Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
BMC Bioinformatics ; 25(1): 128, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528492

ABSTRACT

BACKGROUND: Discovery biological motifs plays a fundamental role in understanding regulatory mechanisms. Computationally, they can be efficiently represented as kmers, making the counting of these elements a critical aspect for ensuring not only the accuracy but also the efficiency of the analytical process. This is particularly useful in scenarios involving large data volumes, such as those generated by the ChIP-seq protocol. Against this backdrop, we introduce BIOMAPP::CHIP, a tool specifically designed to optimize the discovery of biological motifs in large data volumes. RESULTS: We conducted a comprehensive set of comparative tests with state-of-the-art algorithms. Our analyses revealed that BIOMAPP::CHIP outperforms existing approaches in various metrics, excelling both in terms of performance and accuracy. The tests demonstrated a higher detection rate of significant motifs and also greater agility in the execution of the algorithm. Furthermore, the SMT component played a vital role in the system's efficiency, proving to be both agile and accurate in kmer counting, which in turn improved the overall efficacy of our tool. CONCLUSION: BIOMAPP::CHIP represent real advancements in the discovery of biological motifs, particularly in large data volume scenarios, offering a relevant alternative for the analysis of ChIP-seq data and have the potential to boost future research in the field. This software can be found at the following address: (https://github.com/jadermcg/biomapp-chip).


Subject(s)
Algorithms , Software , Sequence Analysis, DNA/methods , Chromatin Immunoprecipitation/methods , Binding Sites , Nucleotide Motifs
2.
PLoS One ; 17(1): e0263307, 2022.
Article in English | MEDLINE | ID: mdl-35089985

ABSTRACT

We study the limits imposed by transcription factor specificity on the maximum number of binding motifs that can coexist in a gene regulatory network, using the SwissRegulon Fantom5 collection of 684 human transcription factor binding sites as a model. We describe transcription factor specificity using regular expressions and find that most human transcription factor binding site motifs are separated in sequence space by one to three motif-discriminating positions. We apply theorems based on the pigeonhole principle to calculate the maximum number of transcription factors that can coexist given this degree of specificity, which is in the order of ten thousand and would fully utilize the space of DNA subsequences. Taking into account an expanded DNA alphabet with modified bases can further raise this limit by several orders of magnitude, at a lower level of sequence space usage. Our results may guide the design of transcription factors at both the molecular and system scale.


Subject(s)
DNA/metabolism , Nucleotide Motifs/genetics , Transcription Factors/metabolism , Algorithms , Base Sequence , Binding Sites , Humans , Protein Binding
3.
Sci Rep ; 11(1): 16977, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417498

ABSTRACT

Chromatin architecture influences transcription by modulating the physical access of regulatory factors to DNA, playing fundamental roles in cell identity. Studies on dopaminergic differentiation have identified coding genes, but the relationship with non-coding genes or chromatin accessibility remains elusive. Using RNA-Seq and ATAC-Seq we profiled differentially expressed transcripts and open chromatin regions during early dopaminergic neuron differentiation. Hierarchical clustering of differentially expressed genes, resulted in 6 groups with unique characteristics. Surprisingly, the abundance of long non-coding RNAs (lncRNAs) was high in the most downregulated transcripts, and depicted positive correlations with target mRNAs. We observed that open chromatin regions decrease upon differentiation. Enrichment analyses of accessibility depict an association between open chromatin regions and specific functional pathways and gene-sets. A bioinformatic search for motifs allowed us to identify transcription factors and structural nuclear proteins that potentially regulate dopaminergic differentiation. Interestingly, we also found changes in protein and mRNA abundance of the CCCTC-binding factor, CTCF, which participates in genome organization and gene expression. Furthermore, assays demonstrated co-localization of CTCF with Polycomb-repressed chromatin marked by H3K27me3 in pluripotent cells, progressively decreasing in neural precursor cells and differentiated neurons. Our work provides a unique resource of transcription factors and regulatory elements, potentially involved in the acquisition of human dopaminergic neuron cell identity.


Subject(s)
Cell Differentiation/genetics , Chromatin/metabolism , Dopaminergic Neurons/cytology , Human Embryonic Stem Cells/cytology , Transcriptome/genetics , CCCTC-Binding Factor/metabolism , Cell Line , Dopaminergic Neurons/metabolism , Gene Expression Profiling , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Humans , Nucleotide Motifs/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq , Time Factors , Transcription Factors/metabolism , Transcription, Genetic
4.
Planta ; 251(2): 53, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31950388

ABSTRACT

MAIN CONCLUSION: A survey of developed fruit gene-specific datasets and the implementation of a novel cis-element analysis tool indicate specific transcription factors as novel regulatory actors under HT response and CI protection. Heat treatment (HT) prior to cold storage (CS) has been successfully applied to ameliorate fruit chilling injury (CI) disorders. Molecular studies have identified several HT-driven benefits and putative CI-protective molecules and mechanisms. However, bioinformatic tools and analyses able to integrate fruit-specific information are necessary to begin functional studies and breeding projects. In this work, a HT-responsive gene dataset (HTds) and four fruit expression datasets (FEds), containing gene-specific information from several species and postharvest conditions, were developed and characterized. FEds provided information about HT-responsive genes, not only validating their sensitivity to HT in different systems but also revealing most of them as CS-responsive. A special focus was given to peach heat treatment-sensitive transcriptional regulation by the development of a novel Perl motif analysis software (cisAnalyzer) and a curated plant cis-elements dataset (PASPds). cisAnalyzer is able to assess sequence motifs presence, localization, enrichment and discovery on biological sequences. Its implementation for the enrichment analysis of PASPds motifs on the promoters of HTds genes rendered particular cis-elements that indicate certain transcription factor (TF) families as responsible of fruit HT-sensitive transcription regulation. Phylogenetic and postharvest expression data of these TFs showed a functional diversity of TF families, with members able to fulfil roles under HT, CS and/or both treatments. All integrated datasets and cisAnalyzer tool were deposited in FruitGeneDB (https://www.cefobi-conicet.gov.ar/FruitGeneDB/search1.php), a new available database with a great potential for fruit gene functional studies, including the markers of HT and CS responses whose study will contribute to unravel HT-driven CI-protection and select tolerant cultivars.


Subject(s)
Cold Temperature , Databases, Genetic , Fruit/growth & development , Fruit/genetics , Hot Temperature , Nucleotide Motifs/genetics , Preservation, Biological , Prunus persica/genetics , Base Sequence , Binding Sites , Gene Expression Regulation, Plant , Genes, Plant , Models, Biological , Phylogeny , Plant Growth Regulators/metabolism , Promoter Regions, Genetic/genetics , Prunus persica/growth & development , Signal Transduction , Software , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcription, Genetic
5.
Hum Mutat ; 41(4): 825-836, 2020 04.
Article in English | MEDLINE | ID: mdl-31898853

ABSTRACT

Hemophilia A (HA) provides excellent models to analyze genotype-phenotype relationships and mutational mechanisms. NhF8ld's breakpoints were characterized using case-specific DNA-tags, direct- or inverse-polymerase chain reaction amplification, and Sanger sequencing. DNA-break's stimulators (n = 46), interspersed repeats, non-B-DNA, and secondary structures were analyzed around breakpoints versus null hypotheses (E-values) based on computer simulations and base-frequency probabilities. Nine of 18 (50%) severe-HA patients with nhF8lds developed inhibitors, 1/8 affecting one exon and 8/10 (80%) affecting multi-exons. NhF8lds range: 2-165 kb. Five (45%) nhF8lds involve F8-extragenic regions including three affecting vicinal genes (SMIM9 and BRCC3) but none shows an extra-phenotype not related to severe-HA. The contingency analysis of recombinogenic motifs at nhF8ld breakpoints indicated a significant involvement of several DNA-break stimulator elements. Most nhF8ld's breakpoint junctions showed microhomologies (1-7 bp). Three (27%) nhF8lds show complexities at the breakpoints: an 8-bp inverted-insertion, and the remnant two, inverted- and direct-insertions (46-68 bp) supporting replicative models microhomology-mediated break-induced replication/Fork Stalling and Template Switching. The remnant eight (73%) nhF8lds may support nonhomologous end joining/microhomology-mediated end joining models. Our study suggests the involvement of the retroposition machinery (e.g., Jurka-targets, Alu-elements, long interspersed nuclear elements, long terminal repeats), microhomologies, and secondary structures at breakpoints playing significant roles in the origin of the upmost severe phenotype in HA.


Subject(s)
Factor VIII/genetics , Genetic Variation , Hemophilia A/genetics , Chromosome Breakpoints , Computational Biology/methods , Genetic Association Studies , Genetic Loci , Genetic Predisposition to Disease , Hemophilia A/diagnosis , Humans , Male , Mutation , Nucleic Acid Conformation , Nucleotide Motifs , Phenotype , Recombination, Genetic , Severity of Illness Index
6.
Molecules ; 24(17)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470504

ABSTRACT

Brucellosis, also known as "undulant fever" is a zoonotic disease caused by Brucella, which is a facultative intracellular bacterium. Despite efforts to eradicate this disease, infection in uncontrolled domestic animals persists in several countries and therefore transmission to humans is common. Brucella evasion of the innate immune system depends on its ability to evade the mechanisms of intracellular death in phagocytic cells. The BvrR-BvrS two-component system allows the bacterium to detect adverse conditions in the environment. The BvrS protein has been associated with genes of virulence factors, metabolism, and membrane transport. In this study, we predicted the DNA sequence recognized by BvrR with Gibbs Recursive Sampling and identified the three-dimensional structure of BvrR using I-TASSER suite, and the interaction mechanism between BvrR and DNA with Protein-DNA docking and molecular dynamics (MD) simulation. Based on the Gibbs recursive Sampling analysis, we found the motif AAHTGC (H represents A, C, and T nucleotides) as a possible sequence recognized by BvrR. The docking and EMD simulation results showed that C-terminal effector domain of BvrR protein is likely to interact with AAHTGC sequence. In conclusion, we predicted the structure, recognition motif, and interaction of BvrR with DNA.


Subject(s)
Bacterial Proteins/chemistry , Brucella/chemistry , DNA/chemistry , Virulence Factors/chemistry , Amino Acid Motifs , Bacterial Proteins/metabolism , Binding Sites , Brucella/pathogenicity , DNA/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleotide Motifs , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Structural Homology, Protein , Thermodynamics , Virulence Factors/metabolism
7.
RNA Biol ; 16(12): 1806-1816, 2019 12.
Article in English | MEDLINE | ID: mdl-31470761

ABSTRACT

Translation initiation is a critical step in the regulation of protein synthesis, and it is subjected to different control mechanisms, such as 5' UTR secondary structure and initiation codon context, that can influence the rates at which initiation and consequentially translation occur. For some genes, translation elongation also affects the rate of protein synthesis. With a GFP library containing nearly all possible combinations of nucleotides from the 3rd to the 5th codon positions in the protein coding region of the mRNA, it was previously demonstrated that some nucleotide combinations increased GFP expression up to four orders of magnitude. While it is clear that the codon region from positions 3 to 5 can influence protein expression levels of artificial constructs, its impact on endogenous proteins is still unknown. Through bioinformatics analysis, we identified the nucleotide combinations of the GFP library in Escherichia coli genes and examined the correlation between the expected levels of translation according to the GFP data with the experimental measures of protein expression. We observed that E. coli genes were enriched with the nucleotide compositions that enhanced protein expression in the GFP library, but surprisingly, it seemed to affect the translation efficiency only marginally. Nevertheless, our data indicate that different enterobacteria present similar nucleotide composition enrichment as E. coli, suggesting an evolutionary pressure towards the conservation of short translational enhancer sequences.


Subject(s)
Codon/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Peptide Chain Initiation, Translational , 5' Untranslated Regions , Base Sequence , Biological Evolution , Codon/chemistry , Computational Biology/methods , Enhancer Elements, Genetic , Escherichia coli/metabolism , Gene Library , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Nucleic Acid Conformation , Nucleotide Motifs , Open Reading Frames , Ribosomes/genetics , Ribosomes/metabolism
8.
Biometals ; 32(2): 273-291, 2019 04.
Article in English | MEDLINE | ID: mdl-30810877

ABSTRACT

Heme may represent a major iron-source for bacteria. In the symbiotic nitrogen-fixing bacterium Ensifer meliloti 1021, iron acquisition from heme depends on the outer-membrane heme-receptor ShmR. Expression of shmR gene is repressed by iron in a RirA dependent manner while under iron-limitation its expression requires the small protein HmuP. In this work, we identified highly conserved nucleotide motifs present upstream the shmR gene. These motifs are widely distributed among Alpha and Beta Proteobacteria, and correlate with the presence of HmuP coding sequences in bacterial genomes. According to data presented in this work, we named these new motifs as HmuP-responsive elements (HPREs). In the analyzed genomes, the HPREs were always present upstream of genes encoding putative heme-receptors. Moreover, in those Alpha and Beta Proteobacteria where transcriptional start sites for shmR homologs are known, HPREs were located in the 5'UTR region. In this work we show that in E. meliloti 1021, HPREs are involved in HmuP-dependent shmR expression. Moreover, we show that changes in sequence composition of the HPREs correlate with changes in a predicted RNA secondary structure element and affect shmR gene expression.


Subject(s)
5' Untranslated Regions/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Conserved Sequence/genetics , Nucleotide Motifs/genetics , Receptors, Cell Surface/genetics , Sinorhizobium meliloti/genetics , Real-Time Polymerase Chain Reaction , Sinorhizobium meliloti/growth & development
9.
BMC Genomics ; 19(Suppl 8): 860, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30537925

ABSTRACT

BACKGROUND: In living organisms, small heat shock proteins (sHSPs) are triggered in response to stress situations. This family of proteins is large in plants and, in the case of tomato (Solanum lycopersicum), 33 genes have been identified, most of them related to heat stress response and to the ripening process. Transcriptomic and proteomic studies have revealed complex patterns of expression for these genes. In this work, we investigate the coregulation of these genes by performing a computational analysis of their promoter architecture to find regulatory motifs known as heat shock elements (HSEs). We leverage the presence of sHSP members that originated from tandem duplication events and analyze the promoter architecture diversity of the whole sHSP family, focusing on the identification of HSEs. RESULTS: We performed a search for conserved genomic sequences in the promoter regions of the sHSPs of tomato, plus several other proteins (mainly HSPs) that are functionally related to heat stress situations or to ripening. Several computational analyses were performed to build multiple sequence motifs and identify transcription factor binding sites (TFBS) homologous to HSF1AE and HSF21 in Arabidopsis. We also investigated the expression and interaction of these proteins under two heat stress situations in whole tomato plants and in protoplast cells, both in the presence and in the absence of heat shock transcription factor A2 (HsfA2). The results of these analyses indicate that different sHSPs are up-regulated depending on the activation or repression of HsfA2, a key regulator of HSPs. Further, the analysis of protein-protein interaction between the sHSP protein family and other heat shock response proteins (Hsp70, Hsp90 and MBF1c) suggests that several sHSPs are mediating alternative stress response through a regulatory subnetwork that is not dependent on HsfA2. CONCLUSIONS: Overall, this study identifies two regulatory motifs (HSF1AE and HSF21) associated with the sHSP family in tomato which are considered genomic HSEs. The study also suggests that, despite the apparent redundancy of these proteins, which has been linked to gene duplication, tomato sHSPs showed different up-regulation and different interaction patterns when analyzed under different stress situations.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Proteins, Small/genetics , Nucleotide Motifs , Plant Proteins/genetics , Regulatory Sequences, Nucleic Acid , Solanum lycopersicum/genetics , Gene Duplication , Heat-Shock Proteins, Small/metabolism , Heat-Shock Response , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Interaction Maps
10.
PLoS One ; 13(8): e0200835, 2018.
Article in English | MEDLINE | ID: mdl-30071030

ABSTRACT

Microcin E492 is a pore-forming bacteriocin with toxic activity against Enterobacteriaceae, which undergoes amyloid aggregation as a mechanism to regulate its toxicity. To be active, it requires the posttranslational attachment to the C-terminus of a glycosylated enterochelin derivative (salmochelin), a process carried out by the proteins MceC, MceI and MceJ encoded in the MccE492 gene cluster. Both microcin E492 and salmochelin have a proposed role in the virulence of the bacterial pathogen Klebsiella pneumoniae. Besides, enterochelin is produced as a response to low iron availability and its synthesis is controlled by the global iron regulator Fur. Since the production of active microcin E492 depends on enterochelin biosynthesis, both processes could be coordinately regulated. In this work, we investigated the role of Fur in the expression of the microcin E492 maturation genes mceCJI. mceC was not regulated by Fur as it occurs with its homolog iroB in Salmonella enterica. We demonstrated that mceJI along with the previously uncharacterized gene mceX are transcribed as a single mRNA, and that Fur binds in vivo to a Fur box located upstream of the mceX-mceJI unit. Also, we established that the expression of these genes decreased in a condition of high iron availability, while this effect is abrogated in a Δfur background. Furthermore, our results indicated that MceX acts as a negative regulator of microcin E492 structural gene expression, coupling its synthesis to the iron-dependent regulatory circuit. Consequently, fur or mceX overexpression led to a significant decrease in the antibacterial activity of cells producing microcin E492. Altogether these results show that both the expression of microcin E492 maturation genes mceJI, and MceX the negative regulator of microcin E492 synthesis, are coordinated with the enterochelin production by Fur, depending on the iron levels in the medium.


Subject(s)
Bacterial Proteins/metabolism , Bacteriocins/metabolism , Iron/metabolism , Repressor Proteins/metabolism , DNA, Recombinant , Escherichia coli , Gene Expression Regulation , Nucleotide Motifs , Protein Binding , Protein Processing, Post-Translational , RNA, Messenger/metabolism , Transcription, Genetic
11.
J Am Heart Assoc ; 7(3)2018 01 31.
Article in English | MEDLINE | ID: mdl-29386205

ABSTRACT

BACKGROUND: The signals that determine atherosclerosis-specific DNA methylation profiles are only partially known. We previously identified a 29-bp DNA motif (differential methylation motif [DMM]) proximal to CpG islands (CGIs) that undergo demethylation in advanced human atheromas. Those data hinted that the DMM docks modifiers of DNA methylation and transcription. METHODS AND RESULTS: We sought to functionally characterize the DMM. We showed that the DMM overlaps with the RNA polymerase III-binding B box of Alu short interspersed nuclear elements and contains a DR2 nuclear receptor response element. Pointing to a possible functional role for an Alu DMM, CGIs proximal (<100 bp) to near-intact DMM-harboring Alu are significantly less methylated relative to CGIs proximal to degenerate DMM-harboring Alu or to DMM-devoid mammalian-wide interspersed repeat short interspersed nuclear elements in human arteries. As for DMM-binding factors, LXRB (liver X receptor ß) binds the DMM in a DR2-dependent fashion, and LXR (liver X receptor) agonists induce significant hypermethylation of the bulk of Alu in THP-1 cells. Furthermore, we describe 3 intergenic long noncoding RNAs that harbor a DMM, are under transcriptional control by LXR agonists, and are differentially expressed between normal and atherosclerotic human aortas. Notably, CGIs adjacent to those long noncoding RNAs tend to be hypomethylated in symptomatic relative to stable human atheromas. CONCLUSIONS: Collectively, the data suggest that a DMM is associated with 2 distinct methylation states: relatively low methylation of in cis CGIs and Alu element hypermethylation. Based on the known atheroprotective role of LXRs, we propose that LXR agonist-induced Alu hypermethylation, a landmark of atherosclerosis, is a compensatory rather than proatherogenic response.


Subject(s)
Alu Elements , Atherosclerosis/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic , Liver X Receptors/metabolism , Nucleotide Motifs , Atherosclerosis/metabolism , Benzoates/pharmacology , Benzylamines/pharmacology , Binding Sites , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Humans , Liver X Receptors/agonists , Liver X Receptors/genetics , Protein Binding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , THP-1 Cells , Two-Hybrid System Techniques
12.
BMC Evol Biol ; 18(1): 10, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29390964

ABSTRACT

BACKGROUND: Universal stress proteins (USPs) are present in all domains of life. Their expression is upregulated in response to a large variety of stress conditions. The functional diversity found in this protein family, paired with the sequence degeneration of the characteristic ATP-binding motif, suggests a complex evolutionary pattern for the paralogous USP-encoding genes. In this work, we investigated the origin, genomic organization, expression patterns and evolutionary history of the USP gene family in species of the phylum Platyhelminthes. RESULTS: Our data showed a cluster organization, a lineage-specific distribution, and the presence of several pseudogenes among the USP gene copies identified. The absence of a well conserved -CCAATCA- motif in the promoter region was positively correlated with low or null levels of gene expression, and with amino acid changes within the ligand binding motifs. Despite evidence of the pseudogenization of various USP genes, we detected an important functional divergence at several residues, mostly located near sites that are critical for ligand interaction. CONCLUSIONS: Our results provide a broad framework for the evolution of the USP gene family, based on the emergence of new paralogs that face very contrasting fates, including pseudogenization, subfunctionalization or neofunctionalization. This framework aims to explain the sequence and functional diversity of this gene family, providing a foundation for future studies in other taxa in which USPs occur.


Subject(s)
Evolution, Molecular , Heat-Shock Proteins/genetics , Platyhelminths/genetics , Sequence Homology, Amino Acid , Amino Acid Sequence , Animals , Gene Duplication , Gene Expression Regulation , Genetic Variation , Heat-Shock Proteins/chemistry , Models, Molecular , Multigene Family , Nucleotide Motifs/genetics , Phylogeny , Pseudogenes , Selection, Genetic
13.
J Virol ; 91(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28794030

ABSTRACT

Viruses display a wide range of genomic profiles and, consequently, a variety of gene expression strategies. Specific sequences associated with transcriptional processes have been described in viruses, and putative promoter motifs have been elucidated for some nucleocytoplasmic large DNA viruses (NCLDV). Among NCLDV, the Marseilleviridae is a well-recognized family because of its genomic mosaicism. The marseilleviruses have an ability to incorporate foreign genes, especially from sympatric organisms inhabiting Acanthamoeba, its main known host. Here, we identified for the first time an eight-nucleotide A/T-rich promoter sequence (AAATATTT) associated with 55% of marseillevirus genes that is conserved in all marseilleviruses lineages, a higher level of conservation than that of any giant virus described to date. We instigated our prediction about the promoter motif by biological assays and by evaluating how single mutations in this octamer can impact gene expression. The investigation of sequences that regulate the expression of genes relative to lateral transfer revealed that the promoter motifs do not appear to be incorporated by marseilleviruses from donor organisms. Indeed, analyses of the intergenic regions that regulate lateral gene transfer-related genes have revealed an independent origin of the marseillevirus intergenic regions that does not match gene-donor organisms. About 50% of AAATATTT motifs spread throughout intergenic regions of the marseilleviruses are present as multiple copies. We believe that such multiple motifs are associated with increased expression of a given gene or are related to incorporation of foreign genes into the mosaic genome of marseilleviruses.IMPORTANCE The marseilleviruses draw attention because of the peculiar features of their genomes; however, little is known about their gene expression patterns or the factors that regulate those expression patterns. The limited published research on the expression patterns of the marseilleviruses and their unique genomes has led us to study the promoter motif sequences in the intergenic regions of the marseilleviruses. This work is the first to analyze promoter sequences in the genomes of the marseilleviruses. We also suggest a strong capacity to acquire foreign genes and to express those genes mediated by multiple copies of the promoter motifs available in intergenic regions. These findings contribute to an understanding of genomic expansion and plasticity observed in these giant viruses.


Subject(s)
Acanthamoeba/virology , DNA Viruses/genetics , DNA, Intergenic , Genome, Viral , Nucleotide Motifs , Promoter Regions, Genetic/genetics , Base Sequence , Computational Biology , DNA Viruses/pathogenicity , DNA, Viral , Genomics , Phylogeny
14.
Environ Microbiol Rep ; 9(5): 599-611, 2017 10.
Article in English | MEDLINE | ID: mdl-28703431

ABSTRACT

In this work, we surveyed the genome of P. protegens CHA0 in order to identify novel mRNAs possibly under the control of the Gac-Rsm cascade that might, for their part, serve to elucidate as-yet-unknown functions involved in the biocontrol of plant pathogens and/or in cellular processes required for fitness in natural environments. In view of the experimental evidence from former studies on the Gac-Rsm cascade, we developed a computational screen supported by a combination of sequence, structural and evolutionary constraints that led to a dataset of 43 potential novel mRNA targets. We then confirmed several mRNA targets experimentally and next focused on two of the respective genes that are physically linked to the orfamide biosynthetic gene cluster and whose predicted open-reading frames resembled cognate LuxR-type transcriptional regulators of cyclic lipopeptide clusters in related pseudomonads. In this report, we demonstrate that in strain CHA0, orfamide production is stringently dependent on a functional Gac-Rsm cascade and that both mRNAs encoding transcriptional regulatory proteins are under direct translational control of the RsmA/E proteins. Our results have thus revealed a hierarchical control over the expression of orfamide biosynthetic genes with the final transcriptional control subordinated to the global Gac-Rsm post-transcriptional regulatory system.


Subject(s)
Lipopeptides/biosynthesis , Peptides, Cyclic/biosynthesis , Pseudomonas/genetics , Pseudomonas/metabolism , RNA Processing, Post-Transcriptional , Transcription Factors/genetics , 5' Untranslated Regions , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Computational Biology/methods , Gene Expression Regulation, Bacterial , Models, Biological , Multigene Family , Nucleotide Motifs , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptional Activation
15.
PLoS One ; 12(6): e0179666, 2017.
Article in English | MEDLINE | ID: mdl-28604819

ABSTRACT

The toxic lineage (TL) of Lysinibacillus sphaericus has been extensively studied because of its potential biotechnological applications in biocontrol of mosquitoes and bioremediation of toxic metals. We previously proposed that L. sphaericus TL should be considered as a novel species based on a comparative genomic analysis. In the current work, we constructed the first manually curated metabolic reconstruction for this species on the basis of the available genomes. We elucidated the central metabolism of the proposed species and, beyond confirming the reported experimental evidence with genomic a support, we found insights to propose novel applications and traits to be considered in further studies. The strains belonging to this lineage exhibit a broad repertory of genes encoding insecticidal factors, some of them remain uncharacterized. These strains exhibit other unexploited biotechnological important traits, such as lactonases (quorum quenching), toxic metal resistance, and potential for aromatic compound degradation. In summary, this study provides a guideline for further research aimed to implement this organism in biocontrol and bioremediation. Similarly, we highlighted the unanswered questions to be responded in order to gain a deeper understanding of the L. sphaericus TL biology.


Subject(s)
Bacillaceae/genetics , Bacillaceae/metabolism , Biotechnology , Genome, Bacterial , Genomics , Metabolic Engineering , Anti-Infective Agents/pharmacology , Bacillaceae/classification , Bacillaceae/drug effects , Bacterial Toxins/genetics , Carbon/metabolism , Drug Resistance, Bacterial , Energy Metabolism , Gene Order , Genes, Bacterial , Genomics/methods , Heavy Metal Poisoning , Insecticides/metabolism , Microbial Interactions , Nitrogen/metabolism , Nucleotide Motifs , Phylogeny , Poisoning
16.
Mol Biosyst ; 13(4): 665-676, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28256660

ABSTRACT

Genetic information in genomes is ordered, arranged in such a way that it constitutes a code, the so-called cis regulatory code. The regulatory machinery of the cell, termed trans-factors, decodes and expresses this information. In this way, genomes maintain a potential repertoire of genetic programs, parts of which are executed depending on the presence of active regulators in each condition. These genetic programs, executed by the regulatory machinery, have functional units in the genome delimited by punctuation-like marks. In genetic terms, these informational phrases correspond to transcription units, which are the minimal genetic information expressed consistently from initiation to termination marks. Between the start and final punctuation marks, additional marks are present that are read by the transcriptional and translational machineries. In this work, we look at all the experimentally described and predicted genetic elements in the bacterium Escherichia coli K-12 MG1655 and define a comprehensive architectural organization of transcription units to reveal the natural genome-design and to guide the construction of synthetic genetic programs.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Operon , Promoter Regions, Genetic , Synthetic Biology , Transcription, Genetic , Binding Sites , Escherichia coli/metabolism , Genes, Bacterial , Genetic Engineering/methods , Genome, Bacterial , Nucleotide Motifs , Regulatory Sequences, Nucleic Acid , Sigma Factor/metabolism , Synthetic Biology/methods , Transcription Initiation Site
17.
Sci Rep ; 7: 41686, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28150715

ABSTRACT

Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Epigenesis, Genetic , Inflammasomes/metabolism , Nitric Oxide Synthase Type II/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Base Sequence , Binding Sites , Caspase 1/metabolism , Cytosol/metabolism , Flagellin/metabolism , Gene Expression Regulation , Mice , Mice, Knockout , Models, Biological , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Nucleotide Motifs , Promoter Regions, Genetic , Protein Binding , Proteolysis
18.
Genet Mol Res ; 15(3)2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27706776

ABSTRACT

Simple sequence repeats (SSRs), one of the most powerful molecular markers, can be used for DNA fingerprinting, variety identification, genetic mapping, and marker-assisted selection. Using the pear's (Pyrus pyrifolia Nakai) 75,764 unigenes (55,676,271 bp) obtained by deep transcriptome sequencing, a total of 10,622 novel SSRs were identified in 9154 unigenes, accounting for 14.02% of all unigenes. The average length and distribution of these SSRs was about 16 bp and 5.24 kb, respectively. Dinucleotide repeat motifs were the main type, with a frequency of 55.87%, followed by trinucleotides (24.45%). There were 159 kinds of repeat motifs existing in the pear transcriptome. AG/CT was the most frequent motif, accounting for 49.64%. All 9154 SSR-containing unigenes were functionally annotated using Nr (NCBI non-redundant protein database), Nt (NCBI non-redundant nucleotide database), and the Swiss-Prot database, and were classified further by Gene Ontology and Clusters of Orthologous Groups. In addition, a total of 4300 primer pairs were designed from all SSR loci obtained. Of these, 40 primers were randomly selected for PCR amplification and polyacrylamide gel (PAGE) analysis. Among the 40 primer pairs, 31 were successfully separated via PAGE. These findings also confirm that mining SSRs using next-generating sequencing technologies is a fast, effective, and reliable approach.


Subject(s)
Microsatellite Repeats/genetics , Molecular Sequence Annotation , Pyrus/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Base Sequence , DNA Primers/metabolism , Electrophoresis, Polyacrylamide Gel , Nucleotide Motifs/genetics , Reproducibility of Results
19.
Genet Mol Res ; 15(3)2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27706777

ABSTRACT

This study was undertaken primarily to develop new simple sequence repeat (SSR) markers for Capsicum. As part of this project aimed at broadening the use of molecular tools in Capsicum breeding, two genomic libraries enriched for AG/TC repeat sequences were constructed for Capsicum annuum. A total of 475 DNA clones were sequenced from both libraries and 144 SSR markers were tested on cultivated and wild species of Capsicum. Forty-five SSR markers were randomly selected to genotype a panel of 48 accessions of the Capsicum germplasm bank. The number of alleles per locus ranged from 2 to 11, with an average of 6 alleles. The polymorphism information content was on average 0.60, ranging from 0.20 to 0.83. The cross-species transferability to seven cultivated and wild Capsicum species was tested with a set of 91 SSR markers. We found that a high proportion of the loci produced amplicons in all species tested. C. frutescens had the highest number of transferable markers, whereas the wild species had the lowest. Our results indicate that the new markers can be readily used in genetic analyses of Capsicum.


Subject(s)
Capsicum/genetics , Microsatellite Repeats/genetics , Alleles , Genetic Loci , Genetic Markers , Nucleotide Motifs/genetics , Polymorphism, Genetic , Species Specificity
20.
Sci Rep ; 6: 31597, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27605472

ABSTRACT

Members of the Rrf2 superfamily of transcription factors are widespread in bacteria but their functions are largely unexplored. The few that have been characterized in detail sense nitric oxide (NsrR), iron limitation (RirA), cysteine availability (CymR) and the iron sulfur (Fe-S) cluster status of the cell (IscR). In this study we combined ChIP- and dRNA-seq with in vitro biochemistry to characterize a putative NsrR homologue in Streptomyces venezuelae. ChIP-seq analysis revealed that rather than regulating the nitrosative stress response like Streptomyces coelicolor NsrR, Sven6563 binds to a conserved motif at a different, much larger set of genes with a diverse range of functions, including a number of regulators, genes required for glutamine synthesis, NADH/NAD(P)H metabolism, as well as general DNA/RNA and amino acid/protein turn over. Our biochemical experiments further show that Sven6563 has a [2Fe-2S] cluster and that the switch between oxidized and reduced cluster controls its DNA binding activity in vitro. To our knowledge, both the sensing domain and the putative target genes are novel for an Rrf2 protein, suggesting Sven6563 represents a new member of the Rrf2 superfamily. Given the redox sensitivity of its Fe-S cluster we have tentatively named the protein RsrR for Redox sensitive response Regulator.


Subject(s)
Bacterial Proteins , Iron-Sulfur Proteins , Streptomyces , Transcription Factors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Nucleotide Motifs , Protein Binding , Sequence Homology, Amino Acid , Streptomyces/genetics , Streptomyces/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL