Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.462
Filter
1.
Int J Mol Med ; 54(2)2024 08.
Article in English | MEDLINE | ID: mdl-38963023

ABSTRACT

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Subject(s)
Intervertebral Disc Degeneration , Metformin , Metformin/therapeutic use , Metformin/pharmacology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/prevention & control , Intervertebral Disc Degeneration/metabolism , Humans , Animals , Disease Progression , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Autophagy/drug effects
2.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982049

ABSTRACT

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Needles , Nucleus Pulposus , Optogenetics , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Extracellular Vesicles/metabolism , Animals , Nucleus Pulposus/metabolism , Optogenetics/methods , Optogenetics/instrumentation , Humans , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cellular Senescence , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Rats , DNA Damage , Mice , Male , Disease Models, Animal , Rats, Sprague-Dawley
3.
Aging (Albany NY) ; 16(13): 10868-10881, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38949514

ABSTRACT

As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.


Subject(s)
Apoptosis , Chemokine CXCL12 , Disease Models, Animal , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Apoptosis/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/drug therapy , Rats , Male , Cervical Vertebrae , Signal Transduction/drug effects , Spondylosis/metabolism , Spondylosis/pathology
4.
BMC Musculoskelet Disord ; 25(1): 537, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997667

ABSTRACT

BACKGROUND: Human intervertebral disk degeneration (IVDD) is a sophisticated degenerative pathological process. A key cause of IVDD progression is nucleus pulposus cell (NPC) degeneration, which contributes to excessive endoplasmic reticulum stress in the intervertebral disk. However, the mechanisms underlying IVDD and NPC degeneration remain unclear. METHODS: We used interleukin (IL)-1ß stimulation to establish an NPC-degenerated IVDD model and investigated whether human urine-derived stem cell (USC) exosomes could prevent IL-1ß-induced NPC degeneration using western blotting, quantitative real-time polymerase chain reaction, flow cytometry, and transcriptome sequencing techniques. RESULTS: We successfully extracted and identified USCs and exosomes from human urine. IL-1ß substantially downregulated NPC viability and induced NPC degeneration while modulating the expression of SOX-9, collagen II, and aggrecan. Exosomes from USCs could rescue IL-1ß-induced NPC degeneration and restore the expression levels of SOX-9, collagen II, and aggrecan. CONCLUSIONS: USC-derived exosomes can prevent NPCs from degeneration following IL-1ß stimulation. This finding can aid the development of a potential treatment strategy for IVDD.


Subject(s)
Exosomes , Interleukin-1beta , Intervertebral Disc Degeneration , Nucleus Pulposus , SOX9 Transcription Factor , Humans , Interleukin-1beta/metabolism , Exosomes/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Animals , Stem Cells/metabolism , Cells, Cultured , Aggrecans/metabolism , Aggrecans/genetics , Male , Urine/cytology , Urine/chemistry , Female , Collagen Type II/metabolism
5.
J Nanobiotechnology ; 22(1): 457, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085827

ABSTRACT

Intervertebral disc degeneration (IVDD) is characterized by the senescence and declining vitality of nucleus pulposus cells (NPCs), often driven by mitochondrial dysfunction. This study elucidates that mesenchymal stem cells (MSCs) play a crucial role in attenuating NPC senescence by secreting mitochondria-containing microvesicles (mitoMVs). Moreover, it demonstrates that static magnetic fields (SMF) enhance the secretion of mitoMVs by MSCs. By distinguishing mitoMV generation from exosomes, this study shifts focus to understanding the molecular mechanisms of SMF intervention, emphasizing cargo transport and plasma membrane budding processes, with RNA sequencing indicating the potential involvement of the microtubule-based transport protein Kif5b. The study further confirms the interaction between Rab22a and Kif5b, revealing Rab22a's role in sorting mitoMVs into microvesicles (MVs) and potentially mediating subsequent plasma membrane budding. Subsequent construction of a gelatin methacrylate (GelMA) hydrogel delivery system further addresses the challenges of in vivo application and verifies the substantial potential of mitoMVs in delaying IVDD. This research not only sheds light on the molecular intricacies of SMF-enhanced mitoMV secretion but also provides innovative perspectives for future IVDD therapeutic strategies.


Subject(s)
Cell-Derived Microparticles , Intervertebral Disc Degeneration , Magnetic Fields , Mesenchymal Stem Cells , Mitochondria , Nucleus Pulposus , Mesenchymal Stem Cells/metabolism , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Animals , Cell-Derived Microparticles/metabolism , Nucleus Pulposus/metabolism , Humans , Rats , Kinesins/metabolism , Cells, Cultured , Rats, Sprague-Dawley , rab GTP-Binding Proteins/metabolism , Male
6.
J Nanobiotechnology ; 22(1): 412, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997713

ABSTRACT

The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.


Subject(s)
Carbon , Glutathione , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Reactive Oxygen Species , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Animals , Oxidative Stress/drug effects , Carbon/chemistry , Carbon/pharmacology , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Antioxidants/pharmacology , Male , Cellular Senescence/drug effects , Cells, Cultured , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Cellular Microenvironment/drug effects , Catalase/metabolism , Catalase/pharmacology , Superoxide Dismutase/metabolism
7.
J Orthop Surg Res ; 19(1): 421, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034400

ABSTRACT

BACKGROUND: Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS: The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1ß for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1ß. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-ß-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS: cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1ß for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1ß. CONCLUSION: cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.


Subject(s)
Cellular Senescence , Intervertebral Disc Degeneration , Nucleotidyltransferases , Nucleus Pulposus , Rats, Sprague-Dawley , Cellular Senescence/physiology , Animals , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Cells, Cultured , Rats , Male , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism
8.
PeerJ ; 12: e17464, 2024.
Article in English | MEDLINE | ID: mdl-39006038

ABSTRACT

Objective: The mechanisms of intervertebral disc degeneration (IVDD) in low back pain (LBP) patients are multiples. In this study, we attempt to investigate whether melatonergic system plays a potential role in IVDD patients with LBP by analyzing their clinical specimens. The fucus will be given to the correlation between the melatonin receptor expression and intervertebral disc tissue apoptosis. Methods: In this clinical study, 107 lumbar intervertebral disc nucleus pulposus (NP) specimens from patients with LBP were collected with patients' consents. The disc height (DH) discrepancy ratio, range of motion and sagittal parameters of the pathological plane were measured and Pfirrmann grade was used to classified the grades of IVDD level. Discs at grades 1-3 were served as normal control and grades 4-5 were considered as IVDD. The expression levels of melatonin receptor 1A (MT1) and 1B (MT2) were measured by immunohistochemistry. The apoptosis of NP was assessed using TUNEL staining. Their potential associations among MT1/2, DH, apoptosis, sagittal parameters with IVDD and LBP were evaluated with statistical analysis. Results: The incidence of IVDD was positively associated with age and negatively related to VAS scores for LBP (p < 0.001). Patients with higher degree of IVDD also have higher DH discrepancy ratio (p < 0.001), higher prevalence of lumbar instability (p = 0.003) and higher cell apoptosis compared to the control. Nevertheless, no statistically significant correlation was identified between Pfirrmann grade and lumbar sagittal parameters. MT1 and MT2 both were highly expressed in the NP tissues. Importantly, MT1 expression but not MT2 was significantly increased in the intervertebral disc tissue of patients with IVDD and its level correlated well with cell apoptosis level and the severity of IVDD as well as lower VAS scores for LBP. Conclusion: The highly elevated MT1 expression was found in NP tissues of patients with IVDD and LBP compared to the control. This phenomenon probably reflects the compensating response of the body to the pathological alteration of the IVDD and LBP. Therefore, these findings provide the novel information to use selective agonists of MT1 to target IVDD and LBP clinically.


Subject(s)
Apoptosis , Intervertebral Disc Degeneration , Low Back Pain , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Low Back Pain/pathology , Low Back Pain/metabolism , Male , Female , Middle Aged , Adult , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Lumbar Vertebrae/pathology , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Aged , Intervertebral Disc/pathology , Intervertebral Disc/metabolism
9.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836662

ABSTRACT

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Subject(s)
Autophagy , Diterpenes , Forkhead Box Protein O3 , Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Oxidative Stress , Protein Kinases , Rats, Sprague-Dawley , Stress, Mechanical , Ubiquitin-Protein Ligases , MicroRNAs/metabolism , MicroRNAs/genetics , Autophagy/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Diterpenes/pharmacology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Male , Apoptosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Adult , Disease Models, Animal
10.
Int Immunopharmacol ; 137: 112444, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901245

ABSTRACT

OBJECTIVE: The continuously increasing extracellular matrix stiffness during intervertebral disc degeneration promotes disease progression. In an attempt to obtain novel treatment methods, this study aims to investigate the changes in nucleus pulposus cells under the stimulation of a stiff microenvironment. DESIGN: RNA sequencing and metabolomics experiments were combined to evaluate the primary nucleus pulposus and screen key targets under mechanical biological stimulation. Additionally, small molecules work in vitro were used to confirm the target regulatory effect and investigate the mechanism. In vivo, treatment effects were validated using a rat caudal vertebrae compression model. RESULTS: Our research results revealed that by activating TRPC6, hyperforin, a herbaceous extract can rescue the inflammatory phenotype caused by the stiff microenvironment, hence reducing intervertebral disc degeneration (IDD). Mechanically, it activates mitochondrial fission to inhibit PFKFB3. CONCLUSION: In summary, this study reveals the important bridging role of TRPC6 between mechanical stiffness, metabolism, and inflammation in the context of nucleus pulposus degeneration. TRPC6 activation with hyperforin may become a promising treatment for IDD.


Subject(s)
Extracellular Matrix , Intervertebral Disc Degeneration , Mitochondrial Dynamics , Nucleus Pulposus , Phloroglucinol , Rats, Sprague-Dawley , Animals , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Nucleus Pulposus/drug effects , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Rats , Phloroglucinol/pharmacology , Phloroglucinol/analogs & derivatives , Phloroglucinol/therapeutic use , Mitochondrial Dynamics/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Male , Cells, Cultured , Humans , Terpenes/pharmacology , Terpenes/therapeutic use , TRPC Cation Channels/metabolism , Disease Models, Animal , Inflammation/drug therapy
11.
Mol Med ; 30(1): 87, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877413

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Subject(s)
Apoptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , S100 Calcium Binding Protein A6 , Wnt Signaling Pathway , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Apoptosis/genetics , Humans , S100 Calcium Binding Protein A6/metabolism , S100 Calcium Binding Protein A6/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Animals , Male , Female , Rats , Adult , Middle Aged , beta Catenin/metabolism , beta Catenin/genetics , Rats, Sprague-Dawley , Disease Models, Animal , Cell Cycle Proteins
12.
Int J Biol Macromol ; 273(Pt 1): 132828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834125

ABSTRACT

Intervertebral disc degeneration arises from damage or degeneration of the nucleus pulposus (NP). In this study, we developed a photo-crosslinkable hydrogel incorporating FG4592 to support the growth and differentiation of bone-marrow-derived mesenchymal stem cells (BMSC). Initially, hyaluronic acid was modified with tyramine and combined with collagen to introduce riboflavin as a photo-crosslinker. This hydrogel transitioned from liquid to gel upon exposure to blue light in 3 min. The results showed that the hydrogel was biodegradable and had mechanical properties comparable to those of human NP tissues. Scanning electron microscopy after BMSC seeding in the hydrogel revealed an even distribution, and cells adhered to the collagen fibers in the hydrogel with minimal cell mortality. The effect of FG4592 on BMSC proliferation and differentiation was examined, revealing the capability of FG4592 to promote BMSC proliferation and direct differentiation resembling human NP cells. After cultivating BMSCs in the photo-crosslinked hydrogel, there was an upregulation in the expression of glycosaminoglycans, aggrecan, type II collagen, and keratin 19 proteins. Cross-species analyses of rat and human BMSCs revealed consistent results. For potential clinical applications, BMSC loaded with photo-crosslinked hydrogels can be injected into damaged intervertebral disc to facilitate NP regeneration.


Subject(s)
Cell Differentiation , Cell Proliferation , Collagen , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells , Nucleus Pulposus , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Collagen/chemistry , Rats , Cross-Linking Reagents/chemistry , Rats, Sprague-Dawley , Anilides , Phthalic Acids
13.
Cell Rep ; 43(6): 114342, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865240

ABSTRACT

The nucleus pulposus (NP) in the intervertebral disc (IVD) arises from embryonic notochord. Loss of notochordal-like cells in humans correlates with onset of IVD degeneration, suggesting that they are critical for healthy NP homeostasis and function. Comparative transcriptomic analyses identified expression of progenitor-associated genes (GREM1, KRT18, and TAGLN) in the young mouse and non-degenerated human NP, with TAGLN expression reducing with aging. Lineage tracing using Tagln-CreERt2 mice identified peripherally located proliferative NP (PeriNP) cells in developing and postnatal NP that provide a continuous supply of cells to the entire NP. PeriNP cells were diminished in aged mice and absent in puncture-induced degenerated discs. Single-cell transcriptomes of postnatal Tagln-CreERt2 IVD cells indicate enrichment for TGF-ß signaling in Tagln descendant NP sub-populations. Notochord-specific removal of TGF-ß/BMP mediator Smad4 results in loss of Tagln+ cells and abnormal NP morphologies. We propose Tagln+ PeriNP cells are potential progenitors crucial for NP homeostasis.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Stem Cells , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Animals , Humans , Mice , Stem Cells/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Transforming Growth Factor beta/metabolism
14.
Article in English | MEDLINE | ID: mdl-38853707

ABSTRACT

BACKGROUND: Nucleus pulposus cell (NPC) senescence in intervertebral disc (IVD) tissue is the major pathological cause of intervertebral disc degeneration (IDD). N6-methyladenosine (m6A) methylation and gut microbiota play important roles in the progression of IDD. This study investigated whether methyltransferase-like 3 (METTL3) regulates TLR2 m6A modification and gut microbiota to influence NPC senescence. METHODS: An IDD rat model was established by lumbar IVD puncture and NPCs were challenged with IL-1ß to mimic IVD injury. IDD rats and IL-1ß-exposed NPCs were treated with METTL3-interfering lentivirus and the TLR2 agonist Pam3CSK4. Compositional changes in the rat gut microbiota were analyzed and fecal microbiota transplantation procedures were used. NPC senescence, cell cycle, and the expression of senescence-associated secretory phenotype (SASP) factors were assessed. The m6A enrichment of TLR2 and the binding of IGF2BP1 to TLR2 mRNA were examined. RESULTS: METTL3 and TLR2 were highly expressed in IDD rats. METTL3 silencing attenuated senescent phenotypes and reduced secretion of SASP factors. Pam3CSK4 reversed the beneficial effects of METTL3 silencing on NPC senescence and IVD injury. METTL3 stabilized TLR2 mRNA in an IGF2BP1-dependent manner. METTL3 silencing restored specific gut microbiota levels in IDD rats, which was further reversed by administration of Pam3CSK4. Fecal microbiota from METTL3 silenced IDD rats altered the pathological phenotypes of IDD rats. CONCLUSIONS: These results demonstrate the beneficial effects of METTL3 silencing on NPC senescence and amelioration of IVD injury, involving modulation of TLR2 m6A modification and gut microbiota. These findings support METTL3 silencing as a potential therapeutic target for IDD.


Subject(s)
Cellular Senescence , Gastrointestinal Microbiome , Intervertebral Disc Degeneration , Methyltransferases , Nucleus Pulposus , Rats, Sprague-Dawley , Toll-Like Receptor 2 , Animals , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Rats , Methyltransferases/metabolism , Methyltransferases/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/microbiology , Male , Disease Models, Animal , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism
15.
Am J Physiol Cell Physiol ; 327(2): C237-C253, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38853649

ABSTRACT

Intervertebral disk degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remain unclear. This study aimed to investigate the role of T-box transcription factor T (Tbxt) in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. First, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways, and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.NEW & NOTEWORTHY This study investigates the role of Tbxt in IDD. The results demonstrate that knockdown of Tbxt exacerbates H2O2-induced senescence and apoptosis in NPCs and IDD, whereas upregulation of Tbxt significantly protects against IDD both in vivo and in vitro. Mechanistically, in the nucleus, Tbxt enhances the transcription of ATG7, leading to increased expression of ATG7 protein levels. This, in turn, promotes elevated autophagy levels, ultimately alleviating IDD.


