Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92.040
Filter
1.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963044

ABSTRACT

Lysine methyltransferase 5A (KMT5A) is the sole mammalian enzyme known to catalyse the mono­methylation of histone H4 lysine 20 and non­histone proteins such as p53, which are involved in the occurrence and progression of numerous cancers. The present study aimed to determine the function of KMT5A in inducing docetaxel (DTX) resistance in patients with breast carcinoma by evaluating glucose metabolism and the underlying mechanism involved. The upregulation or downregulation of KMT5A­related proteins was examined after KMT5A knockdown in breast cancer (BRCA) cells by Tandem Mass Tag proteomics. Through differential protein expression and pathway enrichment analysis, the upregulated key gluconeogenic enzyme fructose­1,6­bisphosphatase 1 (FBP1) was discovered. Loss of FBP1 expression is closely related to the development and prognosis of cancers. A dual­luciferase reporter gene assay confirmed that KMT5A inhibited the expression of FBP1 and that overexpression of FBP1 could enhance the chemotherapeutic sensitivity to DTX through the suppression of KMT5A expression. The KMT5A inhibitor UNC0379 was used to verify that DTX resistance induced by KMT5A through the inhibition of FBP1 depended on the methylase activity of KMT5A. According to previous literature and interaction network structure, it was revealed that KMT5A acts on the transcription factor twist family BHLH transcription factor 1 (TWIST1). Then, it was verified that TWSIT1 promoted the expression of FBP1 by using a dual­luciferase reporter gene experiment. KMT5A induces chemotherapy resistance in BRCA cells by promoting cell proliferation and glycolysis. After the knockdown of the KMT5A gene, the FBP1 related to glucose metabolism in BRCA was upregulated. KMT5A knockdown expression and FBP1 overexpression synergistically inhibit cell proliferation and block cells in the G2/M phase. KMT5A inhibits the expression of FBP1 by methylating TWIST1 and weakening its promotion of FBP1 transcription. In conclusion, KMT5A was shown to affect chemotherapy resistance by regulating the cell cycle and positively regulate glycolysis­mediated chemotherapy resistance by inhibiting the transcription of FBP1 in collaboration with TWIST1. KMT5A may be a potential therapeutic target for chemotherapy resistance in BRCA.


Subject(s)
Breast Neoplasms , Docetaxel , Drug Resistance, Neoplasm , Fructose-Bisphosphatase , Gene Expression Regulation, Neoplastic , Nuclear Proteins , Twist-Related Protein 1 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Female , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Docetaxel/pharmacology , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Proliferation/drug effects , DNA Methylation
3.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968120

ABSTRACT

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Subject(s)
Dyrk Kinases , Hedgehog Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3 , Animals , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Proliferation , Cilia/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Nuclear Proteins , Repressor Proteins
4.
Nat Commun ; 15(1): 5379, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956052

ABSTRACT

Targeted protein degradation is a groundbreaking modality in drug discovery; however, the regulatory mechanisms are still not fully understood. Here, we identify cellular signaling pathways that modulate the targeted degradation of the anticancer target BRD4 and related neosubstrates BRD2/3 and CDK9 induced by CRL2VHL- or CRL4CRBN -based PROTACs. The chemicals identified as degradation enhancers include inhibitors of cellular signaling pathways such as poly-ADP ribosylation (PARG inhibitor PDD00017273), unfolded protein response (PERK inhibitor GSK2606414), and protein stabilization (HSP90 inhibitor luminespib). Mechanistically, PARG inhibition promotes TRIP12-mediated K29/K48-linked branched ubiquitylation of BRD4 by facilitating chromatin dissociation of BRD4 and formation of the BRD4-PROTAC-CRL2VHL ternary complex; by contrast, HSP90 inhibition promotes BRD4 degradation after the ubiquitylation step. Consequently, these signal inhibitors sensitize cells to the PROTAC-induced apoptosis. These results suggest that various cell-intrinsic signaling pathways spontaneously counteract chemically induced target degradation at multiple steps, which could be liberated by specific inhibitors.


Subject(s)
Cell Cycle Proteins , Proteolysis , Signal Transduction , Transcription Factors , Ubiquitination , Humans , Signal Transduction/drug effects , Proteolysis/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Cycle Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Bromodomain Containing Proteins
5.
J Cancer Res Clin Oncol ; 150(7): 335, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969831

ABSTRACT

BACKGROUND: Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS: The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS: UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION: We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.


Subject(s)
Autophagy-Related Proteins , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Animals , Mice , Female , Male , Prognosis , Cell Line, Tumor , Mice, Nude , Cell Movement , Gene Expression Regulation, Neoplastic , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins , Nuclear Proteins
6.
Vet Res ; 55(1): 84, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965634

ABSTRACT

Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.


Subject(s)
Adaptor Proteins, Signal Transducing , Autophagy , Immunity, Innate , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Swine , Virus Replication , Humans , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
7.
Allergol Immunopathol (Madr) ; 52(4): 46-52, 2024.
Article in English | MEDLINE | ID: mdl-38970264

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a leading cause of tumor-associated mortality, and it is needed to find new target to combat this disease. Guanine nucleotide-binding -protein-like 3 (GNL3) mediates cell proliferation and apoptosis in several cancers, but its role in LUAD remains unclear. OBJECTIVE: To explore the expression and function of Guanine nucleotide-binding protein-like 3 (GNL3) in lung adenocarcinoma (LUAD) and its potential mechanism in inhibiting the growth of LUAD cells. METHODS: We evaluated the expression of GNL3 in LUAD tissues and its association with patient prognosis using databases and immunohistochemistry. Cell proliferation was assessed by CCK-8 assay as well as colony formation, while apoptosis was evaluated by FCM. The effect of GNL3 knockdown on the Wnt/ß-catenin axis was investigated by Immunoblot analysis. RESULTS: GNL3 is overexpressed in LUAD tissues and is correlated with poor prognosis. Knockdown of GNL3 significantly inhibited the growth as well as induced apoptosis in A549 as well as H1299 cells. Furthermore, we found that the inhibitory effect of GNL3 knockdown on LUAD cell growth is associated with the downregulation of the Wnt/ß-catenin axis. CONCLUSION: GNL3 is key in the progression of LUAD by metiating Wnt/ß-catenin axis. Targeting GNL3 may represent a novel therapeutic method for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Cell Proliferation , Gene Knockdown Techniques , Lung Neoplasms , Wnt Signaling Pathway , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Prognosis , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , A549 Cells , Nuclear Proteins
8.
Nat Commun ; 15(1): 5604, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961054

ABSTRACT

The CRL4-DCAF15 E3 ubiquitin ligase complex is targeted by the aryl-sulfonamide molecular glues, leading to neo-substrate recruitment, ubiquitination, and proteasomal degradation. However, the physiological function of DCAF15 remains unknown. Using a domain-focused genetic screening approach, we reveal DCAF15 as an acute myeloid leukemia (AML)-biased dependency. Loss of DCAF15 results in suppression of AML through compromised replication fork integrity and consequent accumulation of DNA damage. Accordingly, DCAF15 loss sensitizes AML to replication stress-inducing therapeutics. Mechanistically, we discover that DCAF15 directly interacts with the SMC1A protein of the cohesin complex and destabilizes the cohesin regulatory factors PDS5A and CDCA5. Loss of PDS5A and CDCA5 removal precludes cohesin acetylation on chromatin, resulting in uncontrolled chromatin loop extrusion, defective DNA replication, and apoptosis. Collectively, our findings uncover an endogenous, cell autonomous function of DCAF15 in sustaining AML proliferation through post-translational control of cohesin dynamics.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , DNA Damage , DNA Replication , Leukemia, Myeloid, Acute , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Cell Line, Tumor , Acetylation , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mice , Chromatin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Apoptosis , Cell Proliferation , HEK293 Cells
9.
BMC Med Genomics ; 17(1): 175, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956616

ABSTRACT

This research analyzes the clinical data, whole-exome sequencing results, and in vitro minigene functional experiments of a child with developmental delay and intellectual disability. The male patient, aged 4, began experiencing epileptic seizures at 3 months post-birth and has shown developmental delay. Rehabilitation training was administered between the ages of one and two. There were no other significant family medical histories. Through comprehensive family exome genetic testing, a hemizygous variant in the 11th exon of the OPHN1 gene was identified in the affected child: c.1025 + 1G > A. Family segregation analysis confirmed the presence of this variant in the patient's mother, which had not been previously reported. According to the ACMG guidelines, this variant was classified as a likely pathogenic variant. In response to this variant, an in vitro minigene functional experiment was designed and conducted, confirming that the mutation affects the normal splicing of the gene's mRNA, resulting in a 56 bp retention on the left side of Intron 11. It was confirmed that OPHN1: c.1025 + 1G > A is the pathogenic cause of X-linked intellectual disabilities in the child, with clinical phenotypes including developmental delay and seizures.


Subject(s)
Intellectual Disability , Nuclear Proteins , RNA Splicing , Humans , Male , Child, Preschool , Intellectual Disability/genetics , Nuclear Proteins/genetics , Cytoskeletal Proteins/genetics , GTPase-Activating Proteins/genetics , Developmental Disabilities/genetics , Pedigree , Mutation , Exome Sequencing
10.
Article in Chinese | MEDLINE | ID: mdl-38973045

ABSTRACT

Objective:To investigate the clinical phenotype of a family with branchio-oto syndrome (BOS) and to explore the genetic etiology of the syndrome in this family. Methods:Clinical data were collected from a child diagnosed with BOS and his family members. Genomic DNA was extracted from peripheral blood of the proband and his family members. Whole-exome sequencing was performed, and the mutation sites were verified and analyzed by Sanger sequencing. Results:The family consists of two generations with four members, three of whom exhibit the phenotype. Two members have hearing loss and bilateral preauricular fistulas and bilateral branchial cleft fistulas. One member has bilateral preauricular fistulas and bilateral branchial cleft fistulas. All of which were in line with the clinical diagnosis of gill ear syndrome, the inheritance mode of the family was autosomal dominant inheritance, genetic testing showed that all members of the family had c. 1744delC(p. L592Cfs*47) mutation in the EYA1 gene, while unaffected members have the wild-type allele at this locus. This mutation is a frameshift mutation, which results in the early appearance of the stop codon, and has not been reported so far. According to ACMG guidelines, the variant was preliminarily determined to be suspected pathogenic. Conclusion:The newly discovered EYA1c. 1744delC(p. L592Cfs*47) mutation in this family is the pathogenic mutant gene of the patients in this family, which further expands the mutation spectrum of EYA1 gene, gives us a new understanding of the disease, and provides an important reference for clinical diagnosis and genetic counseling.


Subject(s)
Intracellular Signaling Peptides and Proteins , Nuclear Proteins , Pedigree , Phenotype , Protein Tyrosine Phosphatases , Humans , Male , Protein Tyrosine Phosphatases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Female , Exome Sequencing , Branchio-Oto-Renal Syndrome/genetics , Frameshift Mutation , Mutation , Genetic Testing , Child , Adult
11.
Retrovirology ; 21(1): 13, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898526

ABSTRACT

Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.


Subject(s)
Gene Products, gag , HIV-1 , Humans , HIV-1/physiology , HIV-1/genetics , Gene Products, gag/metabolism , Gene Products, gag/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , Rous sarcoma virus/physiology , Rous sarcoma virus/genetics , Proteomics , Host-Pathogen Interactions , Virus Replication , Host Microbial Interactions , Mass Spectrometry
12.
Arch Oral Biol ; 165: 106017, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852529

ABSTRACT

OBJECTIVE: To evaluate and compare the expression of E-cadherin, Snail1 and Twist1 in pleomorphic adenomas (PAs), adenoid cystic carcinomas (AdCCa) and carcinoma ex-pleomorphic adenomas (CaexPA) of salivary glands, as well as investigate possible associations with clinicopathological parameters. STUDY DESIGN: E-cadherin, Snail1 and Twist1 antibody immunostaining were analyzed semiquantitatively in 20 PAs, 20 AdCCas and 10 CaexPAs. Cases were classified as low and high expression for analysis of the association with clinicopathological parameters. RESULTS: Compared to PAs, AdCCas and CaexPAs exhibited higher nuclear expression of Snail1 (p = 0.021 and p = 0.028, respectively) and Twist1 (p = 0.009 and p = 0.001). Membranous and cytoplasmic expression of E-cadherin were positively correlated in PAs, AdCCas and CaexPAs (r = 0.645, p = 0.002; r = 0.824, p < 0.001; r = 0.677, p = 0.031). In PAs, positive correlation was found between nuclear expression of Snail1 and membrane expression of E-cadherin (r = 0.634; p = 0.003), as well as between nuclear expression of Snail1 and Twist1 (r = 0.580; p = 0.007). Negative correlations were detected between membrane expression of E-cadherin and cytoplasmic expression of Snail1 in AdCCas (r = - 0.489; p = 0.029). CONCLUSIONS: E-cadherin, Twist1, and Snail1 may participate in modulating events related to cell differentiation and adhesion in PAs and to biological behavior in AdCCas and CaexPAs, which indicates the involvement of EMT in these processes. Furthermore, the expression of these proteins in these carcinomas may reflect the plasticity feature of EMT.


Subject(s)
Adenoma, Pleomorphic , Cadherins , Carcinoma, Adenoid Cystic , Epithelial-Mesenchymal Transition , Nuclear Proteins , Salivary Gland Neoplasms , Snail Family Transcription Factors , Twist-Related Protein 1 , Humans , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Snail Family Transcription Factors/metabolism , Cadherins/metabolism , Female , Male , Twist-Related Protein 1/metabolism , Middle Aged , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Nuclear Proteins/metabolism , Adult , Adenoma, Pleomorphic/metabolism , Adenoma, Pleomorphic/pathology , Aged , Twist Transcription Factors/metabolism , Immunohistochemistry , Transcription Factors/metabolism , Biomarkers, Tumor/metabolism
13.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928092

ABSTRACT

Lung adenocarcinoma (LUAD) is the most widespread cancer in the world, and its development is associated with complex biological mechanisms that are poorly understood. Here, we revealed a marked upregulation in the mRNA level of C1orf131 in LUAD samples compared to non-tumor tissue samples in The Cancer Genome Atlas (TCGA). Depletion of C1orf131 suppressed cell proliferation and growth, whereas it stimulated apoptosis in LUAD cells. Mechanistic investigations revealed that C1orf131 knockdown induced cell cycle dysregulation via the AKT and p53/p21 signalling pathways. Additionally, C1orf131 knockdown blocked cell migration through the modulation of epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Notably, we identified the C1orf131 protein nucleolar localization sequence, which included amino acid residues 137-142 (KKRKLT) and 240-245 (KKKRKG). Collectively, C1orf131 has potential as a novel therapeutic marker for patients in the future, as it plays a vital role in the progression of lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Apoptosis/genetics , Disease Progression , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , A549 Cells
14.
Elife ; 132024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904660

ABSTRACT

A functional nervous system is built upon the proper morphogenesis of neurons to establish the intricate connection between them. The microtubule cytoskeleton is known to play various essential roles in this morphogenetic process. While many microtubule-associated proteins (MAPs) have been demonstrated to participate in neuronal morphogenesis, the function of many more remains to be determined. This study focuses on a MAP called HMMR in mice, which was originally identified as a hyaluronan binding protein and later found to possess microtubule and centrosome binding capacity. HMMR exhibits high abundance on neuronal microtubules and altering the level of HMMR significantly affects the morphology of neurons. Instead of confining to the centrosome(s) like cells in mitosis, HMMR localizes to microtubules along axons and dendrites. Furthermore, transiently expressing HMMR enhances the stability of neuronal microtubules and increases the formation frequency of growing microtubules along the neurites. HMMR regulates the microtubule localization of a non-centrosomal microtubule nucleator TPX2 along the neurite, offering an explanation for how HMMR contributes to the promotion of growing microtubules. This study sheds light on how cells utilize proteins involved in mitosis for non-mitotic functions.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Neurons , Animals , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Mitosis , Neurons/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
15.
Biomed Eng Online ; 23(1): 62, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918766

ABSTRACT

Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.


Subject(s)
Diabetic Retinopathy , Nuclear Proteins , Diabetic Retinopathy/metabolism , Humans , Nuclear Proteins/metabolism , Animals , Epigenesis, Genetic
17.
Sci Rep ; 14(1): 14570, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914609

ABSTRACT

Gallbladder cancer (GBC) is a rare but very aggressive most common digestive tract cancer with a high mortality rate due to delayed diagnosis at the advanced stage. Moreover, GBC progression shows asymptomatic characteristics making it impossible to detect at an early stage. In these circumstances, conventional therapy like surgery, chemotherapy, and radiotherapy becomes refractive. However, few studies reported some molecular markers like KRAS (Kirsten Rat Sarcoma) mutation, upregulation of HER2/neu, EGFR (Epidermal Growth Factor Receptor), and microRNAs in GBC. However, the absence of some specific early diagnostic and prognostic markers is the biggest hurdle for the therapy of GBC to date. The present study has been designed to identify some specific molecular markers for precise diagnosis, and prognosis, for successful treatment of the GBC. By In Silico a network-centric analysis of two microarray datasets; (GSE202479) and (GSE13222) from the Gene Expression Omnibus (GEO) database, shows 50 differentially expressed genes (DEGs) associated with GBC. Further network analysis revealed that 12 genes are highly interconnected based on the highest MCODE (Molecular Complex Detection) value, among all three genes; TRIP13 (Thyroid Receptor Interacting Protein), NEK2 (Never in Mitosis gene-A related Kinase 2), and TPX2 (Targeting Protein for Xklp2) having highest network interaction with transcription factors and miRNA suggesting critically associated with GBC. Further survival analysis data corroborate the association of these genes; TRIP13, NEK2, and TPX2 with GBC. Thus, TRIP13, NEK2, and TPX2 genes are significantly correlated with a greater risk of mortality, transforming them from mere biomarkers of the GBC for early detections and may emerge as prognostic markers for treatment.


Subject(s)
Biomarkers, Tumor , Gallbladder Neoplasms , Gene Expression Regulation, Neoplastic , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/metabolism , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Computer Simulation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Regulatory Networks , Gene Expression Profiling , Prognosis , Carcinogenesis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
18.
Elife ; 132024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836552

ABSTRACT

Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.


Subject(s)
Mice, Knockout , Nuclear Proteins , Osteoclasts , Osteogenesis , Animals , Mice , Centrosome/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Osteoblasts/metabolism , Osteoclasts/metabolism
19.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829899

ABSTRACT

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Subject(s)
Cell Cycle Proteins , Cryptococcus neoformans , Mad2 Proteins , Spindle Apparatus , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Signal Transduction , Fungal Proteins/metabolism , Fungal Proteins/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , M Phase Cell Cycle Checkpoints/genetics , Mitosis/genetics , Kinetochores/metabolism , Chromosome Segregation/genetics , Microtubules/metabolism , Microtubules/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
20.
Proc Natl Acad Sci U S A ; 121(25): e2305260121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857398

ABSTRACT

Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.


Subject(s)
Cell Cycle Proteins , Centrioles , Centrosome , Microtubules , Humans , Centrosome/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubules/metabolism , Centrioles/metabolism , Centrioles/genetics , Tubulin/metabolism , Tubulin/genetics , Mutation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Protein Binding , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...