, p < 0.001), triglycerides (TG) (SMD: -1.2725; 95% CI: -1.67, -0.83, p < 0.001), and low-density lipoprotein cholesterol (LDL-C) (SMD: -2.45; 95% CI: -3.06, -1.85; p < 0.001) compared to control groups. However, a significant increase was found in high-density lipoprotein cholesterol (HDL-C) (SMD: 0.79; 95% CI: 0.38, 1.20, p < 0.001). CONCLUSION: N. sativa has improved effects on TG, LDL-C, TC, and HDL-C levels. Overall, N. sativa may be suggested as an adjuvant anti-hyperlipidemic agent.


Subject(s)
Dietary Supplements , Lipids , Nigella sativa , Randomized Controlled Trials as Topic , Humans , Nigella sativa/chemistry , Lipids/blood , Adult , Triglycerides/blood , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood
12.
Neurosci Lett ; 834: 137844, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38821203

ABSTRACT

Depression is a prevalent global health concern necessitating alternative approaches to conventional antidepressant medications due to its associated adverse effects. Nigella sativa (NS) is recognized for its potential as an antidepressant, offering a promising solution with fewer side effects. This study investigated the antidepressant efficacy of cyclodextrin-complexed lyophilized nanosuspension of NS oleoresin (NSOR) in a murine model of chronic unpredictable mild stress (CUMS)-induced depression. This study sought to evaluate and contrast the antidepressant potential of the nano-NSOR with that of the NS ethanolic extract (NSEE). The prepared nano-NSOR was characterized physicochemically and evaluated for in vitro drug release and in vivo antidepressant activity. The particle size of nano-NSOR was determined to be 164.6 nm. In vitro drug release studies suggested the higher drug release from nano-NSOR (90.15 % after 72 h) compared to the native NSOR (59.55 % after 72 h). Furthermore, nano-NSOR exhibited a more pronounced antidepressant effect than NSEE in the context of CUMS-induced depression. This study highlights a potential alternative for managing depression, addressing the need for improved antidepressant treatments with reduced side effects. These results suggest that nano-NSOR ameliorates CUMS-induced depression by modulating neurotransmitter levels, reducing inflammation, and enhancing neuroprotection.


Subject(s)
Antidepressive Agents , Cyclodextrins , Depression , Nigella sativa , Plant Extracts , Seeds , Stress, Psychological , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Mice , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Seeds/chemistry , Nigella sativa/chemistry , Stress, Psychological/drug therapy , Male , Cyclodextrins/chemistry , Nanoparticles/chemistry , Freeze Drying , Disease Models, Animal , Suspensions
13.
Toxicon ; 244: 107754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761922

ABSTRACT

Thymoquinone (TQ) is one of the main phytochemical bioactive ingredients in Nigella sativa, with reported immunity-boosting properties. The current study evaluated the anti-inflammatory effect of TQ against inflammation brought on by free fatty acid Palmitate (PA) using macrophages raw 264.7 cell line. Data revealed that TQ significantly improved the viability of basal and PA stimulated Macrophages at concentrations of 50 and 100 µg/mL. Also, TQ significantly reduced nitric oxide and triglyceride levels in PA-stimulated macrophages at concentrations of 50 and 100 µg/mL. The pro-inflammatory cytokines studies revealed that PA significantly increased the release of the cytokines TNF-α, MHGB-1, IL-1ß, and IL-6. TQ at concentrations 25, 50, and 100 µg/ml significantly decreases the release of the studied cytokines in PA-stimulated macrophages to variable extents with parallel inhibition to their corresponding gene expression. Bioenergetic assays showed that PA significantly decreased cellular ATP, mitochondrial complexes I and III activities and mitochondrial membrane potential with a subsequent significant increase in lactate production. At the same time, TQ can alleviate the effect of PA on macrophages' bioenergetics parameters to variable extent based on TQ concentration. To conclude, TQ could mitigate palmitate-induced inflammation and cytotoxicity in macrophages by improving macrophage viability and controlling cytokine release with improved PA-induced bioenergetics disruption.


Subject(s)
Benzoquinones , Inflammation , Macrophages , Nigella sativa , Palmitates , Benzoquinones/pharmacology , Animals , Macrophages/drug effects , Macrophages/metabolism , Mice , Nigella sativa/chemistry , RAW 264.7 Cells , Palmitates/toxicity , Palmitates/pharmacology , Inflammation/drug therapy , Cytokines/metabolism , Energy Metabolism/drug effects , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Nitric Oxide/metabolism
14.
Sci Rep ; 14(1): 11878, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789533

ABSTRACT

Oral disorders can exert systemic ramifications beyond their localized effects on dental tissues, implicating a wide array of physiological conditions. The utilization of essential oils (EOs) for protection of oral health represents a longstanding practice. Consequently, in this investigation, essential oil derived from Nigella sativa seeds (NSEO) underwent isolation via the hydro-distillation process, followed by a comprehensive evaluation of its antioxidant, anti-inflammatory, anti-fungal, antibacterial activities, and cytocompatibility. The isolated NSEO manifested as a pale-yellow substance and was found to harbor a diverse spectrum of bioactive constituents, including steroids, triterpenoids, flavonoids, phenols, proteins, alkaloids, tannin, sesquiterpenoid hydrocarbons, monoterpenoid alcohol, and monoterpenoid ketone (thymoquinone). Notably, the total phenolic content (TPC) and total flavonoid content (TFC) of NSEO were quantified at 641.23 µg GAE/gm and 442.25 µg QE/g, respectively. Furthermore, NSEO exhibited concentration-dependent inhibition of protein denaturation, HRBC membrane stabilization, and hemolysis inhibition. Comparative analysis revealed that NSEO and chlorhexidine (CHX) 0.2% displayed substantial inhibition of hemolysis compared to aspirin. While NSEO and CHX 0.2% demonstrated analogous antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, NSEO showcased heightened efficacy against Lactobacillus acidophilus and Candida albicans. Additionally, NSEO exhibited pronounced effects against periodontal pathogens such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia. Importantly, no cytotoxicity was observed on human gingival fibroblast cell lines. These findings underscore the potential of NSEO as a potent antibacterial and antifungal agent in the management of oral microbial pathogens, thereby offering avenues for the development of innovative therapies targeting diverse oral inflammatory conditions. Nevertheless, further investigations are imperative to unlock its full therapeutic repertoire.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Nigella sativa , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nigella sativa/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Seeds/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
15.
Am J Chin Med ; 52(3): 775-797, 2024.
Article in English | MEDLINE | ID: mdl-38715182

ABSTRACT

Kidney disease is a common health problem worldwide. Acute or chronic injuries may interfere with kidney functions, eventually resulting in irreversible kidney damage. A number of recent studies have shown that the plant-derived natural products have an extensive potential for renal protection. Thymoquinone (TQ) is an essential compound derived from Nigella Sativa (NS), which is widely applied in the Middle East as a folk medicine. Previous experiments have demonstrated that TQ has a variety of potential pharmacological effects, including anti-oxidant, antibacterial, antitumor, immunomodulatory, and neuroprotective activities. In particular, the prominent renal protective efficacy of TQ has been demonstrated in both in vivo and in vitro experiments. TQ can prevent acute kidney injuries from various xenobiotics through anti-oxidation, anti-inflammatory, and anti-apoptosis effects. In addition, TQ exhibited significant pharmacological effects on renal cell carcinoma, renal fibrosis, and urinary calculi. The essential mechanisms involve scavenging ROS and increasing anti-oxidant activity, decreasing inflammatory mediators, inducing apoptosis, and inhibiting migration and invasion. The purpose of this review is to conclude the pharmacological effects and the potential mechanisms of TQ in renal protection, shedding new light on the exploration of medicinal phyto-protective agents targeting kidneys.


Subject(s)
Antioxidants , Apoptosis , Benzoquinones , Nigella sativa , Phytotherapy , Benzoquinones/pharmacology , Humans , Nigella sativa/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Animals , Kidney Diseases/prevention & control , Kidney Diseases/drug therapy , Kidney/drug effects , Anti-Inflammatory Agents , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Carcinoma, Renal Cell/drug therapy , Reactive Oxygen Species/metabolism , Protective Agents/pharmacology
16.
Clin Exp Dent Res ; 10(3): e886, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798063

ABSTRACT

OBJECTIVE: This study evaluates the efficacy of a novel mucoadhesive patch containing Nigella sativa 10% extract compared to triamcinolone 0.1% in alleviating symptoms and reducing lesion severity in patients with erosive-atrophic oral lichen planus. METHODS AND MATERIALS: A pilot study comprising two groups, each with 10 patients, was conducted. The intervention group received mucoadhesive patches containing N. sativa 10% extract, while the control group received triamcinolone acetonide 0.1% patches. Pain and burning intensity, measured through visual analog scale, and lesion severity based on the Thongprasom scale were assessed weekly for 4 weeks. Descriptive records were kept for side effects and patient satisfaction. RESULTS: Pain and burning intensity decreased in both groups throughout the sessions, with the N. sativa group showing a greater reduction than the triamcinolone group. The reduction in burning intensity within each group was significant (p < .001), and there was a significant difference between groups only in the second session (p = .045). The overall difference between groups was not significant (p > .05). Lesion severity also decreased significantly in both groups (p < .001), with a significant difference between groups observed in the third session (p = .043) and overall throughout the study (p = .006). CONCLUSION: The use of N. sativa extract in mucoadhesive patches was as effective as corticosteroids in reducing pain, burning, and lesion severity in patients with oral lichen planus, with N. sativa showing superior results in some sessions. Notably, no significant complications were observed with N. sativa use, making it a promising treatment option for lichen planus.


Subject(s)
Lichen Planus, Oral , Nigella sativa , Plant Extracts , Adult , Aged , Female , Humans , Male , Middle Aged , Anti-Inflammatory Agents/administration & dosage , Lichen Planus, Oral/drug therapy , Nigella sativa/chemistry , Pain Measurement , Phytotherapy/methods , Pilot Projects , Plant Extracts/administration & dosage , Treatment Outcome , Triamcinolone/administration & dosage , Triamcinolone/therapeutic use , Triamcinolone Acetonide/administration & dosage , Triamcinolone Acetonide/therapeutic use
17.
PeerJ ; 12: e17177, 2024.
Article in English | MEDLINE | ID: mdl-38563005

ABSTRACT

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Subject(s)
Benzoquinones , Nigella sativa , Nigella , Nigella sativa/chemistry , Plant Extracts/pharmacology , Gas Chromatography-Mass Spectrometry , Flavonoids
18.
Eur J Pharm Biopharm ; 199: 114275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582178

ABSTRACT

Liposomes is a non-viral vector drug delivery system. Nevertheless, the existing commercial liposomes are quite expensive and not always affordable, particularly in developing countries. To address this challenge, plant-derived nanoparticles offer a cost-effective alternative while maintaining similar drug delivery capabilities. Hence, this study aimed to explore the potential of nanovesicles derived from black cumin (Nigella sativa) as a miRNA delivery system. Gradient sucrose-centrifugation was utilized to separate the nanovesicles derived from black cumin. Subsequently, these isolated nanovesicles, originating from black cumin, underwent centrifugation at a speed of 11,000 rpm. The miRNAs were encapsulated within these nanovesicles through the ethanol injection method. Morphological examinations of the nanovesicles derived from black cumin and DOTAP, as the positive control, were conducted using TEM and SEM. Furthermore, the cytotoxicity of the nanovesicles derived from black cumin was evaluated through the MTT assay on the MCF-7 cell line. Lastly, the process of internalization for both the black cumin-derived nanovesicles and DOTAP was visualized using a confocal microscope. Results demonstrated the successful isolation of nanovesicles from black cumin using the sucrose gradient method. These particles exhibited a spherical shape with diameters ranging from 100 nm to 200 nm, featuring a negative surface charge. When MCF-7 cells were exposed to black cumin-derived nanovesicles at a concentration of 12 mg/mL, cell viability reached 89.8 %, showing no significant difference compared to the positive control (p > 0.05). Furthermore, the MCF-7 cell line effectively internalized the black cumin-derived nanovesicles after a 45-minute incubation period. Notably, the encapsulation of miRNA within these nanovesicles demonstrated an impressive entrapment efficiency of 76.4 %. Subsequent transfection of miRNA-loaded black cumin-derived nanovesicles resulted in a substantial inhibition of MCF-7 cell viability, reducing it to 67 % after 48 h of treatment. These findings underscore the potential of black cumin-derived nanovesicles as potential nanovectors for the encapsulation and delivery of miRNA within drug delivery systems, offering a cost-effective and accessible solution for advanced drug delivery technologies, particularly in developing country.


Subject(s)
Drug Delivery Systems , MicroRNAs , Nanoparticles , Nigella sativa , Humans , MCF-7 Cells , Drug Delivery Systems/methods , Nigella sativa/chemistry , Nanoparticles/chemistry , Cell Survival/drug effects , Liposomes , Plant Extracts/administration & dosage , Plant Extracts/chemistry
19.
J Chem Neuroanat ; 137: 102405, 2024 04.
Article in English | MEDLINE | ID: mdl-38447905

ABSTRACT

This study investigated the potential effects on the hippocampus of electromagnetic fields (EMFs) disseminated by mobile phones and the roles of baobab (Adansonia digitata) (AD) and black seed (Nigella sativa) (BS) in mitigating these. Fifty-six male, 12-week-old Wistar albino rats were divided into eight groups of seven animals each. No EMF exposure was applied to the control, AD or BS groups, while the rats in the Sham group were placed in an EMF system with no exposure. A 900-MHz EMF was applied to the EMF+AD, EMF+BS, EMF+AD+BS and EMF groups for 1 hour a day for 28 days. Pyramidal neurons in the hippocampus were subsequently counted using the optical fractionator technique, one of the unbiased stereological methods. Tissue sections were also evaluated histopathologically under light and electron microscopy. The activities of the enzymes catalase (CAT) and superoxide dismutase (SOD) were also determined in blood serum samples. Analysis of the stereological data revealed no statistically significant differences between the EMF and control or sham groups in terms of pyramidal neuron numbers (p>0.05). However, stereological examination revealed a crucial difference in the entire hippocampus between the control group and the AD (p<0.01) and BS (p<0.05) groups. Moreover, exposure to 900-MHz EMF produced adverse changes in the structures of neurons at histopathological analysis. Qualitative examinations suggest that a combination of herbal products such as AD and BS exerts a protective effect against such EMF side-effects.


Subject(s)
Electromagnetic Fields , Hippocampus , Rats, Wistar , Animals , Male , Hippocampus/radiation effects , Electromagnetic Fields/adverse effects , Rats , Neuroprotective Agents/pharmacology , Nigella sativa/chemistry , Seeds , Plant Extracts/pharmacology , Pyramidal Cells/radiation effects , Superoxide Dismutase/metabolism
20.
Molecules ; 29(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542995

ABSTRACT

Nigella sativa L. (black cumin) is one of the most investigated medicinal plants in recent years. Volatile compounds like thymoquinone and unsaponifiable lipid compounds are crucial functional components of this oil. Unfortunately, the composition of oils and their quality indicators are ambiguous both in terms of identified compounds and value ranges. Thirteen oils were extracted with hexane from black cumin seeds grown in India, Syria, Egypt, and Poland and analyzed for their fatty acid composition, unsaponifiable compound content and volatile compounds. Oils were also subjected to quality tests according to standard methods. The fatty acid composition and sterol content/composition were relatively stable among the tested oils. Tocol content varied in the range of 140-631 mg/kg, and among them, ß-tocotrienol and γ-tocopherol prevailed. Oils' volatile compounds were dominated by seven terpenes (p-cymene, α-thujene, α-pinene, ß-pinene, thymoquinone, γ-terpinene, and sabinene). The highest contents of these volatiles were determined in samples from Poland and in two of six samples from India. High acid and peroxide values were typical features of N. sativa L. oils. To sum up, future research on the medicinal properties of black cumin oil should always be combined with the analysis of its chemical composition.


Subject(s)
Benzoquinones , Nigella sativa , Oils, Volatile , Nigella sativa/chemistry , Plant Oils/chemistry , Seeds/chemistry , Fatty Acids/analysis , Oils, Volatile/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...