Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
Methods Mol Biol ; 2845: 177-189, 2024.
Article in English | MEDLINE | ID: mdl-39115666

ABSTRACT

Ferritinophagy is a selective form of autophagy in which ferritin, the primary intracellular iron storage protein complex, is targeted by NCOA4 (Nuclear receptor coactivator 4) to the lysosome for degradation. NCOA4-mediated ferritinophagy plays a crucial role in cellular iron metabolism, influencing iron homeostasis, heme synthesis, mitochondrial respiratory function, and ferroptosis, an iron-dependent form of cell death. Targeting ferritinophagy has emerged as a potential anticancer therapeutic strategy. In this context, we provide a flowchart of the procedures and accompanying protocols for monitoring ferritinophagic flux.


Subject(s)
Autophagy , Ferritins , Nuclear Receptor Coactivators , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Ferritins/metabolism , Humans , Iron/metabolism , Lysosomes/metabolism , Animals
2.
Cell Commun Signal ; 22(1): 376, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39061070

ABSTRACT

Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.


Subject(s)
Ferroptosis , Nanoparticles , Reperfusion Injury , Selenium , X-Box Binding Protein 1 , Animals , Humans , Male , Mice , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Autophagy/drug effects , Ferritins/metabolism , Ferroptosis/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Mice, Inbred C57BL , Nanoparticles/chemistry , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Selenium/pharmacology , Selenium/administration & dosage , Signal Transduction/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
3.
Int Immunopharmacol ; 138: 112605, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38963979

ABSTRACT

Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.


Subject(s)
Diabetic Cardiomyopathies , Ferroptosis , Myocytes, Cardiac , Nuclear Receptor Coactivators , Prorenin Receptor , Animals , Mice , Rats , Autophagy , Cells, Cultured , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Disease Models, Animal , Down-Regulation , Ferritins/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Prorenin Receptor/genetics , Prorenin Receptor/metabolism , Signal Transduction
4.
J Med Chem ; 67(15): 12521-12533, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39047113

ABSTRACT

Ferroptosis, a distinctive form of programmed cell death, has been implicated in numerous pathological conditions, and its inhibition is considered a promising therapeutic strategy. Currently, there is a scarcity of efficient antagonists for directly regulating intracellular ferrous iron. Ferritinophagy, an essential process for supplying intracellular labile iron, relies on nuclear receptor coactivator 4 (NCOA4), a selective autophagy receptor for the ferritin iron storage complex, thus playing a pivotal role in ferritinophagy. In this study, we reported a novel von Hippel-Lindau-based NCOA4 degrader, V3, as a potent ferroptosis inhibitor with an intracellular ferrous iron inhibition mechanism. V3 significantly reduced NCOA4 levels and downregulated intracellular ferrous iron (Fe2+) levels, thereby effectively suppressing ferroptosis induced by multiple pathways within cells and alleviating liver damage. This research presents a chemical knockdown tool targeting NCOA4 for further exploration into intracellular ferrous iron in ferroptosis, offering a promising therapeutic avenue for ferroptosis-related acute liver injury.


Subject(s)
Ferroptosis , Iron , Nuclear Receptor Coactivators , Animals , Humans , Male , Mice , Drug Discovery , Ferroptosis/drug effects , Iron/metabolism , Mice, Inbred C57BL , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/antagonists & inhibitors , Peptides/chemistry , Peptides/drug effects , Peptides/metabolism
5.
Sci Transl Med ; 16(757): eadk1731, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047119

ABSTRACT

Acute myeloid leukemia (AML) remains a challenging hematological malignancy with poor prognosis and limited treatment options. Leukemic stem cells (LSCs) contribute to therapeutic failure, relapse, and adverse outcome. This study investigates the role of quiescence and related molecular mechanisms in AML pathogenesis and LSC functions to identify potential therapeutic targets. Transcriptomic analysis revealed that the LSC-enriched quiescent cell population has a distinct gene signature with prognostic relevance in patients with AML. Mechanistically, quiescent blasts exhibit increased autophagic activity, which contributes to their sustained viability. Proteomic profiling uncovered differential requirements for iron metabolism between quiescent and cycling cells, revealing a unique dependence of quiescent cells on ferritinophagy, a selective form of autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron bioavailability. We evaluated the therapeutic potential of inhibiting NCOA4-mediated ferritinophagy using genetic knockdown and chemical inhibition approaches. In vitro assays showed that suppression of NCOA4 was toxic to leukemic blasts, particularly the CD34+CD38- LSC-enriched population, without affecting normal CD34+ hematopoietic progenitors. In vivo studies using murine patient-derived xenograft (PDX) models of AML confirmed that NCOA4 inhibition reduced tumor burden and impaired LSC viability and self-renewal, indicating a specific vulnerability of these cells to ferritinophagy disruption. Our findings underscore the role of NCOA4-mediated ferritinophagy in maintaining LSC quiescence and function and suggest that targeting this pathway may be an effective therapeutic strategy for AML. This study highlights the potential of NCOA4 inhibition to improve AML outcomes and paves the way for future research and clinical development.


Subject(s)
Autophagy , Ferritins , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Nuclear Receptor Coactivators , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Animals , Ferritins/metabolism , Nuclear Receptor Coactivators/metabolism , Mice , Cell Line, Tumor , Iron/metabolism , Xenograft Model Antitumor Assays
6.
Int Immunopharmacol ; 139: 112746, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39067400

ABSTRACT

Hexabromocyclododecane (HBCD) has been detected in animals and humans blood. As an environment contamination, HBCD damages tissues and organs in animals and humans and produces cytotoxicity. In current study, we explored the effect of HBCD on premature testicular aging in vivo and in vitro. In vivo, C57 mice (8-week-old) were used as model to estimate the effect of HBCD on premature testicular aging. The results showed that testes were premature aging through measuring several aging-related markers (such as p16INK4a, hereafter p16; p21CIP, hereafter p21) in response to HBCD exposure for 20 weeks. In addition, HBCD exposure can cause oxidative stress and inflammation. Further, mouse spermatogonial cells (GC-1spg cells) were premature senescence after HBCD exposure by the evaluation of cellular senescence marker molecules. Hence, GC-1spg cell line was applied for cell model to investigate the molecule mechanism by which HBCD cause premature testicular aging., Through eliminating Fe2+ in senescent GC-1spg cells, cellular senescence was greatly alleviated. Thus, Fe2+ was identified as the key driver molecule in HBCD-induced premature cellular senescence. Next, we found that elevated iron levels in HBCD-triggered senescent GC-1spg cells were due to Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy. Furthermore, our results revealed that HBCD-induced senescence was caused by Fe2+ mediated oxidative stress. In summary, HBCD-induced premature testicular aging is dependent on NCOA4/Fe2+/ROS signaling molecule. The current study lays the foundation for further exploration of the effects of HBCD on reproductive toxicology.


Subject(s)
Cellular Senescence , Hydrocarbons, Brominated , Mice, Inbred C57BL , Nuclear Receptor Coactivators , Reactive Oxygen Species , Testis , Male , Animals , Testis/drug effects , Testis/pathology , Testis/metabolism , Hydrocarbons, Brominated/toxicity , Mice , Nuclear Receptor Coactivators/metabolism , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Cell Line , Iron/metabolism , Oxidative Stress/drug effects , Aging, Premature/chemically induced , Humans
7.
Exp Neurol ; 379: 114868, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901754

ABSTRACT

Ischemic stroke is a disease associated with high morbidity and disability rates; however, its pathogenesis remains elusive, and treatment options are limited. Ferroptosis, an iron-dependent form of cell death, represents a novel avenue for investigation. The objective of this study was to explore the role of melatonin in MCAO-induced ferroptosis and elucidate its underlying molecular mechanism. To simulate brain damage and neuronal injury caused by ischemic stroke, we established a mouse model of MCAO and an HT-22 cell model of OGD/R. The therapeutic efficacy of melatonin was assessed through measurements of infarct size, brain edema, and neurological scores. Additionally, qRT-PCR, WB analysis, and Co-IP assays were employed to investigate the impact of melatonin on ferroptosis markers such as NCOA4 and FTH1 expression levels. Confocal microscopy was utilized to confirm the colocalization between ferritin and lysosomes. Furthermore, we constructed a SIRT6 siRNA model to validate the regulatory effect exerted by SIRT6 on NCOA4 as well as their binding interaction. The present study provides initial evidence that melatonin possesses the ability to mitigate neuronal damage induced by MCAO and OGD/R. Assessment of markers for oxidative damage and ferroptosis revealed that melatonin effectively inhibits intracellular Fe2+ levels, thereby suppressing ferroptosis. Additionally, our findings demonstrate that melatonin modulates the interaction between FTH1 and NCOA4 via SIRT6, influencing ferritin autophagy without affecting cellular macroautophagy. These findings provide reliable data support for the promotion and application of melatonin in clinical practice.


Subject(s)
Autophagy , Ferroptosis , Melatonin , Mice, Inbred C57BL , Nuclear Receptor Coactivators , Animals , Ferroptosis/drug effects , Ferroptosis/physiology , Melatonin/pharmacology , Mice , Autophagy/drug effects , Autophagy/physiology , Nuclear Receptor Coactivators/metabolism , Male , Neuroprotective Agents/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Stroke/metabolism , Stroke/drug therapy , Stroke/pathology
8.
Neurochem Res ; 49(8): 1965-1979, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834843

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.


Subject(s)
Ferritins , Ferroptosis , Reperfusion Injury , Ferroptosis/physiology , Humans , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Animals , Ferritins/metabolism , Iron/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Nuclear Receptor Coactivators/metabolism , Autophagic Cell Death , Lipid Peroxidation/physiology
9.
Crit Rev Immunol ; 44(6): 111-126, 2024.
Article in English | MEDLINE | ID: mdl-38848298

ABSTRACT

Steroid receptor coactivator (SRC) family members (SRC1, SRC2 and SRC3) are transcriptional co-regulators. SRCs orchestrate gene transcription by inducing transactivation of nuclear receptors and other transcription factors. Overexpression of SRCs is widely implicated in a range of cancers, especially hormone-related cancers. As coactivators, SRCs regulate multiple metabolic pathways involved in tumor growth, invasion, metastasis, and chemo-resistance. Emerging evidence in recent years suggest that SRCs also regulate maturation, differentiation, and cytotoxicity of T cells by controlling metabolic activities. In this review, we summarize the current understanding of the function of SRCs in T cells as well as cancer cells. Importantly, the controversies of targeting SRCs for cancer immunotherapy as well as possible reconciliation strategies are also discussed.


Subject(s)
Immunotherapy , Neoplasms , T-Lymphocytes , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , Immunotherapy/methods , Animals , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/immunology
10.
Commun Biol ; 7(1): 732, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886572

ABSTRACT

Ferroptosis is a unique iron-dependent form of non-apoptotic cell death characterized by devastating lipid peroxidation. Whilst growing evidence suggests that ferroptosis is a type of autophagy-dependent cell death, the underlying molecular mechanisms regulating ferroptosis are largely unknown. In this study, through an unbiased RNA-sequencing screening, we demonstrate the activation of a multi-faceted tumor-suppressor protein Par-4/PAWR during ferroptosis. Functional studies reveal that genetic depletion of Par-4 effectively blocks ferroptosis, whereas Par-4 overexpression sensitizes cells to undergo ferroptosis. More importantly, we have determined that Par-4-triggered ferroptosis is mechanistically driven by the autophagic machinery. Upregulation of Par-4 promotes activation of ferritinophagy (autophagic degradation of ferritin) via the nuclear receptor co-activator 4 (NCOA4), resulting in excessive release of free labile iron and, hence, enhanced lipid peroxidation and ferroptosis. Inhibition of Par-4 dramatically suppresses the NCOA4-mediated ferritinophagy signaling axis. Our results also establish that Par-4 activation positively correlates with reactive oxygen species (ROS) production, which is critical for ferritinophagy-mediated ferroptosis. Furthermore, Par-4 knockdown effectively blocked ferroptosis-mediated tumor suppression in the mouse xenograft models. Collectively, these findings reveal that Par-4 has a crucial role in ferroptosis, which could be further exploited for cancer therapy.


Subject(s)
Autophagy , Ferroptosis , Nuclear Receptor Coactivators , Reactive Oxygen Species , Ferroptosis/genetics , Humans , Animals , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Mice , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Lipid Peroxidation , Iron/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Signal Transduction
11.
Oncogene ; 43(26): 2000-2014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744953

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive system. Hypoxia is a crucial player in tumor ferroptosis resistance. However, the molecular mechanism of hypoxia-mediated ferroptosis resistance in ESCC remains unclear. Here, USP2 expression was decreased in ESCC cell lines subjected to hypoxia treatment and was lowly expressed in clinical ESCC specimens. Ubiquitin-specific protease 2 (USP2) depletion facilitated cell growth, which was blocked in USP2-overexpressing cells. Moreover, USP2 silencing enhanced the iron ion concentration and lipid peroxidation accumulation as well as suppressed ferroptosis, while upregulating USP2 promoted ferroptotic cell death in ESCC cells. Furthermore, knockout of USP2 in ESCC models discloses the essential role of USP2 in promoting ESCC tumorigenesis and inhibiting ferroptosis. In contrast, overexpression of USP2 contributes to antitumor effect and ferroptosis events in vivo. Specifically, USP2 stably bound to and suppressed the degradation of nuclear receptor coactivator 4 (NCOA4) by eliminating the Lys48-linked chain, which in turn triggered ferritinophagy and ferroptosis in ESCC cells. Our findings suggest that USP2 plays a crucial role in iron metabolism and ferroptosis and that the USP2/NCOA4 axis is a promising therapeutic target for the management of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Ubiquitin Thiolesterase , Humans , Ferroptosis/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Mice , Cell Line, Tumor , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Gene Expression Regulation, Neoplastic , Ferritins/metabolism , Ferritins/genetics , Mice, Nude , Autophagy/genetics , Hypoxia/metabolism , Cell Proliferation/genetics , Male
12.
Nat Commun ; 15(1): 4195, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760351

ABSTRACT

Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Ferritins , Lung Neoplasms , Animals , Humans , Mice , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Copper/metabolism , ErbB Receptors/antagonists & inhibitors , Ferritins/metabolism , Indoles/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Nude , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Oxidative Phosphorylation/drug effects , Pyrimidines/pharmacology , /pharmacology
13.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714719

ABSTRACT

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Subject(s)
Cryoelectron Microscopy , Ferritins , Nuclear Receptor Coactivators , Ferritins/metabolism , Ferritins/chemistry , Ferritins/genetics , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Protein Binding , Binding Sites , Iron/metabolism , Autophagy , Models, Molecular , HEK293 Cells , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Proteolysis , Mutation
14.
Mol Med ; 30(1): 63, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760678

ABSTRACT

BACKGROUND: Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes. The purpose of this study was to investigate the effects of AMPK activation on wound healing and explore the underlying mechanisms. METHODS: AMPK activator A769662 was topically applied in wound models of diabetic mice. Alterations in the wound site were observed and analyzed by immunohistochemistry. The markers related to autophagy and ferritinophagy were analyzed by western blotting and immunofluorescence staining. The role of AMPK activation and ferritinophagy were also analyzed by western blotting. RESULTS: Our results show that AMPK activation improved diabetic wound healing and reduced the accumulation of senescent cells. Intriguingly, we found that AMPK activation-induced ferroptosis is autophagy-dependent. We detected that the level of ferritin had deceased and NCOA4 was markedly increased after AMPK activation treatment. We further investigated that NCOA4-mediated ferritinophagy was involved in ferroptosis triggered by AMPK activation. Most importantly, AMPK activation can reverse the ferroptosis-insensitive of senescent fibroblast cells in diabetic mice wound area and promote wound healing. CONCLUSIONS: These results suggest that activating AMPK can promote diabetic wound healing by reversing the ferroptosis-insensitive of senescent fibroblast cells. AMPK may serve as a regulatory factor in senescent cells in the diabetic wound area, therefore AMPK activation can become a promising therapeutic method for diabetic non-healing wounds.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Cellular Senescence , Diabetes Mellitus, Experimental , Ferritins , Nuclear Receptor Coactivators , Wound Healing , Animals , Mice , Ferritins/metabolism , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Nuclear Receptor Coactivators/metabolism , Male , Ferroptosis , Humans , Disease Models, Animal , Enzyme Activation
15.
Front Immunol ; 15: 1389041, 2024.
Article in English | MEDLINE | ID: mdl-38698860

ABSTRACT

Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.


Subject(s)
T-Lymphocytes, Regulatory , Th17 Cells , Humans , Neoplasms/immunology , Neoplasms/metabolism , Nuclear Receptor Coactivators/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Th17 Cells/metabolism
16.
Redox Biol ; 73: 103190, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744191

ABSTRACT

Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.


Subject(s)
Dopaminergic Neurons , Ferritins , Ferroptosis , Nuclear Receptor Coactivators , Parkinson Disease , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Animals , Mice , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Ferritins/metabolism , Ferritins/genetics , Iron/metabolism , Disease Models, Animal , Protein Binding , Autophagy , Male
17.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763373

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Subject(s)
Dopaminergic Neurons , Ferritins , Ferroptosis , Mice, Inbred C57BL , Nuclear Receptor Coactivators , Animals , Ferroptosis/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Nuclear Receptor Coactivators/metabolism , Mice , Male , Ferritins/metabolism , Neuroprotective Agents/pharmacology , Autophagy/drug effects , Antiparkinson Agents/pharmacology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Disease Models, Animal
18.
Neurochem Res ; 49(7): 1806-1822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713437

ABSTRACT

Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.


Subject(s)
Autophagy , Ferritins , Nuclear Receptor Coactivators , Reperfusion Injury , Nuclear Receptor Coactivators/metabolism , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Ferritins/metabolism , Mice , Autophagy/drug effects , Autophagy/physiology , Cell Line , Oxidative Stress/drug effects , Oxidative Stress/physiology , Brain Ischemia/metabolism , Brain Ischemia/drug therapy
19.
Toxicology ; 505: 153831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768701

ABSTRACT

Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 µM, 10 µM, or 20 µM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.


Subject(s)
Autophagy , Cadmium , Ferritins , Ferroptosis , Nuclear Receptor Coactivators , Spermatogonia , Ferroptosis/drug effects , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Male , Spermatogonia/drug effects , Spermatogonia/metabolism , Ferritins/metabolism , Autophagy/drug effects , Cadmium/toxicity , Animals , Cell Line , Mice , Reactive Oxygen Species/metabolism
20.
Aging (Albany NY) ; 16(9): 7683-7703, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38683121

ABSTRACT

Ferroptosis, an iron-triggered modality of cellular death, has been reported to closely relate to human aging progression and aging-related diseases. However, the involvement of ferroptosis in the development and maintenance of senescent cells still remains elusive. Here, we established a doxorubicin-induced senescent HSkM cell model and found that both iron accumulation and lipid peroxidation increase in senescent cells. Moreover, such iron overload in senescent cells has changed the expression panel of the ferroptosis-response proteins. Interestingly, the iron accumulation and lipid peroxidation does not trigger ferroptosis-induced cell death. Oppositely, senescent cells manifest resistance to the ferroptosis inducers, compared to the proliferating cells. To further investigate the mechanism of ferroptosis-resistance for senescent cells, we traced the iron flux in cell and found iron arrested in lysosome. Moreover, disruption of lysosome functions by chloroquine and LLOMe dramatically triggered the senescent cell death. Besides, the ferroitinophagy-related proteins FTH1/FTL and NCOA4 knockdown also increases the senescent cell death. Thus, we speculated that iron retardation in lysosome of senescent cells is the key mechanism for ferroptosis resistance. And the lysosome is a promising target for senolytic drugs to selectively clear senescent cells and alleviate the aging related diseases.


Subject(s)
Cellular Senescence , Ferroptosis , Iron , Lysosomes , Ferroptosis/drug effects , Humans , Cellular Senescence/drug effects , Cellular Senescence/physiology , Lysosomes/metabolism , Lysosomes/drug effects , Iron/metabolism , Lipid Peroxidation/drug effects , Doxorubicin/pharmacology , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Cell Line , Chloroquine/pharmacology , Iron Overload/metabolism , Ferritins , Oxidoreductases
SELECTION OF CITATIONS
SEARCH DETAIL