Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Cells ; 13(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39273074

ABSTRACT

CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. METHODS: We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. RESULTS: The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. CONCLUSIONS: Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4.


Subject(s)
Muscle Proteins , Muscular Diseases , Humans , Male , Female , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Adult , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Pedigree , Middle Aged , Sarcoplasmic Reticulum/metabolism , Mutation/genetics , Nonsense Mediated mRNA Decay/genetics
2.
RNA ; 30(10): 1277-1291, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39095083

ABSTRACT

The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use generally established rules. We present a data set with four cell lines and combinations for SMG5, SMG6, and SMG7 knockdowns or SMG7 knockout. Based on this data set, we implemented a workflow that combines Nanopore and Illumina sequencing to assemble a transcriptome, which is enriched for NMD target transcripts. Moreover, we use coding sequence information (CDS) from Ensembl, Gencode consensus Ribo-seq ORFs, and OpenProt to enhance the CDS annotation of novel transcript isoforms. In summary, 302,889 transcripts were obtained from the transcriptome assembly process, out of which 24% are absent from Ensembl database annotations, 48,213 contain a premature stop codon, and 6433 are significantly upregulated in three or more comparisons of NMD active versus deficient cell lines. We present an in-depth view of these results through the NMDtxDB database, which is available at https://shiny.dieterichlab.org/app/NMDtxDB, and supports the study of NMD-sensitive transcripts. We open sourced our implementation of the respective web-application and analysis workflow at https://github.com/dieterich-lab/NMDtxDB and https://github.com/dieterich-lab/nmd-wf.


Subject(s)
Molecular Sequence Annotation , Nonsense Mediated mRNA Decay , RNA, Messenger , Humans , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Databases, Genetic , Open Reading Frames/genetics , Codon, Nonsense/genetics
3.
Biomolecules ; 14(8)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39199410

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional gene expression regulatory mechanism in eukaryotic cells. NMD eliminates aberrant mRNAs with premature termination codons to surveil transcriptome integrity. Furthermore, NMD fine-tunes gene expression by destabilizing RNAs with specific NMD features. Thus, by controlling the quality and quantity of the transcriptome, NMD plays a vital role in mammalian development, stress response, and tumorigenesis. Deficiencies of NMD factors result in early embryonic lethality, while the underlying mechanisms are poorly understood. SMG5 is a key NMD factor. In this study, we generated an Smg5 conditional knockout mouse model and found that Smg5-null results in early embryonic lethality before E13.5. Furthermore, we produced multiple lines of Smg5 knockout mouse embryonic stem cells (mESCs) and found that the deletion of Smg5 in mESCs does not compromise cell viability. Smg5-null delays differentiation of mESCs. Mechanistically, our study reveals that the c-MYC protein, but not c-Myc mRNA, is upregulated in SMG5-deficient mESCs. The overproduction of c-MYC protein could be caused by enhanced protein synthesis upon SMG5 loss. Furthermore, SMG5-null results in dysregulation of alternative splicing on multiple stem cell differentiation regulators. Overall, our findings underscore the importance of SMG5-NMD in regulating mESC cell-state transition.


Subject(s)
Cell Differentiation , Mice, Knockout , Mouse Embryonic Stem Cells , Nonsense Mediated mRNA Decay , Animals , Mice , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Nonsense Mediated mRNA Decay/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism
4.
Adv Sci (Weinh) ; 11(32): e2400978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189522

ABSTRACT

Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.


Subject(s)
Autophagy , Plant Diseases , Autophagy/genetics , Plant Diseases/virology , Plant Diseases/genetics , Nonsense Mediated mRNA Decay/genetics , Feedback, Physiological , Tobamovirus/genetics , Tobamovirus/metabolism , Nicotiana/virology , Nicotiana/genetics , Nicotiana/metabolism
5.
PLoS Genet ; 20(8): e1011363, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39150991

ABSTRACT

Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.


Subject(s)
Alternative Splicing , Arabidopsis , Exons , Nonsense Mediated mRNA Decay , Animals , Humans , Mice , Alternative Splicing/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Codon, Nonsense/genetics , Conserved Sequence , Exons/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Yi Chuan ; 46(7): 540-551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016087

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is an important RNA quality control pathway. It aids in degrading harmful erroneous mRNA, thereby preserving a stable and healthy internal environment. In this study, we employed CRISPR/Cas9 and amiRNA technology to generate knock out or knock down mutants of realted genes in the rice NMD pathway. Through transcriptome sequencing and observing phenotype changes, the study explored the impact of NMD pathway defects on rice gene expression and alternative splicing. The results suggest that even partial defects will induce phenotypic changes such as plant height and pollen vitality to different degrees, showing necessity of NMD factors. Gene expression analysis reveals that most differentially expressed genes are upregulated in the mutants, with ko-upf1-like and kd-upf1 defects having a more significant impact than kd-upf2 and kd-upf3. Specifically, NMD pathway defects result in increased expression levels of rice defense response-related genes and decreased expression levels of secondary metabolism-related genes, with a wider range of affected genes observed in 60-day-old senescence mutants. Transcript analysis indicates that different NMD related genes defects alter hundreds of alternative splicing events, mostly enriched in genes involving alternative splicing regulatory pathways. Approximately half of these events are shared among different mutants, and a substantial number of affected transcripts show NMD target features. NMD could affect both the transcript abundance and their splicing subtypes to regulate the defense response and early-senescence associated pathways, which plays a vital role in rice growth and reproduction.


Subject(s)
Gene Expression Regulation, Plant , Nonsense Mediated mRNA Decay , Oryza , Phenotype , Transcriptome , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Nonsense Mediated mRNA Decay/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Alternative Splicing
7.
PLoS Genet ; 20(5): e1011279, 2024 May.
Article in English | MEDLINE | ID: mdl-38748723

ABSTRACT

The leiomodin (Lmod) family of actin-binding proteins play a critical role in muscle function, highlighted by the fact that mutations in all three family members (LMOD1-3) result in human myopathies. Mutations in the cardiac predominant isoform, LMOD2 lead to severe neonatal dilated cardiomyopathy. Most of the disease-causing mutations in the LMOD gene family are nonsense, or frameshift, mutations predicted to result in expression of truncated proteins. However, in nearly all cases of disease, little to no LMOD protein is expressed. We show here that nonsense-mediated mRNA decay, a cellular mechanism which eliminates mRNAs with premature termination codons, underlies loss of mutant protein from two independent LMOD2 disease-causing mutations. Furthermore, we generated steric-blocking oligonucleotides that obstruct deposition of the exon junction complex, preventing nonsense-mediated mRNA decay of mutant LMOD2 transcripts, thereby restoring mutant protein expression. Our investigation lays the initial groundwork for potential therapeutic intervention in LMOD-linked myopathies.


Subject(s)
Codon, Nonsense , Nonsense Mediated mRNA Decay , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Codon, Nonsense/genetics , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mutation , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Neuron ; 112(13): 2157-2176.e12, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38697111

ABSTRACT

Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.


Subject(s)
Brain , Mice, Knockout , Neural Stem Cells , Nonsense Mediated mRNA Decay , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice , Brain/metabolism , Neural Stem Cells/metabolism , Nonsense Mediated mRNA Decay/genetics , Epistasis, Genetic , Microcephaly/genetics , Cell Cycle/physiology , Cell Cycle/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
9.
Nucleic Acids Res ; 52(6): e34, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38375914

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a network of pathways that degrades transcripts that undergo premature translation termination. In mammals, NMD can be divided into the exon junction complex (EJC)-enhanced and EJC-independent branches. Fluorescence- and luminescence-based reporters have long been effective tools to investigate NMD, yet existing reporters largely focus on the EJC-enhanced pathway. Here, we present a system of reporters for comparative studies of EJC-independent and EJC-enhanced NMD. This system also enables the study of NMD-associated outcomes such as premature termination codon (PTC) readthrough and truncated protein degradation. These reporters are compatible with fluorescence or luminescence-based readouts via transient transfection or stable integration. Using this reporter system, we show that EJC-enhanced NMD RNA levels are reduced by 2- or 9-fold and protein levels are reduced by 7- or 12-fold compared to EJC-independent NMD, depending on the reporter gene used. Additionally, the extent of readthrough induced by G418 and an NMD inhibitor (SMG1i), alone and in combination, varies across NMD substrates. When combined, G418 and SMG1i increase readthrough product levels in an additive manner for EJC-independent reporters, while EJC-enhanced reporters show a synergistic effect. We present these reporters as a valuable toolkit to deepen our understanding of NMD and its associated mechanisms.


Subject(s)
Exons , Genes, Reporter , Genetic Techniques , Nonsense Mediated mRNA Decay , Exons/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , HEK293 Cells , Genes, Reporter/genetics
10.
Proteomics ; 24(18): e2300361, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38350726

ABSTRACT

Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.


Subject(s)
Nonsense Mediated mRNA Decay , RNA Helicases , Trans-Activators , Triple Negative Breast Neoplasms , Humans , Nonsense Mediated mRNA Decay/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Am J Med Genet A ; 194(6): e63556, 2024 06.
Article in English | MEDLINE | ID: mdl-38348595

ABSTRACT

Phenotypic features of a hereditary connective tissue disorder, including craniofacial characteristics, hyperextensible skin, joint laxity, kyphoscoliosis, arachnodactyly, inguinal hernia, and diverticulosis associated with biallelic pathogenic variants in EFEMP1 have been previously described in four patients. Genome sequencing on a proband and her mother with comparable phenotypic features revealed that both patients were heterozygous for a stop-gain variant c.1084C>T (p.Arg362*). Complementary RNA-seq on fibroblasts revealed significantly reduced levels of mutant EFEMP1 transcript. Considering the absence of other molecular explanations, we extrapolated that EFEMP1 could be the cause of the patient's phenotypes. Furthermore, nonsense-mediated decay was demonstrated for the mutant allele as the principal mechanism for decreased levels of EFEMP1 mRNA. We provide strong clinical and genetic evidence for the haploinsufficiency of EFEMP1 due to nonsense-medicated decay to cause severe kyphoscoliosis, generalized hypermobility of joints, high and narrow arched palate, and potentially severe diverticulosis. To the best of our knowledge, this is the first report of an autosomal dominant EFEMP1-associated hereditary connective tissue disorder and therefore expands the phenotypic spectrum of EFEMP1 related disorders.


Subject(s)
Connective Tissue Diseases , Extracellular Matrix Proteins , Haploinsufficiency , Marfan Syndrome , Phenotype , Humans , Haploinsufficiency/genetics , Female , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Extracellular Matrix Proteins/genetics , Connective Tissue Diseases/genetics , Connective Tissue Diseases/pathology , Pedigree , Mutation/genetics , Nonsense Mediated mRNA Decay/genetics , Male , Adult , Alleles , Genetic Predisposition to Disease , Child
12.
J Oral Biosci ; 66(1): 225-231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244688

ABSTRACT

OBJECTIVES: Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked genetic disorder caused by mutations in the BCL6 co-repressor (BCOR) and is mainly characterized by radiculomegaly (elongated dental roots). All BCOR mutations reported to date have been associated with premature termination codons, indicating that nonsense-mediated mRNA decay (NMD) might play a vital role in the pathogenesis of OFCD syndrome. However, the molecular mechanisms underlying NMD remain unclear. In this study, we investigated the involvement of up-frameshift protein 1 (UPF1), which plays a central role in NMD, in the hyperactive root formation caused by BCOR mutations. METHODS: Periodontal ligament cells, isolated from a Japanese woman with a c.3668delC frameshift mutation in BCOR, and primary human periodontal ligament fibroblasts (HPdLFs) were used for an RNA immunoprecipitation assay to confirm the binding of UPF1 to mutated BCOR. Additionally, the effects of UPF1 on the BCOR transcription levels and corresponding gene expression were determined by performing relative quantitative real-time polymerase chain reactions. RESULTS: RNA immunoprecipitation revealed that UPF1 binds to exon 9 of mutated BCOR. Additionally, UPF1 knockdown via siRNA upregulated the transcription of BCOR, whereas overexpression of wild-type and mutated BCOR with the same frameshift mutation in HPdLFs altered bone morphogenetic protein 2 (BMP2) expression. CONCLUSIONS: Our findings indicate that BCOR mutations regulate the transcription of BCOR via UPF1, which may in turn regulate the expression of BMP2. NMD, caused by a c.3668delC mutation, potentially leads to an OFCD syndrome phenotype, including elongated dental roots.


Subject(s)
Cataract/congenital , Frameshift Mutation , Heart Septal Defects , Microphthalmos , Nonsense Mediated mRNA Decay , Female , Humans , Frameshift Mutation/genetics , Nonsense Mediated mRNA Decay/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Codon, Nonsense/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism
13.
Planta ; 259(3): 51, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289504

ABSTRACT

MAIN CONCLUSION: Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.


Subject(s)
Arabidopsis , Nonsense Mediated mRNA Decay , Nonsense Mediated mRNA Decay/genetics , Arabidopsis/genetics , RNA, Messenger/genetics , RNA, Plant/genetics
14.
BMB Rep ; 56(12): 625-632, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38052423

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is both a quality control mechanism and a gene regulation pathway. It has been studied for more than 30 years, with an accumulation of many mechanistic details that have often led to debate and hence to different models of NMD activation, particularly in higher eukaryotes. Two models seem to be opposed, since the first requires intervention of the exon junction complex (EJC) to recruit NMD factors downstream of the premature termination codon (PTC), whereas the second involves an EJC-independent mechanism in which NMD factors concentrate in the 3'UTR to initiate NMD in the presence of a PTC. In this review we describe both models, giving recent molecular details and providing experimental arguments supporting one or the other model. In the end it is certainly possible to imagine that these two mechanisms co-exist, rather than viewing them as mutually exclusive. [BMB Reports 2023; 56(12): 625-632].


Subject(s)
Codon, Nonsense , Nonsense Mediated mRNA Decay , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Exons , Codon, Nonsense/genetics , Gene Expression Regulation
15.
BMC Genom Data ; 24(1): 68, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980504

ABSTRACT

BACKGROUND: Viruses employ diverse strategies to interfere with host defense mechanisms, including the production of proteins that mimic or resemble host proteins. This study aimed to analyze the similarities between SARS-CoV-2 and human proteins, investigate their impact on virus-host interactions, and elucidate underlying mechanisms. RESULTS: Comparing the proteins of SARS-CoV-2 with human and mammalian proteins revealed sequence and structural similarities between viral helicase with human UPF1. The latter is a protein that is involved in nonsense-mediated RNA decay (NMD), an mRNA surveillance pathway which also acts as a cellular defense mechanism against viruses. Protein sequence similarities were also observed between viral nsp3 and human Poly ADP-ribose polymerase (PARP) family of proteins. Gene set enrichment analysis on transcriptomic data derived from SARS-CoV-2 positive samples illustrated the enrichment of genes belonging to the NMD pathway compared with control samples. Moreover, comparing transcriptomic data from SARS-CoV-2-infected samples with transcriptomic data derived from UPF1 knockdown cells demonstrated a significant overlap between datasets. CONCLUSIONS: These findings suggest that helicase/UPF1 sequence and structural similarity might have the ability to interfere with the NMD pathway with pathogenic and immunological implications.


Subject(s)
COVID-19 , RNA , Animals , Humans , RNA/metabolism , SARS-CoV-2/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , COVID-19/genetics , Nonsense Mediated mRNA Decay/genetics , Mammals/genetics , Mammals/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
16.
J Cell Physiol ; 238(11): 2638-2650, 2023 11.
Article in English | MEDLINE | ID: mdl-37683043

ABSTRACT

Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.


Subject(s)
Myoblasts , Nonsense Mediated mRNA Decay , Animals , Male , Mice , Cell Differentiation/genetics , Cell Line , Mice, Inbred C57BL , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscles , Myoblasts/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenin/genetics , Myogenin/metabolism , Nonsense Mediated mRNA Decay/genetics
17.
Plant J ; 116(3): 744-755, 2023 11.
Article in English | MEDLINE | ID: mdl-37522642

ABSTRACT

Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.


Subject(s)
Arabidopsis , Carmovirus , Arabidopsis/genetics , RNA Interference , Carmovirus/genetics , Nonsense Mediated mRNA Decay/genetics , RNA , Antiviral Agents , RNA, Viral/genetics
18.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37218462

ABSTRACT

Translation of mRNAs containing premature termination codons (PTCs) results in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance pathway responsible for detecting PTC containing transcripts. Although the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized. Here, we use a fluorescent reporter system in mammalian cells to reveal a selective degradation pathway specifically targeting the protein product of an NMD mRNA. We show that this process is post-translational and dependent on the ubiquitin proteasome system. To systematically uncover factors involved in NMD-linked protein quality control, we conducted genome-wide flow cytometry-based screens. Our screens recovered known NMD factors but suggested that protein degradation did not depend on the canonical ribosome-quality control (RQC) pathway. A subsequent arrayed screen demonstrated that protein and mRNA branches of NMD rely on a shared recognition event. Our results establish the existence of a targeted pathway for nascent protein degradation from PTC containing mRNAs, and provide a reference for the field to identify and characterize required factors.


Subject(s)
Mammals , Nonsense Mediated mRNA Decay , Animals , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/metabolism
19.
Plant Cell ; 35(6): 1936-1955, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37070465

ABSTRACT

In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Nonsense Mediated mRNA Decay/genetics , RNA Helicases/genetics , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: mdl-36997282

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a highly conserved regulatory mechanism of post-transcriptional gene expression in eukaryotic cells. NMD plays essential roles in mRNA quality and quantity control and thus safeguards multiple biological processes including embryonic stem cell differentiation and organogenesis. UPF3A and UPF3B in vertebrate species, originated from a single UPF3 gene in yeast, are key factors in the NMD machinery. Although UPF3B is a well-recognized weak NMD-promoting factor, whether UPF3A functions in promoting or suppressing NMD is under debate. In this study, we generated a Upf3a conditional knockout mouse strain and established multiple lines of embryonic stem cells and somatic cells without UPF3A. Through extensive analysis on the expressions of 33 NMD targets, we found UPF3A neither represses NMD in mouse embryonic stem cells, somatic cells, nor in major organs including the liver, spleen, and thymus. Our study reinforces that UPF3A is dispensable for NMD when UPF3B is present. Furthermore, UPF3A may weakly and selectively promote NMD in certain murine organs.


Subject(s)
Nonsense Mediated mRNA Decay , RNA-Binding Proteins , Animals , Mice , Cell Differentiation/genetics , Nonsense Mediated mRNA Decay/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL