Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.737
Filter
1.
Sci Rep ; 14(1): 14099, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890308

ABSTRACT

We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.


Subject(s)
Cryoelectron Microscopy , Hendra Virus , Nucleocapsid , Nucleoproteins , Hendra Virus/chemistry , Nucleoproteins/chemistry , Nucleoproteins/ultrastructure , Nucleoproteins/metabolism , Nucleocapsid/chemistry , Nucleocapsid/ultrastructure , Nucleocapsid/metabolism , Models, Molecular , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/ultrastructure , Nucleocapsid Proteins/metabolism
2.
J Immunol Res ; 2024: 9313267, 2024.
Article in English | MEDLINE | ID: mdl-38939745

ABSTRACT

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , Immunogenicity, Vaccine , Animals , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Epitopes, T-Lymphocyte/immunology , Antibodies, Viral/immunology , Nucleocapsid Proteins/immunology
3.
Front Cell Infect Microbiol ; 14: 1415885, 2024.
Article in English | MEDLINE | ID: mdl-38846351

ABSTRACT

Corona Virus Disease 2019 (COVID-19) is a highly prevalent and potent infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Until now, the world is still endeavoring to develop new ways to diagnose and treat COVID-19. At present, the clinical prevention and treatment of COVID-19 mainly targets the spike protein on the surface of SRAS-CoV-2. However, with the continuous emergence of SARS-CoV-2 Variants of concern (VOC), targeting the spike protein therapy shows a high degree of limitation. The Nucleocapsid Protein (N protein) of SARS-CoV-2 is highly conserved in virus evolution and is involved in the key process of viral infection and assembly. It is the most expressed viral structural protein after SARS-CoV-2 infection in humans and has high immunogenicity. Therefore, N protein as the key factor of virus infection and replication in basic research and clinical application has great potential research value. This article reviews the research progress on the structure and biological function of SARS-CoV-2 N protein, the diagnosis and drug research of targeting N protein, in order to promote researchers' further understanding of SARS-CoV-2 N protein, and lay a theoretical foundation for the possible outbreak of new and sudden coronavirus infectious diseases in the future.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Phosphoproteins , SARS-CoV-2 , SARS-CoV-2/genetics , Humans , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , COVID-19/virology , COVID-19/diagnosis , Phosphoproteins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics
4.
Biomolecules ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927063

ABSTRACT

The Ebola virus (EBOV) is a lethal pathogen causing hemorrhagic fever syndrome which remains a global health challenge. In the EBOV, two multifunctional proteins, VP35 and VP40, have significant roles in replication, virion assembly, and budding from the cell and have been identified as druggable targets. In this study, we employed in silico methods comprising molecular docking, molecular dynamic simulations, and pharmacological properties to identify prospective drugs for inhibiting VP35 and VP40 proteins from the myxobacterial bioactive natural product repertoire. Cystobactamid 934-2, Cystobactamid 919-1, and Cittilin A bound firmly to VP35. Meanwhile, 2-Hydroxysorangiadenosine, Enhypyrazinone B, and Sorangiadenosine showed strong binding to the matrix protein VP40. Molecular dynamic simulations revealed that, among these compounds, Cystobactamid 919-1 and 2-Hydroxysorangiadenosine had stable interactions with their respective targets. Similarly, molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations indicated close-fitting receptor binding with VP35 or VP40. These two compounds also exhibited good pharmacological properties. In conclusion, we identified Cystobactamid 919-1 and 2-Hydroxysorangiadenosine as potential ligands for EBOV that target VP35 and VP40 proteins. These findings signify an essential step in vitro and in vivo to validate their potential for EBOV inhibition.


Subject(s)
Antiviral Agents , Biological Products , Ebolavirus , Molecular Docking Simulation , Molecular Dynamics Simulation , Ebolavirus/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Myxococcales/chemistry , Humans , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/chemistry , Nucleocapsid Proteins
5.
Elife ; 132024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941236

ABSTRACT

Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.


Like other types of RNA viruses, the genetic material of SARS-CoV-2 (the agent responsible for COVID-19) is formed of an RNA molecule which is prone to accumulating mutations. This gives SARS-CoV-2 the ability to evolve quickly, and often to remain one step ahead of treatments. Understanding how these mutations shape the behavior of RNA viruses is therefore crucial to keep diseases such as COVID-19 under control. The gene that codes for the protein that 'packages' the genetic information inside SARS-CoV-2 is particularly prone to mutations. This nucleocapsid (N) protein participates in many key processes during the life cycle of the virus, including potentially interfering with the immune response. Exactly how the physical properties of the N-Protein are impacted by the mutations in its genetic sequence remains unclear. To investigate this question, Nguyen et al. predicted the various biophysical properties of different regions of the N-protein based on a computer-based analysis of SARS-CoV-2 genetic databases. This allowed them to determine if specific protein regions were positively or negatively charged in different mutants. The analyses showed that some domains exhibited great variability in their charge between protein variants ­ reflecting the fact that the corresponding genetic sequences showed high levels of plasticity. Other regions remained conserved, however, including across related coronaviruses. Nguyen et al. also conducted biochemical experiments on a range of N-proteins obtained from clinically relevant SARS-CoV-2 variants. Their results highlighted the importance of protein segments with no fixed three-dimensional structure. Mutations in the related sequences created high levels of variation in the physical properties of these 'intrinsically disordered' regions, which had wide-ranging consequences. Some of these genetic changes even gave individual N-proteins the ability to interact with each other in a completely new way. These results shed new light on the relationship between genetic mutations and the variable physical properties of RNA virus proteins. Nguyen et al. hope that this knowledge will eventually help to develop more effective treatments for viral infections.


Subject(s)
Coronavirus Nucleocapsid Proteins , Mutation , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , COVID-19/virology , COVID-19/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Thermodynamics , Protein Stability
6.
Protein Expr Purif ; 221: 106506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38772430

ABSTRACT

Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.


Subject(s)
Bacteriophage T4 , Escherichia coli , Recombinant Fusion Proteins , Bacteriophage T4/genetics , Bacteriophage T4/chemistry , Bacteriophage T4/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza Vaccines/genetics , Influenza Vaccines/biosynthesis , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/isolation & purification
7.
J Virol ; 98(6): e0050324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780245

ABSTRACT

The henipaviruses, including Nipah virus (NiV) and Hendra virus (HeV), are biosafety level 4 (BSL-4) zoonotic pathogens that cause severe neurological and respiratory disease in humans. To study the replication machinery of these viruses, we developed robust minigenome systems that can be safely used in BSL-2 conditions. The nucleocapsid (N), phosphoprotein (P), and large protein (L) of henipaviruses are critical elements of their replication machinery and thus essential support components of the minigenome systems. Here, we tested the effects of diverse combinations of the replication support proteins on the replication capacity of the NiV and HeV minigenomes by exchanging the helper plasmids coding for these proteins among the two viruses. We demonstrate that all combinations including one or more heterologous proteins were capable of replicating both the NiV and HeV minigenomes. Sequence alignment showed identities of 92% for the N protein, 67% for P, and 87% for L. Notably, variations in amino acid residues were not concentrated in the N-P and P-L interacting regions implying that dissimilarities in amino acid composition among NiV and HeV polymerase complex proteins may not impact their interactions. The observed indiscriminate activity of NiV and HeV polymerase complex proteins is different from related viruses, which can support the replication of heterologous genomes only when the whole polymerase complex belongs to the same virus. This newly observed promiscuous property of the henipavirus polymerase complex proteins likely attributed to their conserved interaction regions could potentially be harnessed to develop universal anti-henipavirus antivirals.IMPORTANCEGiven the severity of disease induced by Hendra and Nipah viruses in humans and the continuous emergence of new henipaviruses as well as henipa-like viruses, it is necessary to conduct a more comprehensive investigation of the biology of henipaviruses and their interaction with the host. The replication of henipaviruses and the development of antiviral agents can be studied in systems that allow experiments to be performed under biosafety level 2 conditions. Here, we developed robust minigenome systems for the Nipah virus (NiV) and Hendra virus (HeV) that provide a convenient alternative for studying NiV and HeV replication. Using these systems, we demonstrate that any combination of the three polymerase complex proteins of NiV and HeV could effectively initiate the replication of both viral minigenomes, which suggests that the interaction regions of the polymerase complex proteins could be effective targets for universal and effective anti-henipavirus interventions.


Subject(s)
Genome, Viral , Nipah Virus , Virus Replication , Nipah Virus/genetics , Nipah Virus/physiology , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , Hendra Virus/genetics , Hendra Virus/metabolism , Hendra Virus/physiology , Animals , Henipavirus/genetics , Henipavirus/metabolism , Henipavirus Infections/virology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Cell Line
8.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1548-1558, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783815

ABSTRACT

In order to generate monoclonal antibodies against the akabane virus (AKAV) N protein, this study employed a prokaryotic expression system to express the AKAV N protein. Following purification, BALB/c mice were immunized, and their splenocytes were fused with mouse myeloma cells (SP2/0) to produce hybridoma cells. The indirect ELISA method was used to screen for positive hybridoma cells. Two specific hybridoma cell lines targeting AKAV N protein, designated as 2C9 and 5E9, were isolated after three rounds of subcloning. Further characterization was conducted through ELISA, Western blotting, and indirect immunofluorescence assay (IFA). The results confirmed that the monoclonal antibodies specifically target AKAV N protein, exhibiting strong reactivity in IFA. Subtype analysis identified the heavy chain of the 2C9 mAb's as IgG2b and its light chain as κ-type; the 5E9 mAb's heavy chain was determined to be IgG1, with a κ-type light chain. Their ELISA titers reached 1:4 096 000. This study successfully developed two monoclonal antibodies targeting AKAV N protein, which lays a crucial foundation for advancing diagnostic methods for akabane disease prevention and control, as well as for studying the function of the AKAV N protein.


Subject(s)
Antibodies, Monoclonal , Animals , Female , Mice , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Hybridomas/immunology , Hybridomas/metabolism , Mice, Inbred BALB C , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/genetics , Orthobunyavirus/immunology , Orthobunyavirus/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology
9.
ACS Sens ; 9(6): 3150-3157, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38717584

ABSTRACT

Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 107 fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 µL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 104 fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.


Subject(s)
Coronavirus Nucleocapsid Proteins , Limit of Detection , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay/methods , COVID-19/diagnosis , COVID-19/virology , CRISPR-Cas Systems/genetics , Phosphoproteins/immunology , Phosphoproteins/chemistry , CRISPR-Associated Proteins/chemistry , Endodeoxyribonucleases/chemistry , Nucleocapsid Proteins/immunology , Bacterial Proteins
10.
Virology ; 596: 110102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749084

ABSTRACT

The escalating epidemic of PRRSV-1 in China has prompted widespread concern regarding the evolution of strains, disparities in pathogenicity to herds, and immunological detection of emerging strains. The nucleocapsid (N) protein, as a highly conserved protein with immunogenic properties in PRRSV, is a subject of intensive study. In this research, the recombinant His-N protein was expressed based on the N gene of PRRSV-1 using a prokaryotic expression system and then administered to BALB/c mice. A cell fusion protocol was implemented between SP2/0 cells and splenocytes, resulting in the successful screening of a monoclonal antibody against the N protein, designated as mAb 2D7, by indirect ELISA. Western Blot analysis and Indirect Immunofluorescence Assay (IFA) confirmed that mAb 2D7 positively responded to PRRSV-1. By constructing and expressing a series of truncated His-fused N proteins, a B-cell epitope of N protein, 59-AAEDDIR-65, was identified. A sequence alignment of two genotypes of PRRSV revealed that this epitope is relatively conserved in PRRSV, yet more so in genotype 1. Cross-reactivity analysis by Western blot analysis demonstrated that the B-cell epitope containing D62Y mutation could not be recognized by mAb 2D7. The inability of mAb 2D7 to recognize the epitope carrying the D62Y mutation was further determined using an infectious clone of PRRSV. This research may shed light on the biological significance of the N protein of PRRSV, paving the way for the advancement of immunological detection and development of future recombinant marker vaccine.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Epitopes, B-Lymphocyte , Mice, Inbred BALB C , Nucleocapsid Proteins , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Antibodies, Viral/immunology , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/genetics , Mice , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Epitope Mapping , Female , Cross Reactions
11.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718862

ABSTRACT

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Phosphorylation , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Humans , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Serine/metabolism , Serine/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , COVID-19/virology , COVID-19/metabolism , Arginine/chemistry , Arginine/metabolism , Protein Binding , Nucleocapsid/metabolism , Nucleocapsid/chemistry , Magnetic Resonance Spectroscopy , Phase Separation
12.
Biologicals ; 86: 101769, 2024 May.
Article in English | MEDLINE | ID: mdl-38759304

ABSTRACT

This study focuses on the development and initial assessment of an indirect IgG enzyme-linked immunosorbent assay (ELISA) specifically designed to detect of anti-SARS-CoV-2 antibodies. The unique aspect of this ELISA method lies in its utilization of a recombinant nucleocapsid (N) antigen, produced through baculovirus expression in insect cells. Our analysis involved 292 RT-qPCR confirmed positive serum samples and 54 pre-pandemic healthy controls. The process encompassed cloning, expression, and purification of the SARS-CoV-2 N gene in insect cells, with the resulted purified protein employed in our ELISA tests. Statistical analysis yielded an Area Under the Curve of 0.979, and the optimized cut-off exhibited 92 % sensitivity and 94 % specificity. These results highlight the ELISA's potential for robust and reliable serological detection of SARS-CoV-2 antibodies. Further assessments, including a larger panel size, reproducibility tests, and application in diverse populations, could enhance its utility as a valuable biotechnological solution for diseases surveillance.


Subject(s)
Antibodies, Viral , Baculoviridae , COVID-19 , Enzyme-Linked Immunosorbent Assay , Recombinant Proteins , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay/methods , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Baculoviridae/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , COVID-19/diagnosis , COVID-19/blood , COVID-19/immunology , Animals , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , COVID-19 Serological Testing/methods , Sf9 Cells , Antigens, Viral/immunology , Antigens, Viral/genetics , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/genetics , Sensitivity and Specificity , Immunoglobulin G/blood , Immunoglobulin G/immunology , Phosphoproteins/immunology , Phosphoproteins/genetics
13.
Nucleic Acids Res ; 52(11): 6647-6661, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38587193

ABSTRACT

The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.


Subject(s)
Coronavirus Nucleocapsid Proteins , Protein Multimerization , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Protein Binding , Binding Sites , Ribonucleoproteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Virus Assembly/genetics , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphoproteins/genetics , COVID-19/virology
14.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640233

ABSTRACT

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Subject(s)
Influenza, Human , Humans , Viral Core Proteins/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , RNA-Binding Proteins/metabolism , Nucleocapsid Proteins/metabolism , Myxovirus Resistance Proteins
15.
J Virol Methods ; 327: 114936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583808

ABSTRACT

A Tn7-transposition approach was utilized for site-specific insertion of foreign genes into the genome of simian varicella virus (SVV), the causative agent of simian varicella in nonhuman primates. The severe acute respiratory syndrome coronavirus (SARS-CoV-2) nucleocapsid (N) gene and receptor binding domain (RBD) of the spike gene were inserted into the ORF 14 region of the SVV genome cloned into a bacterial artificial chromosome and then transfected into Vero cells to generate the infectious recombinant SVV (rSVV). The rSVV replicated efficiently in infected Vero cells and expressed the N and RBD antigens as indicated by immunoblot and immunofluorescence assays. Tn7-mediated transposition provides a rapid and efficient method for constructing rSVVs which may be evaluated as live-attenuated vaccines.


Subject(s)
Genome, Viral , Animals , Chlorocebus aethiops , Vero Cells , DNA Transposable Elements , SARS-CoV-2/genetics , Mutagenesis, Insertional , Spike Glycoprotein, Coronavirus/genetics , Virus Replication , Varicellovirus/genetics , Chromosomes, Artificial, Bacterial/genetics , Nucleocapsid Proteins/genetics
16.
Int J Biol Macromol ; 269(Pt 2): 131842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679249

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Swine , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine Reproductive and Respiratory Syndrome/blood , Sensitivity and Specificity , Reproducibility of Results , Nucleocapsid Proteins/immunology , ROC Curve
17.
Vet Microbiol ; 293: 110098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677126

ABSTRACT

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Subject(s)
Antibodies, Monoclonal , Coronavirus, Canine , Epitope Mapping , Epitopes, B-Lymphocyte , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Dogs , Mice , Nucleocapsid Proteins/immunology , Coronavirus, Canine/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice, Inbred BALB C , Coronavirus Nucleocapsid Proteins/immunology , Dog Diseases/virology , Dog Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Amino Acid Sequence
18.
Front Immunol ; 15: 1384467, 2024.
Article in English | MEDLINE | ID: mdl-38605965

ABSTRACT

Introduction: The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods: Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results: Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion: Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.


Subject(s)
Antibodies, Bispecific , Animals , Cattle , Humans , Antibodies, Bispecific/chemistry , Peptides , Nucleocapsid Proteins
20.
Medicine (Baltimore) ; 103(16): e37780, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640329

ABSTRACT

COVID-19 caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2, (SARS-CoV-2) is a highly contagious disease known for its significant lung damage. Although the impact of the COVID-19 pandemic on our daily lives has been limited, the virus has not vanished entirely and continues to undergo mutations. This calls for a concentrated focus on the matter of SARS-CoV-2 immune evasion. Drawing on observations of immune escape mechanisms in other viruses, some scholars have proposed that liquid-liquid phase separation might play a crucial role in SARS-CoV-2's ability to evade the immune system. Within the structure of SARS-CoV-2, the nucleocapsid protein plays a pivotal role in RNA replication and transcription. Concurrently, this protein can engage in phase separation with RNA. A thorough examination of the phase separation related to the nucleocapsid protein may unveil the mechanism by which SARS-CoV-2 accomplishes immune evasion. Moreover, this analysis may provide valuable insights for future development of innovative antiviral drugs or vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immune Evasion , Pandemics/prevention & control , Nucleocapsid Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...