Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.360
Filter
1.
Medicine (Baltimore) ; 103(31): e39160, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093779

ABSTRACT

RATIONALE: Amid the pervasive deployment of imidacloprid, the incidence of poisoning from this compound has risen markedly. Those afflicted with imidacloprid poisoning typically exhibit symptoms ranging from headaches, dizziness, nausea, and abdominal pain, to impaired consciousness and breathlessness, yet instances of ocular paralysis induced by this toxin have not previously been documented. PATIENT CONCERNS: When the pesticide spray inadvertently made contact with the patient's eyes, they were seared with a burning sensation and discomfort. Subsequent to this incident, on the second day, the individual began to experience diplopia in the right eye and found it arduous to elevate his eyelids, indicating a challenge in achieving full extension. DIAGNOSES: Based on the medical history, symptoms, and signs, the patient was diagnosed with oculomotor nerve palsy caused by imidacloprid. INTERVENTIONS: The treatment involved intravenous dexamethasone to reduce inflammatory response in the eye tissue; oral pantoprazole enteric-coated tablets to suppress acid production and protect the stomach; Xuesaitong administered intravenously to improve blood supply to the eye and promote metabolism of toxins; vitamin C, cobamamide, and vitamin B1 for nerve nutrition and antioxidant effects; local application of tobramycin-dexamethasone eye drops for anti-inflammatory purposes; and repeated flushing of the conjunctival sac with saline. Finally, the patient improved and was discharged. OUTCOMES: After active treatment, the patient finally improved diplopia and ptosis. LESSONS: This report marks the first documentation of oculomotor nerve palsy induced by imidacloprid, featuring diplopia, and blepharoptosis without substantial limitation of ocular motility. Following therapeutic intervention, the patient showed marked improvement and was discharged from the hospital, providing a point of reference for the treatment of analogous cases in future clinical practice. It also serves as a reminder for the public to take appropriate precautions when using imidacloprid.


Subject(s)
Neonicotinoids , Nitro Compounds , Oculomotor Nerve Diseases , Humans , Neonicotinoids/adverse effects , Nitro Compounds/adverse effects , Male , Oculomotor Nerve Diseases/chemically induced , Oculomotor Nerve Diseases/diagnosis , Insecticides/adverse effects
2.
Luminescence ; 39(8): e4849, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099225

ABSTRACT

Pesticides in environmental samples pose significant risks to ecosystems and human health since they require precise and efficient detection methods. Imidacloprid (IMI), a widely used neonicotinoid insecticide, exemplifies these hazards due to its potential toxicity. This study addresses the urgent need for improved monitoring of such contaminants by introducing a novel fluorometric method for detecting IMI using nitrogen-doped graphite carbon dots (N-GCDs). The sensor operates by quenching fluorescence through the interaction of Cu2+ ions with N-GCDs. Subsequently, IMI binds to the imidazole group, chelates with Cu2+, and restores the fluorescence of N-GCDs. This alternating fluorescence behavior allows for the accurate identification of both Cu2+ and IMI. The sensor exhibits linear detection ranges of 20-100 nM for Cu2+ and 10-140 µg/L for IMI, with detection limits of 18 nM and 1.2 µg/L, respectively. The high sensitivity of this sensor enables the detection of real-world samples, which underscores its potential for practical use in environmental monitoring and agricultural safety.


Subject(s)
Copper , Environmental Monitoring , Fluorometry , Graphite , Neonicotinoids , Nitro Compounds , Nitrogen , Quantum Dots , Neonicotinoids/analysis , Neonicotinoids/chemistry , Nitro Compounds/chemistry , Nitro Compounds/analysis , Copper/chemistry , Copper/analysis , Nitrogen/chemistry , Graphite/chemistry , Quantum Dots/chemistry , Insecticides/analysis , Insecticides/chemistry , Imidazoles/chemistry
3.
Cells ; 13(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39120325

ABSTRACT

Neonicotinoids are synthetic, nicotine-derived insecticides used worldwide to protect crops and domestic animals from pest insects. The reported evidence shows that they are also able to interact with mammalian nicotine receptors (nAChRs), triggering detrimental responses in cultured neurons. Exposure to high neonicotinoid levels during the fetal period induces neurotoxicity in animal models. Considering the persistent exposure to these insecticides and the key role of nAChRs in brain development, their potential neurotoxicity on mammal central nervous system (CNS) needs further investigations. We studied here the neurodevelopmental effects of different generations of neonicotinoids on CNS cells in mouse fetal brain and primary cultures and in neuronal cells and organoids obtained from human induced pluripotent stem cells (iPSC). Neonicotinoids significantly affect neuron viability, with imidacloprid (IMI) inducing relevant alterations in synaptic protein expression, neurofilament structures, and microglia activation in vitro, and in the brain of prenatally exposed mouse fetuses. IMI induces neurotoxic effects also on developing human iPSC-derived neurons and cortical organoids. Collectively, the current findings show that neonicotinoids might induce impairment during neuro/immune-development in mouse and human CNS cells and provide new insights in the characterization of risk for the exposure to this class of pesticides.


Subject(s)
Induced Pluripotent Stem Cells , Neonicotinoids , Neurons , Organoids , Animals , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Neonicotinoids/toxicity , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Mice , Pesticides/toxicity , Cells, Cultured , Brain/drug effects , Female , Nitro Compounds/toxicity
4.
Molecules ; 29(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124883

ABSTRACT

This review delves into recent advancements in the field of nitro(het)aromatic bioreductive agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen conditions typically found in solid tumors, making them promising candidates for targeted cancer therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment. Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning, and monitoring of therapeutic responses. We hope this review will inspire researchers to design and synthesize improved compounds for selective cancer treatment and early diagnostics.


Subject(s)
Fluorescent Dyes , Neoplasms , Prodrugs , Tumor Hypoxia , Humans , Prodrugs/chemistry , Prodrugs/pharmacology , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Fluorescent Dyes/chemistry , Animals , Optical Imaging/methods , Nitro Compounds/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use
5.
J Agric Food Chem ; 72(32): 17824-17833, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088303

ABSTRACT

Sitobion miscanthi, the main species of wheat aphids, is one kind of harmful pest. Chemical insecticides are the important agrochemical products to effectively control wheat aphids. However, the broad application has led to serious resistance of pests to several insecticides, and understanding insecticide resistance mechanisms is critical for integrated pest management. In this study, SmUGGT1, a new uridine diphosphate (UDP)-glycosyltransferase (UGT) gene, was cloned and more strongly expressed in the SM-R (the resistant strain to imidacloprid) than in the SM-S (the susceptible strain to imidacloprid). The increased susceptibility to imidacloprid was observed after silencing SmUGGT1, indicating that it can be related to the resistance to imidacloprid. Subsequently, SmUGGT1 regulated post-transcriptionally in the coding sequences (CDs) by miR-81 was verified and involved in the resistance to imidacloprid in S. miscanthi. This finding is crucial in the roles of UGT involved in insecticide resistance management in pests.


Subject(s)
Aphids , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Nitro Compounds/pharmacology , Neonicotinoids/pharmacology , Insecticides/pharmacology , Animals , Insecticide Resistance/genetics , Aphids/genetics , Aphids/drug effects , Triticum/genetics , Triticum/metabolism , Triticum/parasitology , Triticum/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Braz J Biol ; 84: e284320, 2024.
Article in English | MEDLINE | ID: mdl-39166691

ABSTRACT

Piercing sucking pests attacking sweet pepper plants cause significant losses to its yield. Considering the undesirable effects of synthetic pesticides, field studies were conducted to evaluate the impact of new pesticides against piercing sucking insect pests of sweet pepper, as well as, their effects on some predators and pepper yield along two seasons of 2021-2022. The obtained results indicated that all tested pesticides effectively suppressed the sucking insect populations (aphids, white fly, thrips) 1,7,14 and 21 days after treatment along two sprays during two seasons. Imidacloprid proved to be the superior one over all other treatments where it recorded mean reduction% (98.91 and 97.27%) & (94.8 and 95.19%), (86.23 and 76.64%) & (80.92 and 88.55%) and (77.68 and 78.44%) & (90.70 and 68.57%) in white fly, aphids and thrips, respectively at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. As for side effects of tested insecticides on natural enemies, Dimethoate induced the highest decrease (60.85 and 69.33%) & (54.02 and 63.41%), (65.52 and 64.74%) & (59.23 and 58.38%) and (64.24 and 59.48%) & (61.66 and 60.8%) on Chrysoperla carnea, Paederus alfierii and Coccinella spp at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. On contrary, Spintoram induced the lowest effects on Chrysoperla carnea, Paederus alfierii and Coccinella spp, recording decrease percent (25.41 and 19.84%) & (15.02 and 12.50%), (11.94 and 11.24%) (16.99 and 18.02%) and (18.73 and15.07%) & (18.35 and18.38%) at1st and 2nd sprays at 2021 and 2022 seasons, respectively. With respect to the effect of tested insecticides on pepper yield, all tested insecticides increased the yield of green pepper fruits compared with control. Imidacloprid achieved the highest fruit yields along two seasons 6.43 and 6.52 (ton / fed.4200 m2) with increase percent 34.53 and 36.04% in yield over control at 2021 and 2022 seasons, respectively.


Subject(s)
Aphids , Capsicum , Insecticides , Neonicotinoids , Nitro Compounds , Seasons , Animals , Insecticides/pharmacology , Capsicum/drug effects , Capsicum/parasitology , Nitro Compounds/pharmacology , Aphids/drug effects , Aphids/physiology , Neonicotinoids/pharmacology , Imidazoles/pharmacology , Thysanoptera/drug effects , Thysanoptera/physiology , Insecta/drug effects , Insecta/physiology , Time Factors
7.
Open Biol ; 14(7): 240057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043224

ABSTRACT

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Subject(s)
Anopheles , Guanidines , Insecticides , Mosquito Vectors , Neonicotinoids , Nitro Compounds , Receptors, Nicotinic , Animals , Anopheles/metabolism , Anopheles/genetics , Anopheles/drug effects , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/chemistry , Guanidines/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Xenopus laevis , Ligands , Pyridines/pharmacology , Malaria/transmission , Malaria/parasitology , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazines/pharmacology , Thiazines/chemistry , Oocytes/metabolism , Oocytes/drug effects , Female , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry
8.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064940

ABSTRACT

This study evaluated the residue behavior and dissipation dynamics of a new imidacloprid FS 600 seed treatment in potato cultivation systems in Shandong and Jilin, China. Sensitive and accurate UPLC-MS/MS methods were established to quantify imidacloprid residues in potatoes, potato plants, and soil. Results showed that imidacloprid dissipation followed a first-order kinetic model, with half-lives ranging from 6.9 to 26.7 days in plants and 19.8 to 28.9 days in soil. At harvest, the highest average residues in potatoes and soil were 0.778 mg/kg and 0.149 mg/kg, respectively. The dietary risk assessment indicated a chronic risk quotient (CRQ) of 39.73% for adults, indicating minimal risk to human consumers, while the ecological risk quotient (ERQ) and ecotoxicity exposure ratio (TER) revealed low to moderate toxicity to earthworms, warranting caution in the use of this formulation. This research provides valuable data for assessing the safety of imidacloprid FS seed treatment in potato cultivation.


Subject(s)
Neonicotinoids , Nitro Compounds , Seeds , Solanum tuberosum , Solanum tuberosum/growth & development , Solanum tuberosum/chemistry , Solanum tuberosum/drug effects , Neonicotinoids/analysis , China , Seeds/chemistry , Pesticide Residues/analysis , Tandem Mass Spectrometry , Insecticides , Soil/chemistry , Risk Assessment , Soil Pollutants/analysis , Soil Pollutants/toxicity
9.
Physiol Rep ; 12(15): e16138, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39079941

ABSTRACT

We investigated the effects of neonicotinoid pesticides (NEOs) on the spontaneous swimming and foraging behavior, as well as the morphological and physiological changes of goldfish. Most fish reared in thiamethoxam (THM)-sprayed rice fields showed the scales easily peeled off, and increased ascites. Some individuals showed decreased bio-defense activity and low plasma Ca2+. Similar changes were found in the exposure test to THM (1.0 and 20.0 µg/L) and dinotefuran (1.2 and 23.5 µg/L). Next, the effects of a low concentration of THM (1.0 µg/L) on the spontaneous swimming and foraging behavior of fish were examined. Fish exposed to THM for 1 week became restless and had increased the swimming performance, especially under natural light, white LED lighting and blue LED lighting. Goldfish exposed to THM had also increased intake of shiny white beads under green LED illumination. These results indicate that the exposure to NEO, even for a short period and at low levels, not only suppressed bio-defense activities and metabolic abnormalities, but also stress response, the swimming and foraging behavior of the fish are likely to be significantly suffered.


Subject(s)
Feeding Behavior , Goldfish , Swimming , Animals , Goldfish/physiology , Feeding Behavior/drug effects , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Thiamethoxam/toxicity , Pesticides/toxicity , Oxazines/toxicity , Oxazines/pharmacology , Water Pollutants, Chemical/toxicity , Thiazoles/toxicity , Insecticides/toxicity
10.
PLoS One ; 19(7): e0305358, 2024.
Article in English | MEDLINE | ID: mdl-39008492

ABSTRACT

BACKGROUND: Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS: A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1ß (IL-1ß), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS: The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS: The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.


Subject(s)
Brain-Derived Neurotrophic Factor , Catechols , Cytokines , Huntington Disease , Molecular Docking Simulation , NF-E2-Related Factor 2 , NF-kappa B , Nitro Compounds , Propionates , Rats, Wistar , Animals , Huntington Disease/metabolism , Huntington Disease/chemically induced , Huntington Disease/drug therapy , Propionates/pharmacology , Male , Brain-Derived Neurotrophic Factor/metabolism , Rats , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Catechols/pharmacology , Catechols/chemistry , Cytokines/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Behavior, Animal/drug effects , Neuroprotective Agents/pharmacology
11.
Chemosphere ; 363: 142845, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004144

ABSTRACT

Nitroaromatic compounds (NACs) in ambient particles are of great concern due to their adverse effects on human health and climate. However, investigations on the characteristics and potential sources of NACs in Southwest China are still scarce. In this study, a field sampling campaign was carried out in the winter of 2022 at a suburban site in Mianyang, Southwest China. A direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to rapidly determine 10 NACs in fine particulate matter (PM2.5) extracts. The method was sensitive for the quantification of the NACs, with a limit of quantification (LOQ) in the range of 0.092-0.52 ng mL-1. Then, the developed method was applied to determine the concentrations of nitrophenols (NPs), nitrocatechols (NCs), nitrosalicylic acids (NSAs), and nitronaphthol in PM2.5 in Mianyang. The average concentration of total NACs was 78.2 ± 31.2 ng m-3, with daily concentrations ranging from 20.7 to 127.9 ng m-3. Among the measured NACs, 4-nitrocatechol was the most abundant, accounting for 57.8% of the NACs in winter. The five NPs compounds together contributed to 14% of the NACs, which was lower than in other Chinese cities due to the warm climate in winter in Southwest China. NSAs and nitronaphthol each accounted for less than 5% of the NACs. Three major sources of NACs were identified based on the principal component analysis, including vehicle emissions, biomass burning, and secondary formation. The significant correlation between individual NACs and NO2 supported their secondary formation sources. The good correlation between NPs and cloud amount further suggested that gas-phase oxidation was the possible NPs formation mechanism. Our findings revealed the important role of nitrocatechols in NACs in Southwest China, implying that more measures should be taken to control biomass burning and aromatic volatile organic compounds emissions to reduce the level of NACs.


Subject(s)
Aerosols , Air Pollutants , Environmental Monitoring , Particulate Matter , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , China , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Chromatography, Liquid , Aerosols/analysis , Nitro Compounds/analysis , Atmosphere/chemistry
12.
J Hazard Mater ; 476: 135139, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38981230

ABSTRACT

Neonicotinoids pose significant environmental risks due to their widespread use, persistence, and challenges in elimination. This study explores the effectiveness of Fe/Mn biochar in enhancing the removal efficiency of neonicotinoids in recirculating constructed wetlands (RCWs). Results demonstrated that incorporating Fe/Mn biochar into RCWs significantly improved the removal of COD, NH4+-N, TN, TP, imidacloprid (IMI), and acetamiprid (ACE). However, the simultaneous presence of IMI and ACE in the RCWs hindered the elimination of NH4+-N, TN, and TP from wastewater. The enhanced removal of nutrients and pollutants by Fe/Mn biochar was attributed to its promotion of carbon, nitrogen, and phosphorus cycling in RCWs, along with its facilitation of the adsorption and biodegradation of IMI and ACE. Metagenomics analysis demonstrated that Fe/Mn biochar altered the structure and diversity of microbial communities in RCWs. A total of 17 biodegradation genes (BDGs) and two pesticide degradation genes (PDGs) were identified within RCWs, with Fe/Mn biochar significantly increasing the abundance of BDGs such as cytochrome P450. The potential host genera for these BDGs/PDGs were identified as Betaproteobacteria, Acidobacteria, Nitrospiraceae, Gemmatimonadetes, and Bacillus. This study offers valuable insights into how Fe/Mn biochar enhances pesticide removal and its potential application in constructed wetland systems for treating pesticide-contaminated wastewater.


Subject(s)
Biodegradation, Environmental , Charcoal , Iron , Neonicotinoids , Water Pollutants, Chemical , Wetlands , Charcoal/chemistry , Water Pollutants, Chemical/metabolism , Neonicotinoids/chemistry , Neonicotinoids/metabolism , Iron/chemistry , Manganese , Wastewater/chemistry , Nitrogen/metabolism , Microbiota , Phosphorus/chemistry , Bacteria/genetics , Bacteria/metabolism , Adsorption , Insecticides/metabolism , Waste Disposal, Fluid/methods , Nitro Compounds
13.
J Agric Food Chem ; 72(32): 17834-17846, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39083644

ABSTRACT

This study analyzed neonicotinoid insecticides (NEOs) and metabolite (m-NEOs) residues in 136 Panax notoginseng samples via ultra-performance liquid chromatography-tandem mass spectrometry. Imidacloprid was the most detected NEO (88.24% of samples), ranging from 1.50 to 2850 µg/kg. To the best of our knowledge, some novel NEOs were detected in P. notoginseng for the first time. NEO clustering patterns varied among plant parts, with higher contamination in leaves and flowers. Fourteen NEO/m-NEOs, including cycloxaprid and acetamiprid, showed site-specific behavior, indicating the possibility of using multiple NEOs simultaneously during planting, resulting in formation of distinct metabolites in different plant parts. Transfer rates in decoction and infusion ranged from 10.06 to 32.33%, reducing residues postprocessing. Dietary risk assessment showed low hazard quotients (HQa: 7.05 × 10-7 to 2.09 × 10-2; HQc: 3.74 × 10-7 to 2.38 × 10-3), but risk-ranking scores indicated potential hazards with imidacloprid and acetamiprid in flowers and leaves. The findings are expected to promote safety assessment and distribution research of NEOs in plants.


Subject(s)
Food Contamination , Insecticides , Neonicotinoids , Panax notoginseng , Pesticide Residues , Plant Leaves , Insecticides/analysis , Neonicotinoids/analysis , Panax notoginseng/chemistry , Pesticide Residues/analysis , Food Contamination/analysis , Plant Leaves/chemistry , Risk Assessment , Tandem Mass Spectrometry , Flowers/chemistry , Nitro Compounds/analysis , Chromatography, High Pressure Liquid
14.
J Hazard Mater ; 477: 135345, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39084013

ABSTRACT

Imidacloprid (IMI) is used extensively as an insecticide and poses a significant risk to both the ecological environment and human health. Biological methods are currently gaining recognition among the different strategies tested for wastewater treatment. This study focused on evaluating a recently discovered green alga, Scenedesmus sp. TXH202001, isolated from a municipal wastewater treatment plant (WWTP), exhibited notable capacity for IMI removal. After an 18-day evaluation, medium IMI concentrations (50 and 100 mg/L) facilitated the growth of microalgae whereas low (5 and 20 mg/L) and high (150 mg/L) concentrations had no discernible impact. No statistically significant disparities were detected in Fv/Fm, Malonaldehyde or Superoxide dismutase across all concentrations, suggesting Scenedesmus sp. TXH202001 exhibited notable resilience and adaptability to IMI conditions. Most notably, Scenedesmus sp. TXH202001 successfully eliminated > 99 % of IMI within 18 days subjected to IMI concentrations as high as 150 mg/L, which was contingent on the environmental factor of illumination. Molecular docking was used to identify the chemical reaction sites between IMI and typical degrading enzyme CYP450. Furthermore, the study revealed that the primary path for IMI removal was biodegradation and verified that the toxicity of the degraded product was lower than parent IMI in Caenorhabditis elegans. The efficacy of Scenedesmus sp. TXH202001 in wastewater was exceptional, thereby validating its practical utility.


Subject(s)
Biodegradation, Environmental , Insecticides , Neonicotinoids , Nitro Compounds , Scenedesmus , Water Pollutants, Chemical , Scenedesmus/metabolism , Scenedesmus/drug effects , Scenedesmus/growth & development , Neonicotinoids/metabolism , Neonicotinoids/toxicity , Neonicotinoids/chemistry , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nitro Compounds/metabolism , Nitro Compounds/toxicity , Nitro Compounds/chemistry , Insecticides/toxicity , Insecticides/metabolism , Insecticides/chemistry , Light , Wastewater/chemistry
15.
Chem Biol Interact ; 400: 111176, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39084502

ABSTRACT

Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Ovarian Epithelial , Cell Proliferation , Epithelial-Mesenchymal Transition , Mice, Nude , Nitro Compounds , Ovarian Neoplasms , Thiazoles , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Nitro Compounds/pharmacology , Animals , Humans , Thiazoles/pharmacology , Thiazoles/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Signal Transduction/drug effects , Mice, Inbred BALB C , Cell Movement/drug effects , Xenograft Model Antitumor Assays
16.
Environ Sci Pollut Res Int ; 31(33): 45954-45969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980489

ABSTRACT

Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.


Subject(s)
Glycine , Glyphosate , Neonicotinoids , Nitro Compounds , Proteome , Animals , Bees/drug effects , Neonicotinoids/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Nitro Compounds/toxicity , Imidazoles/toxicity , Insecticides/toxicity
17.
Sci Rep ; 14(1): 15709, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977768

ABSTRACT

Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.


Subject(s)
Captan , Drug Synergism , Fungicides, Industrial , Insecticides , Thiamethoxam , Animals , Thiamethoxam/toxicity , Bees/drug effects , Bees/physiology , Insecticides/toxicity , Fungicides, Industrial/toxicity , Captan/toxicity , Larva/drug effects , Neonicotinoids/toxicity , Thiazoles/toxicity , Nitro Compounds/toxicity
18.
Chem Biol Interact ; 399: 111145, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39002876

ABSTRACT

Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).


Subject(s)
Hippocampus , Maternal Exposure , Neonicotinoids , Neural Stem Cells , Neurogenesis , Nitro Compounds , Prenatal Exposure Delayed Effects , Reelin Protein , Animals , Neurogenesis/drug effects , Pregnancy , Female , Neonicotinoids/toxicity , Rats , Nitro Compounds/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/cytology , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Insecticides/toxicity , Male , Cell Proliferation/drug effects , Behavior, Animal/drug effects , Rats, Sprague-Dawley , Oxidative Stress/drug effects
19.
Article in English | MEDLINE | ID: mdl-39053111

ABSTRACT

An imidacloprid colloidal gold immunochromatographic strip was developed in this work, and systematic analytical conditions were deeply investigated. The test strips were used for rapid screening of imidacloprid residues in Chinese herbal medicines. The performance of the colloidal gold test strips was investigated by using five selected Chinese herbal medicines (malt, Coix seed, lotus seed, dried ginger and honeysuckle). As a result, the developed imidacloprid colloidal gold immunochromatographic test strips could be used for rapid screening of imidacloprid residues in 60 kinds of different herbs (including 26 kinds of root/rhizome medicines, 20 kinds of seed/fruit/pericarp medicines, 11 kinds of flower/leaf/whole herb medicines, and 3 kinds of bark/aboveground issues of herb medicines), and the cut-off value was 50 µg/kg. The development of this method can achieve the goal of on-site, rapid and low-cost screening of imidacloprid residues in different herbs, which is of great significance for the quality assurance of herbs.


Subject(s)
Chromatography, Affinity , Drugs, Chinese Herbal , Gold Colloid , Limit of Detection , Neonicotinoids , Nitro Compounds , Neonicotinoids/analysis , Nitro Compounds/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Gold Colloid/chemistry , Chromatography, Affinity/methods , Reproducibility of Results , Pesticide Residues/analysis , Linear Models
20.
J Hazard Mater ; 476: 135170, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39002477

ABSTRACT

PURPOSE: This study aimed to evaluate the relationships of separate and mixed exposure of neonicotinoids on cardiometabolic risk at baseline and follow-up and its change over 3 years, and further explore whether inflammatory markers levels and platelet traits (PLT) mediate these relationships. METHODS: In this prospective cohort study from the Henan Rural Cohort Study, 2315 participants were involved at baseline, and 1841 participants completed cardiometabolic risk predictors determinations during the 3-year follow-up. Each neonicotinoid pesticide was normalized to imidacloprid (IMIeq) using the relative potency factor approach. Quantile-based g-computation (Qgcomp) regression was used to evaluate the effect of the mixtures of neonicotinoids mediation analysis was employed to explore whether inflammatory markers levels and platelet traits mediated these relationships. A two-sample mendelian randomization (MR) study was further used to causal association. RESULTS: Qgcomp regression revealed a statistically positive relationship between neonicotinoids mixture exposure and cardiometabolic risk score at baseline and follow-up over 3 years. Both neutrophils/monocytes and PLT were mediators in the relationship between IMIeq and cardiometabolic risk score at baseline and follow-up over 3 years. The causal risk effect of pesticide exposure were 2.50 (0.05, 4.95) and 5.24 (1.28, 9.19) for cardiometabolic risk indicators including insulin resistance and triglyceride, respectively. Nevertheless, there was no correlation discovered between pesticide exposure and other markers of cardiometabolic risk. CONCLUSION: Neonicotinoid insecticides exposure was connected to an increased cardiometabolic risk, especially in individuals with T2DM. Furthermore, inflammatory markers and PLT seem to be two vital mediators of these associations. Additionally, genetic evidence on pesticide exposure and cardiometabolic risk still needs to be validated by multiregional and multiethnic GWAS studies.


Subject(s)
Insecticides , Mendelian Randomization Analysis , Neonicotinoids , Rural Population , Humans , Neonicotinoids/toxicity , China , Male , Female , Prospective Studies , Middle Aged , Insecticides/toxicity , Adult , Environmental Exposure/adverse effects , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Cardiometabolic Risk Factors , East Asian People , Nitro Compounds
SELECTION OF CITATIONS
SEARCH DETAIL