Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.923
1.
Sci Rep ; 14(1): 11542, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773154

Evidence for seed transmission of phytoplasmas has grown in several pathosystems including coconut (Cocos nucifera). Bogia coconut syndrome (BCS) is a disease associated with the lethal yellowing syndrome associated with the presence of 'Candidatus Phytoplasma noviguineense' that affects coconut, betel nut (Areca catechu) and bananas (Musa spp.) in Papua New Guinea. Coconut and betel nut drupes were sampled from BCS-infected areas in Papua New Guinea, dissected, the extracted nucleic acid was used in polymerase chain reaction (PCR), and loop mediated isothermal amplification (LAMP) used to check for presence of phytoplasma DNA. In a second study, drupes of both plant species were collected from multiple field sites and grown in insect-proof cages. Leaf samples taken at 6 months were also tested with PCR and LAMP. The studies of dissected coconut drupes detected phytoplasma DNA in several tissues including the embryo. Drupes from betel nut tested negative. Among the seedlings, evidence of possible seed transmission was found in both plant species. The results demonstrate the presence of 'Ca. P. noviguineense' in coconut drupes and seedlings, and in seedlings of betel nut; factors that need to be considered in ongoing management and containment efforts.


Areca , Cocos , Phytoplasma , Plant Diseases , Seedlings , Seeds , Cocos/microbiology , Phytoplasma/genetics , Phytoplasma/isolation & purification , Seeds/microbiology , Plant Diseases/microbiology , Seedlings/microbiology , Nucleic Acid Amplification Techniques/methods , DNA, Bacterial/genetics , Papua New Guinea , Polymerase Chain Reaction , Molecular Diagnostic Techniques
2.
PLoS One ; 19(5): e0302785, 2024.
Article En | MEDLINE | ID: mdl-38768150

INTRODUCTION: The rates of gonorrhea and chlamydia have been increasing in the years preceding the COVID19 pandemic. Because most gonorrhea and chlamydia infections are located in the oropharynx and rectum for men who have sex with men (MSM), and because at-home self-collected swabs for these infections are not licensed by Health Canada or the United States Food and Drug Administration, decreased accessed to in-person care during and since the COVID19 pandemic potentially means missed case findings. OBJECTIVES: To evaluate the performance of at-home self-collected pharyngeal and rectal swabs for gonorrhea and chlamydia nucleic acid amplification testing. METHODOLOGY: All persons who contacted our Sexual Health Clinic and who had a clinical indication to complete oral and/or rectal swabs for gonorrhea and chlamydia were invited to complete at-home swabs in advance of their scheduled appointments. We mailed swabs and instructions to those who consented. Participants brought these swabs to their scheduled in clinic appointments, where we repeated the same swabs. All matching swabs were sent to the laboratory for analysis to determine concordance. RESULTS: From September 8, 2022 to July 18, 2023, we enrolled 296 eligible participants who provided 1184 swabs. For analysis, cancelled specimens and specimens with invalid results were excluded, leaving 1032 swabs for comparison. We identified 66 STI diagnoses in 47 unique participants. Overall accuracy was high (exceeding 99%), except for rectal chlamydia, which was 96.0%. While the performance of self-swabs for chlamydia was lower compared to gonorrhea, at-home swabs identified six chlamydia infections that were missed by in-clinic collected swabs (two pharyngeal, four rectal). Removing these six cases as "false positives" increased overall accuracy for chlamydia detection to 99.7% (pharyngeal) and 97.8% (rectal). CONCLUSION: Self-collected at-home swabs had good performance acceptable for gonorrhea and chlamydia nucleic acid amplification testing.


Chlamydia Infections , Chlamydia trachomatis , Gonorrhea , Neisseria gonorrhoeae , Pharynx , Rectum , Specimen Handling , Humans , Chlamydia trachomatis/isolation & purification , Chlamydia trachomatis/genetics , Chlamydia Infections/diagnosis , Chlamydia Infections/microbiology , Gonorrhea/diagnosis , Gonorrhea/microbiology , Male , Neisseria gonorrhoeae/isolation & purification , Neisseria gonorrhoeae/genetics , Rectum/microbiology , Pharynx/microbiology , Specimen Handling/methods , Adult , Female , Nucleic Acid Amplification Techniques/methods , Homosexuality, Male , Middle Aged , Self Care , Young Adult
3.
Anal Methods ; 16(20): 3249-3255, 2024 May 23.
Article En | MEDLINE | ID: mdl-38726641

The past and present scenario of COVID-19 has revealed the necessity of simple point-of-care tests. When combined with the great advantages of amplification, lateral flow assay nucleic acid analysis represents a more sensitive molecular diagnostic technique compared to universal protein analysis. Room temperature operation, an enzyme-free nature, and in situ elongation make hybrid chain reaction amplification (HCR) a good candidate for amplified combined lateral flow assays (LFAs). Since dual modes of detection can not only satisfy different application scenarios, but also reduce the false-negative rate, in this paper, visual and fluorescent detection based on labelling with colloidal gold nanoparticles and fluorescence labelling were incorporated into a HCR integrated with a LFA. The detection assay was finished in 30 minutes. The linear relationship between the signal and the concentration of the characteristic segment in the COVID-19 ORF gene was demonstrated. The obtained detection limits of as low as 10 fM (6.02 × 103 copies per mL) and 1 fM (6.02 × 102 copies per mL), respectively, were comparable with those in the literature. The multi-site HCR amplification integrated with LFA of a 1053 bp nucleic acid chain was also preliminarily studied, and tri-site amplification was found to exhibit higher signal intensity than single-site amplification. This study provides a promising strategy for simple, sensitive, and wide-ranging detection of pathogenic bacteria.


COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , SARS-CoV-2/genetics , Humans , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Molecular Diagnostic Techniques/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Metal Nanoparticles/chemistry , RNA, Viral/analysis , RNA, Viral/genetics
4.
Anal Methods ; 16(20): 3256-3262, 2024 May 23.
Article En | MEDLINE | ID: mdl-38726809

Accurate and precise detection of circular RNA (circRNA) is imperative for its clinical use. However, the inherent challenges in circRNA detection, arising from its low abundance and potential interference from linear isomers, necessitate innovative solutions. In this study, we introduce, for the first time, the application of the CRISPR/Cas12a system to establish a one-pot, rapid (30 minutes to 2 hours), specific and ultrasensitive circRNA detection strategy, termed RETA-CRISPR (reverse transcription-rolling circle amplification (RT-RCA) with the CRISPR/Cas12a). This method comprises two steps: (1) the RT-RCA process of circRNA amplification, generating repeat units containing the back-splicing junction (BSJ) sequences; and (2) leveraging the protospacer adjacent motif (PAM)-independent Cas12a/crRNA complex to precisely recognize target sequences with BSJ, thereby initiating the collateral cleavage activity of Cas12a to generate a robust fluorescence signal. Remarkably, this approach exhibits the capability to detect circRNAs at a concentration as low as 300 aM. The sensor has been successfully employed for accurate detection of a potential hepatocellular carcinoma biomarker hsa_circ_0001445 (circRNA1445) in various cell lines. In conclusion, RETA-CRISPR seamlessly integrates the advantages of exponential amplification reaction and the robust collateral cleavage activity of Cas12a, positioning it as a compelling tool for practical CRISPR-based diagnostics.


CRISPR-Cas Systems , RNA, Circular , RNA, Circular/genetics , Humans , CRISPR-Cas Systems/genetics , Nucleic Acid Amplification Techniques/methods , Cell Line, Tumor
5.
Tomography ; 10(5): 761-772, 2024 May 15.
Article En | MEDLINE | ID: mdl-38787018

Lymphadenectomy represents a fundamental step in the staging and treatment of non-small cell lung cancer (NSCLC). To date, the extension of lymphadenectomy in early-stage NSCLC is a debated topic due to its possible complications. The detection of sentinel lymph nodes (SLNs) is a strategy that can improve the selection of patients in which a more extended lymphadenectomy is necessary. This pilot study aimed to refine lymph nodal staging in early-stage NSCLC patients who underwent robotic lung resection through the application of innovative intraoperative sentinel lymph node (SLN) identification and the pathological evaluation using one-step nucleic acid amplification (OSNA). Clinical N0 NSCLC patients planning to undergo robotic lung resection were selected. The day before surgery, all patients underwent radionuclide computed tomography (CT)-guided marking of the primary lung lesion and subsequently Single Photon Emission Computed Tomography (SPECT) to identify tracer migration and, consequently, the area with higher radioactivity. On the day of surgery, the lymph nodal radioactivity was detected intraoperatively using a gamma camera. SLN was defined as the lymph node with the highest numerical value of radioactivity. The OSNA amplification, detecting the mRNA of CK19, was used for the detection of nodal metastases in the lymph nodes, including SLN. From March to July 2021, a total of 8 patients (3 female; 5 male), with a mean age of 66 years (range 48-77), were enrolled in the study. No complications relating to the CT-guided marking or preoperative SPECT were found. An average of 5.3 lymph nodal stations were examined (range 2-8). N2 positivity was found in 3 out of 8 patients (37.5%). Consequently, pathological examination of lymph nodes with OSNA resulted in three upstages from the clinical IB stage to pathological IIIA stage. Moreover, in 1 patient (18%) with nodal upstaging, a positive node was intraoperatively identified as SLN. Comparing this protocol to the usual practice, no difference was found in terms of the operating time, conversion rate, and complication rate. Our preliminary experience suggests that sentinel lymph node detection, in association with the accurate pathological staging of cN0 patients achieved using OSNA, is safe and effective in the identification of metastasis, which is usually undetected by standard diagnostic methods.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplasm Micrometastasis , Neoplasm Staging , Sentinel Lymph Node Biopsy , Sentinel Lymph Node , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Pilot Projects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Female , Aged , Middle Aged , Neoplasm Micrometastasis/diagnostic imaging , Neoplasm Micrometastasis/pathology , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/pathology , Sentinel Lymph Node Biopsy/methods , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Lymph Node Excision/methods , Robotic Surgical Procedures/methods , Tomography, X-Ray Computed/methods , Tomography, Emission-Computed, Single-Photon/methods , Nucleic Acid Amplification Techniques/methods , Pneumonectomy/methods
6.
Anal Methods ; 16(21): 3430-3437, 2024 May 30.
Article En | MEDLINE | ID: mdl-38766841

Two levels of nucleic acids-based isothermal amplification normally require a long reaction time due to the low concentration of catalyst, which limits its practical application. A sensitive fluorescence assay of chloramphenicol (CAP) was developed coupled with two-level isothermal amplification using a self-powered catalyzed hairpin assembly (CHA) and entropy-driven circuit (EDC). CAP can bind with its aptamer to open its closed structure. The opened hairpin can initiate self-powered CHA and EDC. The product of CHA can circularly catalyze the CHA with increasing concentration. In principle, the product of CHA plays the role of catalyst and increases with the progression of the reaction. Compared with the normal two levels of amplification, the amplification efficiency of our strategy is much higher due to the self-powered reaction by the CHA product. Thus, the reaction time is shortened to 110 min in this strategy. Moreover, the detection limit for CAP can achieve 0.1 pM and shows promising prospects for practical application.


Chloramphenicol , Entropy , Limit of Detection , Nucleic Acid Amplification Techniques , Chloramphenicol/analysis , Chloramphenicol/chemistry , Nucleic Acid Amplification Techniques/methods , Catalysis , Spectrometry, Fluorescence/methods , Fluorescence , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Molecular Diagnostic Techniques
7.
Mikrochim Acta ; 191(6): 339, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789855

Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of isothermal reaction conditions and high sensitivity. However, the LAMP reactions are prone to producing false-positive results and thus are usually less reliable. This study demonstrates a gold nanoparticle (AuNP)-assisted colorimetric LAMP technique for diagnosing SARS-CoV-2, which aims to overcome the false-positive results. The AuNPs were functionalized with E gene probes, specifically tailored to bind to the amplified E-gene LAMP product, using the freezing method. Varied salt concentration and AuNP/probe combinations were tested for the highest visual performance. The experiments were conducted on synthetic SARS-CoV-2 RNA (Omicron variant), as well as on clinical samples. The assay showed an exceptional sensitivity of 8.05 fg of LAMP amplicon mixture (0.537 fg/µL). The average reaction time was ~ 30 min. In conclusion, AuNP-assisted LAMP detection will not identify any potential unspecific amplification, which helps to improve the efficiency and reliability of LAMP assays in point-of-care applications. The freezing method to functionalize the AuNPs with probes simplifies the assay, which can be utilized in further diagnostic studies.


COVID-19 , Colorimetry , Gold , Metal Nanoparticles , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Gold/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Humans , COVID-19/diagnosis , COVID-19/virology , RNA, Viral/genetics , RNA, Viral/analysis , Freezing , Molecular Diagnostic Techniques/methods , Limit of Detection
8.
Anal Chem ; 96(22): 9285-9293, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38768388

DNA biosynthesis, a focus of fundamental and applied research, typically involves DNA polymerases by using templates, primers, and dNTPs. Some polymerases can polymerize dNTPs for DNA de novo synthesis, although this is generally to occur randomly. This novel synthesis method has garnered our attention and practical use. Herein, we observed that the addition of endonuclease significantly enhances the efficiency of the de novo synthesis reaction catalyzed by the DNA polymerase. We further investigated the reaction conditions that influence this efficiency. Building on the optimal reaction conditions, we developed a rapid and efficient strategy for preparing DNA hydrogel. Further, coupled with the CRISPR-Cas system, we developed a nucleic acid signal amplification system characterized by versatility, sensitivity, specificity, and no risk of aerosol contamination. We successfully detected viral nucleic acids in clinical samples. In summary, our study demonstrates the significant potential of DNA polymerase- and endonuclease-catalyzed DNA de novo synthesis in diverse applications.


DNA-Directed DNA Polymerase , DNA , Nucleic Acid Amplification Techniques , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , Nucleic Acid Amplification Techniques/methods , CRISPR-Cas Systems , Endonucleases/metabolism , Humans , Hydrogels/chemistry
9.
Anal Chem ; 96(22): 9078-9087, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38770734

As an important disease biomarker, the development of sensitive detection strategies for miRNA, especially intracellular miRNA imaging strategies, is helpful for early diagnosis of diseases, pathological research, and drug development. Hybridization chain reaction (HCR) is widely used for miRNA imaging analysis because of its high specificity and lack of biological enzymes. However, the classic HCR reaction exhibits linear amplification with low efficiency, limiting its use for the rapid analysis of trace miRNA in living cells. To address this problem, we proposed a toehold-mediated exponential HCR (TEHCR) to achieve highly sensitive and efficient imaging of miRNA in living cells using ß-FeOOH nanoparticles as transfection vectors. The detection limit of TEHCR was as low as 92.7 fM, which was 8.8 × 103 times lower compared to traditional HCR, and it can effectively distinguish single-base mismatch with high specificity. The TEHCR can also effectively distinguish the different expression levels of miRNA in cancer cells and normal cells. Furthermore, TEHCR can be used to construct OR logic gates for dual miRNA analysis without the need for additional probes, demonstrating high flexibility. This method is expected to play an important role in clinical miRNA-related disease diagnosis and drug development as well as to promote the development of logic gates.


MicroRNAs , Nucleic Acid Hybridization , MicroRNAs/analysis , MicroRNAs/metabolism , Humans , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Ferric Compounds/chemistry
10.
Methods Mol Biol ; 2804: 195-206, 2024.
Article En | MEDLINE | ID: mdl-38753149

Clinical diagnostics of infectious diseases via nucleic acid amplification tests (NAATs) depend on a separate step of isolation of nucleic acids from cells/viruses embedded in complex biological matrices. The most recent example has been reverse transcription polymerase chain reaction (RT-PCR) for amplification and detection of SARS-CoV-2 RNA for COVID-19 diagnostics. Kits for RNA extraction and purification are commercially available; however, their integration with amplification systems is generally lacking, resulting in two separate steps, i.e., sample preparation and amplification. This makes NAATs more time-consuming, requiring skilled personnel, and can increase the likelihood of contamination. Here, we describe a setup and methodology to perform the quick extraction and detection of nucleic acids in an integrated manner. In particular, we focus on the use of an immiscible filtration device for capture, isolation, concentration, amplification, and colorimetric detection of SARS-CoV-2 RNA.


COVID-19 , Filtration , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , RNA, Viral/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , COVID-19/diagnosis , COVID-19/virology , Filtration/instrumentation , Filtration/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Colorimetry/methods , Colorimetry/instrumentation
11.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755641

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Chickens , Influenza A virus , Influenza in Birds , Nucleic Acid Amplification Techniques , Recombinases , Reverse Transcription , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Recombinases/metabolism , Sensitivity and Specificity , Poultry Diseases/virology , Poultry Diseases/diagnosis
12.
PLoS One ; 19(5): e0302783, 2024.
Article En | MEDLINE | ID: mdl-38753660

BACKGROUND: Periprosthetic joint infection (PJI) is one of the most serious and debilitating complications that can occur after total joint arthroplasty. Therefore, early diagnosis and appropriate treatment are important for a good prognosis. Recently, molecular diagnostic methods have been widely used to detect the causative microorganisms of PJI sensitively and rapidly. The Multiplex Loop-Mediated Isothermal Amplification (LAMP) method eliminates the complex temperature cycling and delays caused by temperature transitions seen in polymerase chain reaction (PCR) methods, making it faster and easier to perform compared to PCR-based assays. Therefore, this study developed a multiplex LAMP assay for diagnosing bacterial PJI using LAMP technology and evaluated its analytical and clinical performance. METHODS: We developed a multiplex LAMP assay for the detection of five bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa, and Escherichia coli, frequently observed to be the causative agents of PJI. The method of analytical sensitivity and cross-reactivity were determined by spiking standard strains into the joint synovial fluid. The analytical sensitivity of the multiplex LAMP assay was compared with that of a quantitative real-time PCR (qPCR) assay. Clinical performance was evaluated using 20 joint synovial fluid samples collected from patients suspected of having bacterial PJI. RESULTS: The analytical sensitivity of the gram-positive bacterial multiplex LAMP assay and qPCR were 105/104 CFU/mL, 103/103 CFU/mL, and 105/104 CFU/mL against S. agalactiae, S. epidermidis, and S. aureus, respectively. For P. aeruginosa and E. coli, the analytical sensitivity of the multiplex LAMP and qPCR assays were 105/104 and 106/104 CFU/mL, respectively. The multiplex LAMP assay detects target bacteria without cross-reacting with other bacteria, and exhibited 100% sensitivity and specificity in clinical performance evaluation. CONCLUSIONS: This multiplex LAMP assay can rapidly detect five high-prevalence bacterial species causing bacterial PJI, with excellent sensitivity and specificity, in less than 1 h, and it may be useful for the early diagnosis of PJI.


Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Prosthesis-Related Infections , Humans , Nucleic Acid Amplification Techniques/methods , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Staphylococcus epidermidis/isolation & purification , Staphylococcus epidermidis/genetics , Synovial Fluid/microbiology , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics
13.
FASEB J ; 38(10): e23708, 2024 May 31.
Article En | MEDLINE | ID: mdl-38805151

Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).


CRISPR-Cas Systems , Cysticercosis , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/blood , Mice , Cysticercosis/diagnosis , Cysticercosis/veterinary , Cysticercosis/parasitology , Echinococcosis/diagnosis , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Humans
14.
Int J Mycobacteriol ; 13(1): 96-99, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38771286

BACKGROUND: The most common organ affected due to tuberculosis (TB) is the lungs. Extrapulmonary TB is less common. Musculoskeletal organs are affected in around 8% of all tubercular patients, of which the spine is affected in almost half of the patients. The criteria for diagnosing spinal TB are quite difficult and we use an array of investigations for the same. METHODS: A retrospective study was carried out in the Neurosurgery and Microbiology Department at IMS and SUM Hospital between January 2021 and November 2023, and data were collected and tabulated in an Excel sheet. One hundred patients with spinal TB were evaluated, and their age, sex, samples sent, diagnostic investigation, duration of diagnosis from hospital admission, histopathology results, and surgical intervention (done or not) were recorded. RESULTS: The best investigation done to diagnose spinal TB was imaging and surgical/computed tomography (CT)-guided biopsy. The earliest result to diagnose spinal TB was histopathology. The yield of positivity in pus culture, smear microscopy, and true nucleic acid amplification test (NAAT) was found to be low even though sensitivity was on the higher side. CONCLUSION: Even though we have an array of investigations for diagnosing spinal TB, the best and the earliest diagnosing test was imaging plus CT-guided biopsy. The confirmation is made in the biopsy. Finding acid-fast bacteria (AFB) and NAAT tests are additional beneficial tests to supplement the diagnosis. Hence, we can conclude that sending for tests like AFB in pus, NAAT, and GeneXpert is a wastage of biological samples and delays in diagnosis.


Mycobacterium tuberculosis , Tuberculosis, Spinal , Humans , Tuberculosis, Spinal/diagnosis , Tuberculosis, Spinal/microbiology , Retrospective Studies , Male , Female , Adult , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Young Adult , Aged , Tomography, X-Ray Computed , Adolescent , Biopsy , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
15.
Biosensors (Basel) ; 14(5)2024 May 08.
Article En | MEDLINE | ID: mdl-38785707

Exosomal biomarker detection holds great importance in the field of in vitro diagnostics, offering a non-invasive and highly sensitive approach for early disease detection and personalized treatment. Here, we proposed an "APPROACH" strategy, combining aptamer-mediated proximity ligation assay (PLA) with rolling circle amplification (RCA) and time-resolved Förster resonance energy transfer (TR-FRET) for the sensitive and semi-homogenous detection of exosomal biomarkers. PLA probes consisted of a cholesterol-conjugated oligonucleotide, which anchored to the membrane of an exosome, and a specific aptamer oligonucleotide that recognized a target protein of the exosome; the proximal binding of pairs of PLA probes to the same exosome positioned the oligonucleotides in the vicinity of each other, guiding the hybridization and ligation of two subsequently added backbone and connector oligonucleotides to form a circular DNA molecule. Circular DNA formed from PLA underwent rolling circle amplification (RCA) for signal amplification, and the resulting RCA products were subsequently quantified by TR-FRET. The limits of detection provided by APPROACH for the exosomal biomarkers CD63, PD-L1, and HER2 were 0.46 ng∙µL-1, 0.77 ng∙µL-1, and 1.1 ng∙µL-1, respectively, demonstrating excellent analytical performance with high sensitivity and quantification accuracy. Furthermore, the strategy afforded sensitive detection of exosomal CD63 with a LOD of 1.56 ng∙µL-1 in complex biological matrices, which underscored its anti-interference capability and potential for in vitro detection. The proposed strategy demonstrates wide-ranging applicability in quantifying diverse exosomal biomarkers while exhibiting robust analytical characteristics, including high sensitivity and accuracy.


Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Humans , Biomarkers , Nucleic Acid Amplification Techniques/methods , Tetraspanin 30
16.
Cells ; 13(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38786028

Zika (ZIKV) and Chikungunya (CHIKV) viruses are mosquito-transmitted infections, or vector-borne pathogens, that emerged a few years ago. Reliable diagnostic tools for ZIKV and CHIKV-inexpensive, multiplexed, rapid, highly sensitive, and specific point-of-care (POC) systems-are vital for appropriate risk management and therapy. We recently studied a detection system with great success in Mexico (Villahermosa, state of Tabasco), working with human sera from patients infected with those viruses. The research conducted in Mexico validated the efficacy of a novel two-step rapid isothermal amplification technique (RAMP). This approach, which encompasses recombinase polymerase amplification (RPA) followed by loop-mediated isothermal amplification (LAMP), had been previously established in the lab using lab-derived Zika (ZIKV) and Chikungunya (CHIKV) viruses. Crucially, our findings confirmed that this technique is also effective when applied to human sera samples collected from locally infected individuals in Mexico.


Chikungunya virus , Nucleic Acid Amplification Techniques , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Zika Virus Infection/blood , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Chikungunya Fever/blood , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/blood , Mexico , Sensitivity and Specificity , RNA Viruses/genetics , RNA Viruses/isolation & purification
17.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791129

Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria.


Genome, Bacterial , Nucleic Acid Amplification Techniques , Peptide Synthases , Peptide Synthases/genetics , Nucleic Acid Amplification Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Escherichia coli/genetics , Pseudomonas fluorescens/genetics , Sequence Analysis, DNA/methods , Metagenome/genetics
18.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791224

Cotton Verticillium wilt is mainly caused by the fungus Verticillium dahliae, which threatens the production of cotton. Its pathogen can survive in the soil for several years in the form of microsclerotia, making it a destructive soil-borne disease. The accurate, sensitive, and rapid detection of V. dahliae from complex soil samples is of great significance for the early warning and management of cotton Verticillium wilt. In this study, we combined the loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a technology to develop an accurate, sensitive, and rapid detection method for V. dahliae. Initially, LAMP primers and CRISPR RNA (crRNA) were designed based on a specific DNA sequence of V. dahliae, which was validated using several closely related Verticillium spp. The lower detection limit of the LAMP-CRISPR/Cas12a combined with the fluorescent visualization detection system is approximately ~10 fg/µL genomic DNA per reaction. When combined with crude DNA-extraction methods, it is possible to detect as few as two microsclerotia per gram of soil, with the total detection process taking less than 90 min. Furthermore, to improve the method's user and field friendliness, the field detection results were visualized using lateral flow strips (LFS). The LAMP-CRISPR/Cas12a-LFS system has a lower detection limit of ~1 fg/µL genomic DNA of the V. dahliae, and when combined with the field crude DNA-extraction method, it can detect as few as six microsclerotia per gram of soil, with the total detection process taking less than 2 h. In summary, this study expands the application of LAMP-CRISPR/Cas12a nucleic acid detection in V. dahliae and will contribute to the development of field-deployable diagnostic productions.


CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Plant Diseases , Soil Microbiology , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/isolation & purification , Molecular Diagnostic Techniques/methods , Gossypium/microbiology , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Verticillium/genetics
19.
J Virol Methods ; 327: 114947, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703833

Rubella virus infection during early pregnancy sometimes causes severe birth defects termed congenital rubella syndrome. Although there are safe and effective live-attenuated vaccines, rubella has only been certified as eliminated in the Americas within the six World Health Organization regions. Rubella remains an endemic disease in many regions, and outbreaks occur wherever population immunity is insufficient. There are two main methods for diagnosis of rubella: detection of anti-rubella IgM antibodies by enzyme immunoassay and detection of the viral genome by real-time RT-PCR. Both of these methods require substantial time and effort. In the present study, a rapid rubella detection assay using real-time fluorescent reverse transcription loop-mediated isothermal amplification with quenching primers was developed. The time required for the new assay was one-half that required for a real-time RT-PCR assay. The assay had 93.6% positive percent agreement and 100% negative percent agreement for clinical specimens compared with the real-time RT-PCR assay. The new assay is considered useful for diagnosis of rubella in areas where rubella is endemic.


DNA Primers , Nucleic Acid Amplification Techniques , Rubella virus , Rubella , Rubella virus/genetics , Rubella virus/isolation & purification , Rubella/diagnosis , Rubella/virology , Humans , Nucleic Acid Amplification Techniques/methods , DNA Primers/genetics , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Time Factors , Female
20.
Int J Food Microbiol ; 418: 110732, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38728973

Trematodes belonging to the family Echinostomatidae are food-borne parasites which cause echinostomiasis in animals and humans. This is a global public health issue, particularly in East and Southeast Asia. A method to detect the infective stage of Echinostomatidae species is required to prevent transmission to humans. In this study, a loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay was developed for visual detection of the metacercarial stage in edible snails of the genus Filopaludina from local markets in Thailand. The LAMP-LFD method can be performed within 70 min at a consistent temperature of 66 °C, and the results can be interpreted with the naked eye. The detection limits of the assay using Echinostoma mekongi, E. macrorchis, E. miyagawai and Hypoderaeum conoideum genomic DNA were equal between the four species at 50 pg/µL. A specificity evaluation demonstrated that the LAMP-LFD assay had no cross-reaction with another parasite (Thapariella species) or with the snail host species (Filopaludina martensi martensi, F. sumatrensis speciosa, and F. s. polygramma). Clinical test assessments were compared to microscopic examination in 110 edible snail samples. The clinical sensitivity and specificity of the tests were 84.62 % and 100 %, respectively, with a strong level of agreement based on the kappa statistic and the results of both methods were not significantly different (p > 0.05) per McNemar's test. The test successfully developed in this study may be useful for the detection of the metacercarial stage in edible snails for epidemiological investigations, control, surveillance, and to prevent future echinostomiasis health issues.


Nucleic Acid Amplification Techniques , Snails , Animals , Nucleic Acid Amplification Techniques/methods , Snails/parasitology , Echinostomatidae/isolation & purification , Echinostomatidae/genetics , Echinostomatidae/classification , Thailand , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Food Parasitology
...