Subject(s)
Apoptosis , Autophagy-Related Protein 7 , Autophagy , Cellular Senescence , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Autophagy/drug effects , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , Animals , Cellular Senescence/drug effects , Humans , Rats , Male , Female , Adult , Middle Aged , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Cells, Cultured
16.
J Cell Mol Med ; 28(12): e18492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890795

ABSTRACT

Intervertebral disc degeneration (IVDD) severely affects the work and the quality of life of people. We previously demonstrated that silencing activation transcription factor 3 (ATF3) blocked the IVDD pathological process by regulating nucleus pulposus cell (NPC) ferroptosis, apoptosis, inflammation, and extracellular matrix (ECM) metabolism. Nevertheless, whether miR-874-3p mediated the IVDD pathological process by targeting ATF3 remains unclear. We performed single-cell RNA sequencing (scRNA-seq) and bioinformatics analysis to identify ATF3 as a key ferroptosis gene in IVDD. Then, Western blotting, flow cytometry, ELISA, and animal experiments were performed to validate the roles and regulatory mechanisms of miR-874-3p/ATF3 signalling axis in IVDD. ATF3 was highly expressed in IVDD patients and multiple cell types of IVDD rat, as revealed by scRNA-seq and bioinformatics analysis. GO analysis unveiled the involvement of ATF3 in regulating cell apoptosis and ECM metabolism. Furthermore, we verified that miR-874-3p might protect against IVDD by inhibiting NPC ferroptosis, apoptosis, ECM degradation, and inflammatory response by targeting ATF3. In vivo experiments displayed the protective effect of miR-874-3p/ATF3 axis on IVDD. These findings propose the potential of miR-874-3p and ATF3 as biomarkers of IVDD and suggest that targeting the miR-874-3p/ATF3 axis may be a therapeutic target for IVDD.


Subject(s)
Activating Transcription Factor 3 , Ferroptosis , Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Rats , Ferroptosis/genetics , Male , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Single-Cell Analysis/methods , Apoptosis/genetics , Signal Transduction , Female , Middle Aged , Rats, Sprague-Dawley , Sequence Analysis, RNA/methods , Extracellular Matrix/metabolism , Adult , Gene Expression Regulation , Disease Models, Animal , Computational Biology/methods
17.
Cell Signal ; 121: 111277, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38944256

ABSTRACT

BACKGROUND: Intervertebral disc (IVD) degeneration (IVDD) is a prevalent condition contributing to back pain and disability. Periostin (POSTN) has emerged as a potential molecular marker and therapeutic target in IVDD, prompting further investigation into its role and mechanisms. METHODS: This study employs bioinformatics analysis combined with experimental validation to explore the role of POSTN in IVDD. Gene expression datasets from the GEO database were analyzed to identify genes associated with IVDD, and the effects of POSTN on rat nucleus pulposus (NP) cells senescence and extracellular matrix (ECM) metabolism were assessed both in vitro and in vivo. RESULTS: Elevated POSTN expression was observed in degenerated discs from IVDD patients, correlating with disease severity. In vitro experiments demonstrated that POSTN promotes NP cells senescence and ECM metabolism in a dose- and time-dependent manner. In vivo studies confirmed that POSTN inhibition can ameliorate the progression of IVDD. Further mechanistic insights revealed that POSTN may exert its effects by activating the NF-κB and Wnt/ß-catenin signaling pathways. CONCLUSION: POSTN plays a significant role in the pathogenesis of IVDD, with its upregulated expression closely linked to NP cells senescence and ECM metabolism. Targeting POSTN could offer a novel therapeutic strategy for IVDD. Additionally, the study predicts small molecules that may inhibit POSTN expression, providing potential candidates for the development of new drug treatments.


Subject(s)
Cell Adhesion Molecules , Cellular Senescence , Extracellular Matrix , Intervertebral Disc Degeneration , NF-kappa B , Nucleus Pulposus , Rats, Sprague-Dawley , Wnt Signaling Pathway , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Animals , Extracellular Matrix/metabolism , Humans , NF-kappa B/metabolism , Rats , Male , Female , Middle Aged , Adult , beta Catenin/metabolism
18.
Biochem Pharmacol ; 226: 116389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914318

ABSTRACT

Intervertebral disc degeneration (IVDD) is a common degenerative disease which is closely related to low back pain (LBP) and brings huge economic and social burdens. In this study, we explored the therapeutic effects of Homoplantaginin (Hom) for IVDD due to its convincing anti-inflammatory and antioxidant functions. TNF-α was used to simulate the inflammatory environment for nucleus pulposus (NP) cells in vitro. We verified that Hom could alleviate the TNF-α-induced inflammation and disturbance of ECM homeostasis through blocking the NF-κB/MAPK signaling pathways. Subsequently, we screened the binding targets of Hom and confirmed that Hom could directly bind to TAK1 and inhibit its phosphorylation to down-regulate the inflammation-related pathways. The therapeutic effects of Hom on IVDD were further validated through a needle puncture rat model in vivo. Overall, Hom was a promising small molecule for IVDD early intervention, possessing huge clinical translational value.


Subject(s)
Intervertebral Disc Degeneration , MAP Kinase Kinase Kinases , NF-kappa B , Animals , Humans , Male , Rats , Cells, Cultured , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Protein Binding/physiology , Protein Binding/drug effects , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
19.
Aging (Albany NY) ; 16(12): 10216-10238, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38943627

ABSTRACT

This study aimed to reveal the specific role of early growth response protein 1 (EGR1) and nuclear receptor 4A3 (NR4A3) in nucleus pulposus cells (NPCs) and the related molecular mechanism and to identify a new strategy for treating intervertebral disc degeneration (IVDD). Bioinformatics analysis was used to explore and predict IVDD-related differentially expressed genes, and chromatin immunoprecipitation sequencing (ChIP-seq) revealed NR4A3 as the EGR1 target gene. An in vitro NPC model induced by tributyl hydrogen peroxide (TBHP) and a rat model induced by fibrous ring acupuncture were established. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical staining, immunofluorescence staining, and flow cytometry were used to detect the effects of EGR1 and NR4A3 knockdown and overexpression on NPC apoptosis and the expression of extracellular matrix (ECM) anabolism-related proteins. Interactions between EGR1 and NR4A3 were analyzed via ChIP-qPCR and dual luciferase assays. EGR1 and NR4A3 expression levels were significantly higher in severely degenerated discs (SDD) than in mildly degenerated discs (MDD), indicating that these genes are important risk factors in IVDD progression. ChIP-seq and RNA-seq revealed NR4A3 as a direct downstream target of EGR1, and this finding was verified by ChIP-qPCR and dual luciferase reporter experiments. Remarkably, the rescue experiments showed that EGR1 promotes TBHP-induced NPC apoptosis and impairs ECM anabolism, dependent on elevated NR4A3 expression. In summary, the EGR1-NR4A3 axis mediates the progression of NPC apoptosis and ECM impairment and is a potential therapeutic target in IVDD.


Subject(s)
Apoptosis , Early Growth Response Protein 1 , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Receptors, Thyroid Hormone , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Nerve Tissue Proteins , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Rats, Sprague-Dawley , Receptors, Steroid/metabolism , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/genetics , Up-Regulation
20.
Free Radic Biol Med ; 221: 245-256, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38806104

ABSTRACT

Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Ferroptosis , Intervertebral Disc Degeneration , NF-E2-Related Factor 2 , Ferroptosis/drug effects , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Rats , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Molecular Docking Simulation , Male , Rats, Sprague-Dawley , Low Back Pain/drug therapy , Low Back Pain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL