Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.303
Filter
1.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990962

ABSTRACT

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Subject(s)
Biodiversity , Carbon , Greenhouse Gases , Plants , Soil , Soil/chemistry , Greenhouse Gases/analysis , Carbon/metabolism , Carbon/analysis , Plants/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Ecosystem , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Methane/metabolism , Greenhouse Effect
2.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831142

ABSTRACT

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Subject(s)
Aquaculture , Bacteria , Denitrification , Microbiota , Nitrogen , Nitrous Oxide , Penaeidae , Ponds , Nitrogen/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Ponds/microbiology , Animals , Penaeidae/microbiology , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Geologic Sediments/microbiology , Oxidation-Reduction , Ammonium Compounds/metabolism
3.
Chemosphere ; 361: 142568, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851510

ABSTRACT

Biotrickling filter (BTF) is often used for purification of waste gas from swine houses, with vital information still needed regarding interaction effects among multiple gas pollutants removal and also the formation of byproducts especially nitrous oxide (N2O, a strong greenhouse gas) due to the relative high NH3 concentration level compared to other gases. In this study, gas removal and N2O production were compared between two BTFs, where the inlet gas of BTF-1 contained NH3 and H2S while p-cresol was additionally supplied to BTF-2. At inlet load (IL) between 3.67 and 18.91 g m-3 h-1, removal efficiencies of NH3 exceeded 95% for both BTFs. As alternative strategy, adding thiosulfate improved H2S removal. Interestingly, presence of p-cresol to some extent promoted H2S removal at IL of 0.56 g m-3 h-1possibly due to effect on pH value of circulating solution. Similar to NH3, removal efficiencies of p-cresol were higher than 95% at an average IL of 2.98 g m-3 h-1. Gas residence time, pH of circulating solution and inlet loading were identified as key factors affecting BTF performance, but the response of individual gas compound to these factors was not consistent. Overall, p-cresol enhanced N2O generation although the effects were not always significant. High-throughput sequencing results showed that Proteobacteria accounted for the largest proportion of relative abundance and BTF-2 had much richer microbial diversity compared to BTF-1. Thermomonas, Comamonas, Rhodanobacter and other bacterial genus capable of denitrification were detected in both BTFs, and their corresponding abundances in BTF-2 (10.9%, 8.7% and 5.2%) were all greater than those in BTF-1 (0.4%, 0.3% and 2.0%), indicating that more denitrification may occur within BTF-2 and higher N2O could have been generated. This study provided evidence that organic gas components, served as carbon source, may increase the N2O production from BTF when treating waste gases containing NH3.


Subject(s)
Air Pollutants , Ammonia , Cresols , Hydrogen Sulfide , Nitrous Oxide , Ammonia/metabolism , Cresols/metabolism , Nitrous Oxide/metabolism , Hydrogen Sulfide/metabolism , Air Pollutants/metabolism , Swine , Animals , Filtration/methods , Biodegradation, Environmental
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886427

ABSTRACT

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Subject(s)
Ammonia , Fertilizers , Nitrogen , Nitrous Oxide , Triticum , Water , Triticum/growth & development , Triticum/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Ammonia/analysis , Ammonia/metabolism , China , Water/analysis , Water/metabolism , Agricultural Irrigation/methods , Seasons , Biomass , Soil/chemistry
5.
Proc Natl Acad Sci U S A ; 121(25): e2319960121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865268

ABSTRACT

Nitrous oxide (N2O), a potent greenhouse gas, can be generated by multiple biological and abiotic processes in diverse contexts. Accurately tracking the dominant sources of N2O has the potential to improve our understanding of N2O fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used toward this end, as bacterial and fungal nitric oxide reductases (NORs) produce N2O with different isotopic fingerprints, spanning a large range. Here, we show that flavohemoglobin (Fhp), a hitherto biogeochemically neglected yet widely distributed detoxifying bacterial NO reductase, imparts a distinct SP value onto N2O under anoxic conditions (~+10‰) that correlates with typical environmental N2O SP measurements. Using Pseudomonas aeruginosa as a model organism, we generated strains that only contained Fhp or the dissimilatory NOR, finding that in vivo N2O SP values imparted by these enzymes differ by over 10‰. Depending on the cellular physiological state, the ratio of Fhp:NOR varies significantly in wild-type cells and controls the net N2O SP biosignature: When cells grow anaerobically under denitrifying conditions, NOR dominates; when cells experience rapid, increased nitric oxide concentrations under anoxic conditions but are not growing, Fhp dominates. Other bacteria that only make Fhp generate similar N2O SP biosignatures to those measured from our P. aeruginosa Fhp-only strain. Fhp homologs in sequenced bacterial genomes currently exceed NOR homologs by nearly a factor of four. Accordingly, we suggest a different framework to guide the attribution of N2O biological sources in nature and disease.


Subject(s)
Nitrous Oxide , Oxidoreductases , Pseudomonas aeruginosa , Nitrous Oxide/metabolism , Oxidoreductases/metabolism , Pseudomonas aeruginosa/metabolism , Anaerobiosis , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Nitric Oxide/metabolism
6.
Sci Total Environ ; 946: 174231, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38917909

ABSTRACT

Nitrous oxide (N2O) is increasingly regarded as a significant greenhouse gas implicated in global warming and the depletion of the ozone layer, yet it is also recognized as a valuable resource. This paper comprehensively reviews innovative microbial denitrification techniques for recovering N2O from nitrogenous wastewater and flue gas. Critical analysis is carried out on cutting-edge processes such as the coupled aerobic-anoxic nitrous decomposition operation (CANDO) process, semi-artificial photosynthesis, and the selective utilization of microbial strains, as well as flue gas absorption coupled with heterotrophic/autotrophic denitrification. These processes are highlighted for their potential to facilitate denitrification and enhance the recovery rate of N2O. The review integrates feasible methods for process control and optimization, and presents the underlying mechanisms for N2O recovery through denitrification, primarily achieved by suppressing nitrous oxide reductase (Nos) activity and intensifying competition for electron donors. The paper concludes by recognizing the shortcomings in existing technologies and proposing future research directions, with an emphasis on prioritizing the collection and utilization of N2O while considering environmental sustainability and economic feasibility. Through this review, we aim to inspire interest in the recovery and utilization of N2O, as well as the development and application of related technologies.


Subject(s)
Denitrification , Nitrous Oxide , Waste Disposal, Fluid , Wastewater , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Wastewater/chemistry , Waste Disposal, Fluid/methods , Air Pollutants/metabolism , Air Pollutants/analysis , Greenhouse Gases
7.
Nat Commun ; 15(1): 4226, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762502

ABSTRACT

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Subject(s)
Methane , Nitrous Oxide , Nitrous Oxide/metabolism , Methane/metabolism , Hydrogen-Ion Concentration , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxygen/metabolism , Oxidation-Reduction , Anaerobiosis , Methanol/metabolism , Hydrogen/metabolism , Oxygenases/metabolism , Oxygenases/genetics
8.
Nat Commun ; 15(1): 4085, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744837

ABSTRACT

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Subject(s)
Ammonia , Ammonium Compounds , Bacteria , Ecosystem , Nitrous Oxide , Rivers , Nitrous Oxide/metabolism , Rivers/microbiology , Rivers/chemistry , Ammonium Compounds/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Ammonia/metabolism , Metagenome , Agriculture , Nitrates/metabolism , Denitrification , Nitrification , Metabolic Networks and Pathways/genetics
9.
Glob Chang Biol ; 30(5): e17333, 2024 May.
Article in English | MEDLINE | ID: mdl-38798169

ABSTRACT

Plant metabolites significantly affect soil nitrogen (N) cycling, but their influence on nitrous oxide (N2O) emissions has not been quantitatively analyzed on a global scale. We conduct a comprehensive meta-analysis of 173 observations from 42 articles to evaluate global patterns of and principal factors controlling N2O emissions in the presence of root exudates and extracts. Overall, plant metabolites promoted soil N2O emissions by about 10%. However, the effects of plant metabolites on N2O emissions from soils varied with experimental conditions and properties of both metabolites and soils. Primary metabolites, such as sugars, amino acids, and organic acids, strongly stimulated soil N2O emissions, by an average of 79%, while secondary metabolites, such as phenolics, terpenoids, and flavonoids, often characterized as both biological nitrification inhibitors (BNIs) and biological denitrification inhibitors (BDIs), reduced soil N2O emissions by an average of 41%. The emission mitigation effects of BNIs/BDIs were closely associated with soil texture and pH, increasing with increasing soil clay content and soil pH on acidic and neutral soils, and with decreasing soil pH on alkaline soils. We furthermore present soil incubation experiments that show that three secondary metabolite types act as BNIs to reduce N2O emissions by 32%-45%, while three primary metabolite classes possess a stimulatory effect of 56%-63%, confirming the results of the meta-analysis. Our results highlight the potential role and application range of specific secondary metabolites in biomitigation of global N2O emissions and provide new biological parameters for N2O emission models that should help improve the accuracy of model predictions.


Subject(s)
Nitrous Oxide , Plants , Soil , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Soil/chemistry , Plants/metabolism , Plants/chemistry , Nitrification , Denitrification
10.
Nat Commun ; 15(1): 4092, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750010

ABSTRACT

Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.


Subject(s)
Nitrous Oxide , Serratia , Soil Microbiology , Nitrous Oxide/metabolism , Hydrogen-Ion Concentration , Serratia/metabolism , Serratia/genetics , Oxidation-Reduction , Soil/chemistry , Fermentation , Coculture Techniques , Pyruvic Acid/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Nitrogen/metabolism
11.
Environ Microbiol ; 26(5): e16622, 2024 May.
Article in English | MEDLINE | ID: mdl-38757466

ABSTRACT

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Subject(s)
Bacteria , Nitrous Oxide , Rivers , Nitrous Oxide/metabolism , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeography , Phylogeny , Microbiota
12.
Bioresour Technol ; 402: 130794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703966

ABSTRACT

Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.


Subject(s)
Carbon , Methane , Nitrogen , Wetlands , Nitrogen/metabolism , Carbon/metabolism , Methane/metabolism , Polyesters/metabolism , Polyesters/chemistry , Manganese/pharmacology , Plants/metabolism , Denitrification , Nitrous Oxide/metabolism , Carbon Dioxide/metabolism , Biodegradation, Environmental , Photosynthesis
13.
Mar Environ Res ; 198: 106542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788475

ABSTRACT

Seagrass meadows act as filters for nitrogen in coastal areas, but whether they are a source or sink for N2O has been still controversy. Additionally, the production pathways of N2O as well as the microbial driving mechanism in seagrass meadows are seldom reported. In this study, the air-sea fluxes, sediment release potential, and production pathway of N2O in a temperate Zostera marina and Z. japonica mixed meadow were investigated by using gas chromatography and 15N isotopic tracing methods. The qPCR and metagenome sequencing were used to compare the difference in functional gene abundance and expression between seagrass vegetated and non-grass sediments. The results showed that the N2O air-sea fluxes in the meadow ranged from -1.97 to -1.77 nmol m⁻2 h⁻1, which was slightly lower in the seagrass region than in the adjacent bare region. Seagrass sediment N2O release potential dramatically increased after warming and nitrogen enrichment treatments. Heterotrophic nitrification was firstly investigated in seagrass meadows, and the process (26.80%-62.41%) and denitrification (37.55%-72.83%) contributed significantly to N2O production in the meadow, affected deeply by sediment organic content, while the contribution of autotrophic nitrification can be neglected. Compared with the bare sediments, the ammonia monooxygenase genes amoA, amoB and amoC, and nitrite oxidoreductase genes nxrA and nxrB, as well as nitrite reductase gene nirS and nitric oxide reductase gene norB were down-regulated, while the nitrous oxide reductase gene nosZ was up-regulated in the seagrass sediments, explaining less N2O emission in seagrass regions from the perspective of molecular. The nosZII-bearing bacteria like Bacteroidia, Polyangia, Anaerolineae, and Verrucomicrobiae could play important roles in N2O reduction in the seagrass meadow. The result is of great significance for highlighting the ability of seagrass meadows to mitigate climate changes.


Subject(s)
Nitrous Oxide , Zosteraceae , Zosteraceae/metabolism , Zosteraceae/genetics , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Environmental Monitoring , Geologic Sediments/microbiology , Denitrification , Nitrification , Air Pollutants/analysis , Nitrogen/metabolism
14.
Nature ; 630(8016): 421-428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811724

ABSTRACT

Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.


Subject(s)
Crop Production , Farms , Global Warming , Nitrous Oxide , Soil Microbiology , Soil , Bacterial Proteins/metabolism , Biofuels/supply & distribution , Flavobacteriaceae/cytology , Flavobacteriaceae/growth & development , Flavobacteriaceae/metabolism , Global Warming/prevention & control , Nitrogen/metabolism , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Soil/chemistry , Crop Production/methods , Crop Production/trends , Europe
15.
Sci Total Environ ; 934: 173122, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734086

ABSTRACT

Similar to soils, tree stems emit and consume nitrous oxide (N2O) from the atmosphere. Although tree leaves dominate tree surface area, they have been completely excluded from field N2O flux measurements and therefore their role in forest N2O exchange remains unknown. We explored the contribution of leaf fluxes to forest N2O exchange. We determined the N2O exchange of mature European beech (Fagus sylvatica) stems and shoots (i.e., terminal branches) and of adjacent forest floor, in a typical temperate upland forest in Germany. The beech stems, and particularly the shoots, acted as net N2O sinks (-0.254 ± 0.827 µg N2O m-2 stem area h-1 and -4.54 ± 1.53 µg N2O m-2 leaf area h-1, respectively), while the forest floor was a net source (2.41 ± 1.08 µg N2O m-2 soil area h-1). The unstudied tree shoots were identified as a significant contributor to the net ecosystem N2O exchange. Moreover, we revealed for the first time that tree leaves act as substantial N2O sinks. Although this is the first study of its kind, it is of global importance for the proper design of future flux studies in forest ecosystems worldwide. Our results demonstrate that excluding tree leaves from forest N2O flux measurements can lead to misinterpretation of tree and forest N2O exchange, and thus global forest greenhouse gas flux inventories.


Subject(s)
Air Pollutants , Fagus , Nitrous Oxide , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Fagus/metabolism , Germany , Air Pollutants/analysis , Forests , Environmental Monitoring , Plant Shoots/metabolism , Plant Leaves/metabolism
16.
J Environ Manage ; 357: 120736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574706

ABSTRACT

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Biofuels/analysis , Sanitation , Soil/chemistry , Methane/analysis , Nitrous Oxide/metabolism , Greenhouse Effect
17.
Nat Commun ; 15(1): 3471, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658559

ABSTRACT

Paddy fields are hotspots of microbial denitrification, which is typically linked to the oxidation of electron donors such as methane (CH4) under anoxic and hypoxic conditions. While several anaerobic methanotrophs can facilitate denitrification intracellularly, whether and how aerobic CH4 oxidation couples with denitrification in hypoxic paddy fields remains virtually unknown. Here we combine a ~3300 km field study across main rice-producing areas of China and 13CH4-DNA-stable isotope probing (SIP) experiments to investigate the role of soil aerobic CH4 oxidation in supporting denitrification. Our results reveal positive relationships between CH4 oxidation and denitrification activities and genes across various climatic regions. Microcosm experiments confirm that CH4 and methanotroph addition promote gene expression involved in denitrification and increase nitrous oxide emissions. Moreover, 13CH4-DNA-SIP analyses identify over 70 phylotypes harboring genes associated with denitrification and assimilating 13C, which are mostly belonged to Rubrivivax, Magnetospirillum, and Bradyrhizobium. Combined analyses of 13C-metagenome-assembled genomes and 13C-metabolomics highlight the importance of intermediates such as acetate, propionate and lactate, released during aerobic CH4 oxidation, for the coupling of CH4 oxidation with denitrification. Our work identifies key microbial taxa and pathways driving coupled aerobic CH4 oxidation and denitrification, with important implications for nitrogen management and greenhouse gas regulation in agroecosystems.


Subject(s)
Denitrification , Methane , Oryza , Oxidation-Reduction , Soil Microbiology , Soil , Methane/metabolism , Oryza/metabolism , Oryza/microbiology , China , Soil/chemistry , Aerobiosis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Nitrous Oxide/metabolism , Phylogeny , Carbon Isotopes/metabolism , Metagenome
18.
Bioresour Technol ; 401: 130717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642664

ABSTRACT

The complex interaction between nitrate (NO3-) reduction and fermentation is poorly understood when high levels of NO3- are introduced into anaerobic systems. This study investigated the competitive distribution between conventional denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA) during simultaneous denitrification and fermentation in arrested methanogenesis. Up to 62% of initial NO3- (200 mg-N/L) was retained as ammonium through DNRA at a chemical oxygen demand (COD)/N ratio of 25. Significant N2O emission occurred (1.7 - 8.0% of the initial NO3-) with limited carbon supply (≤1600 mg COD/L) and sludge concentration (≤3000 mg COD/L). VFA composition shifted predominantly towards acetic acid (>50%) in the presence of nitrate. A novel kinetic model was developed to predict DNRA vs. DEN partitioning and NO2- accumulation. Overall, NO3- input, organic loading, and carbon source characteristics independently and collectively controlled competitive DNRA vs. DEN partitioning.


Subject(s)
Ammonium Compounds , Denitrification , Fatty Acids, Volatile , Methane , Nitrous Oxide , Fatty Acids, Volatile/metabolism , Nitrous Oxide/metabolism , Methane/metabolism , Ammonium Compounds/metabolism , Nitrates/metabolism , Kinetics , Fermentation/physiology , Bioreactors , Sewage , Biological Oxygen Demand Analysis
19.
J Environ Manage ; 358: 120826, 2024 May.
Article in English | MEDLINE | ID: mdl-38608579

ABSTRACT

Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.


Subject(s)
Denitrification , Hydroxylamine , Nitrous Oxide , Pseudomonas , Nitrous Oxide/metabolism , Pseudomonas/metabolism , Hydroxylamine/metabolism , Nitrates/metabolism , Nitrites/metabolism
20.
Chemosphere ; 357: 142034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615962

ABSTRACT

Sulfonamides, quinolones, tetracyclines, and macrolides are the most prevalent classes of antibiotics used in both medical treatment and agriculture. The misuse of antibiotics leads to their extensive dissemination in the environment. These antibiotics can modify the structure and functionality of microbial communities, consequently impacting microbial-mediated nitrogen cycling processes including nitrification, denitrification, and anammox. They can change the relative abundance of nirK/norB contributing to the emission of nitrous oxide, a potent greenhouse gas. This review provides a comprehensive examination of the presence of these four antibiotic classes across different environmental matrices and synthesizes current knowledge of their effects on the nitrogen cycle, including the underlying mechanisms. Such an overview is crucial for understanding the ecological impacts of antibiotics and for guiding future research directions. The presence of antibiotics in the environment varies widely, with significant differences in concentration and type across various settings. We conducted a comprehensive review of over 70 research articles that compare various aspects including processes, antibiotics, concentration ranges, microbial sources, experimental methods, and mechanisms of influence. Antibiotics can either inhibit, have no effect, or even stimulate nitrification, denitrification, and anammox, depending on the experimental conditions. The influence of antibiotics on the nitrogen cycle is characterized by dose-dependent responses, primarily inhibiting nitrification, denitrification, and anammox. This is achieved through alterations in microbial community composition and diversity, carbon source utilization, enzyme activities, electron transfer chain function, and the abundance of specific functional enzymes and antibiotic resistance genes. These alterations can lead to diminished removal of reactive nitrogen and heightened nitrous oxide emissions, potentially exacerbating the greenhouse effect and related environmental issues. Future research should consider diverse reaction mechanisms and expand the scope to investigate the combined effects of multiple antibiotics, as well as their interactions with heavy metals and other chemicals or organisms.


Subject(s)
Anti-Bacterial Agents , Denitrification , Nitrification , Nitrogen Cycle , Nitrous Oxide , Anti-Bacterial Agents/pharmacology , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Nitrification/drug effects , Nitrogen/metabolism , Bacteria/metabolism , Bacteria/drug effects , Microbiota/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL