Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.392
Filter
1.
J Biochem Mol Toxicol ; 38(7): e23764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963172

ABSTRACT

Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.


Subject(s)
DNA Damage , DNA Methylation , DNA Repair , Diet, High-Fat , Glucagon-Like Peptides , Immunoglobulin Fc Fragments , Oxidation-Reduction , Recombinant Fusion Proteins , Animals , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , DNA Methylation/drug effects , Immunoglobulin Fc Fragments/pharmacology , DNA Damage/drug effects , Mice , DNA Repair/drug effects , Diet, High-Fat/adverse effects , Recombinant Fusion Proteins/pharmacology , Male , Oxidation-Reduction/drug effects , Inflammation/metabolism , Inflammation/genetics , Oxidative Stress/drug effects , Obesity/metabolism , Obesity/drug therapy , Obesity/genetics , Gene Expression Regulation/drug effects , Mice, Inbred C57BL
2.
Front Endocrinol (Lausanne) ; 15: 1385463, 2024.
Article in English | MEDLINE | ID: mdl-38974580

ABSTRACT

Melanocortin 4 receptor (MC4R) mutations are the commonest cause of monogenic obesity through dysregulation of neuronal pathways in the hypothalamus and prefrontal cortex that regulate hunger and satiety. MC4R also regulates neuropathic pain pathways via JNK signaling after nerve injury. We show evidence of corneal small fiber degeneration in 2 siblings carrying a heterozygous missense variant c.508A>G, p.Ille170Val in the MC4R gene. Both children were treated with once weekly semaglutide for 6 months with no change in weight, and only a minor improvement in HbA1c and lipid profile. However, there was evidence of nerve regeneration with an increase in corneal nerve fiber density (CNFD) [child A (13.9%), child B (14.7%)], corneal nerve branch density (CNBD) [child A (110.2%), child B (58.7%)] and corneal nerve fiber length (CNFL) [child A (21.5%), child B (44.0%)].


Subject(s)
Nerve Regeneration , Receptor, Melanocortin, Type 4 , Humans , Receptor, Melanocortin, Type 4/genetics , Male , Female , Child , Nerve Regeneration/drug effects , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/pharmacology , Nerve Fibers/drug effects , Nerve Fibers/pathology , Mutation , Obesity/drug therapy , Obesity/genetics , Cornea/drug effects , Cornea/innervation , Cornea/pathology , Pediatric Obesity/drug therapy , Adolescent
3.
Biomolecules ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927022

ABSTRACT

Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.


Subject(s)
Diet, High-Fat , Obesity , Polyphenols , Thermogenesis , Uncoupling Protein 1 , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Thermogenesis/drug effects , Animals , Obesity/metabolism , Obesity/drug therapy , Polyphenols/pharmacology , Mice , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Male , Mice, Inbred C57BL , Humans , Energy Metabolism/drug effects
4.
Ren Fail ; 46(1): 2351473, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38915241

ABSTRACT

OBJECTIVE: Liraglutide, a glucagon-like peptide-1 receptor agonist, has been shown to regulate blood sugar and control body weight, but its ability to treat obesity-related nephropathy has been poorly studied. Therefore, this study was designed to observe the characteristics and potential mechanism of liraglutide against obesity-related kidney disease. METHODS: Thirty-six C57BL/6J male mice were randomly divided into six groups (n = 6 per group). Obesity-related nephropathy was induced in mice by continuous feeding of high-fat diet (HFD) for 12 weeks. After 12 weeks, liraglutide (0.6 mg/kg) and AMP-activated protein kinase (AMPK) agonists bortezomib (200 µg/kg) were injected for 12 weeks, respectively. Enzyme-linked immunosorbent assay was employed to detect the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, blood urea nitrogen, creatinine in serum, as well as urinary protein in urine. Besides, hematoxylin-eosin staining and periodic acid-Schiff staining were used to observe the pathological changes of kidney tissue; immunohistochemistry, western blot, and real-time quantitative PCR to assess the calmodulin-dependent protein kinase kinase beta (CaMKKß)/AMPK signaling pathway activation. RESULTS: Liraglutide significantly reduced serum lipid loading, improved kidney function, and relieved kidney histopathological damage and glycogen deposition in the mouse model of obesity-related kidney disease induced by HFD. In addition, liraglutide also significantly inhibited the CaMKKß/AMPK signaling pathway in kidney tissue of HFD-induced mice. However, bortezomib partially reversed the therapeutic effect of liraglutide on HDF-induced nephropathy in mice. CONCLUSIONS: Liraglutide has a therapeutic effect on obesity-related kidney disease, and such an effect may be achieved by inhibiting the CaMKKß/AMPK signaling pathway in kidney tissue.


Subject(s)
AMP-Activated Protein Kinases , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Diet, High-Fat , Liraglutide , Mice, Inbred C57BL , Obesity , Signal Transduction , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Diet, High-Fat/adverse effects , Mice , AMP-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Signal Transduction/drug effects , Obesity/complications , Obesity/drug therapy , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
5.
JAMA Netw Open ; 7(6): e2416775, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38916894

ABSTRACT

Importance: A major concern with weight loss is concomitant bone loss. Exercise and glucagon-like peptide-1 receptor agonists (GLP-1RAs) represent weight loss strategies that may protect bone mass despite weight loss. Objective: To investigate bone health at clinically relevant sites (hip, spine, and forearm) after diet-induced weight loss followed by a 1-year intervention with exercise, liraglutide, or both combined. Design, Setting, and Participants: This study was a predefined secondary analysis of a randomized clinical trial conducted between August 2016 and November 2019 at the University of Copenhagen and Hvidovre Hospital in Denmark. Eligible participants included adults aged 18 to 65 years with obesity (body mass index of 32-43) and without diabetes. Data analysis was conducted from March to April 2023, with additional analysis in February 2024 during revision. Interventions: After an 8-week low-calorie diet (800 kcal/day), participants were randomized to 1 of 4 groups for 52 weeks: a moderate- to vigorous-intensity exercise program (exercise alone), 3.0 mg daily of the GLP-1 RA liraglutide (liraglutide alone), the combination, or placebo. Main Outcomes and Measures: The primary outcome was change in site-specific bone mineral density (BMD) at the hip, lumbar spine, and distal forearm from before the low-calorie diet to the end of treatment, measured by dual-energy x-ray absorptiometry in the intention-to-treat population. Results: In total, 195 participants (mean [SD] age, 42.84 [11.87] years; 124 female [64%] and 71 male [36%]; mean [SD] BMI, 37.00 [2.92]) were randomized, with 48 participants in the exercise group, 49 participants in the liraglutide group, 49 participants in the combination group, and 49 participants in the placebo group. The total estimated mean change in weight losses during the study was 7.03 kg (95% CI, 4.25-9.80 kg) in the placebo group, 11.19 kg (95% CI, 8.40-13.99 kg) in the exercise group, 13.74 kg (95% CI, 11.04-16.44 kg) in the liraglutide group, and 16.88 kg (95% CI, 14.23-19.54 kg) in the combination group. In the combination group, BMD was unchanged compared with the placebo group at the hip (mean change, -0.006 g/cm2; 95% CI, -0.017 to 0.004 g/cm2; P = .24) and lumbar spine (-0.010 g/cm2; 95% CI, -0.025 to 0.005 g/cm2; P = .20). Compared with the exercise group, BMD decreased for the liraglutide group at the hip (mean change, -0.013 g/cm2; 95% CI, -0.024 to -0.001 g/cm2; P = .03) and spine (mean change, -0.016 g/cm2; 95% CI, -0.032 to -0.001 g/cm2; P = .04). Conclusions and Relevance: In this randomized clinical trial, the combination of exercise and GLP-1RA (liraglutide) was the most effective weight loss strategy while preserving bone health. Liraglutide treatment alone reduced BMD at clinically relevant sites more than exercise alone despite similar weight loss. Trial Registration: EudraCT: 2015-005585-32.


Subject(s)
Bone Density , Exercise , Glucagon-Like Peptide-1 Receptor , Liraglutide , Humans , Female , Male , Middle Aged , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Bone Density/drug effects , Adult , Obesity/drug therapy , Obesity/therapy , Weight Loss/drug effects , Hypoglycemic Agents/therapeutic use , Aged , Combined Modality Therapy , Denmark
7.
J Pharm Pharm Sci ; 27: 13065, 2024.
Article in English | MEDLINE | ID: mdl-38903652

ABSTRACT

Excess adiposity can contribute to metabolic complications, such as type 2 diabetes mellitus (T2DM), which poses a significant global health burden. Traditionally viewed as a chronic and irreversible condition, T2DM management has evolved and new approaches emphasizing reversal and remission are emerging. Bariatric surgery demonstrates significant improvements in body weight and glucose homeostasis. However, its complexity limits widespread implementation as a population-wide intervention. The identification of glucagon-like peptide 1 (GLP-1) and the development of GLP-1 receptor agonists (GLP-1RAs) have improved T2DM management and offer promising outcomes in terms of weight loss. Innovative treatment approaches combining GLP-1RA with other gut and pancreatic-derived hormone receptor agonists, such as glucose-dependant insulinotropic peptide (GIP) and glucagon (GCG) receptor agonists, or coadministered with amylin analogues, are demonstrating enhanced efficacy in both weight loss and glycemic control. This review aims to explore the benefits of bariatric surgery and emerging pharmacological therapies such as GLP-1RAs, and dual and triple agonists in managing obesity and T2DM while highlighting the caveats and evolving landscape of treatment options.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Obesity , Humans , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/therapeutic use , Weight Loss/drug effects , Obesity Management
8.
Mol Med Rep ; 30(2)2024 08.
Article in English | MEDLINE | ID: mdl-38873986

ABSTRACT

Chronic low­grade inflammation defines obesity as a metabolic disorder. Alterations in the structure of gut flora are strongly associated with obesity. Lactoferrin (LF) has a biological function in regulating intestinal flora. The present study aimed to investigate the therapeutic and anti­-inflammatory effects of LF in obese mice based on intestinal flora. A total of 30 C57BL/6 mice were divided into three groups consisting of 10 mice each. Subsequently, one group was fed a normal diet (Group K), another group was fed a high­fat diet (Group M) and the remaining group switched from regular drinking to drinking 2% LF water (Group Z2) after 2 weeks of high­fat diet; all mice were fed for 12 weeks. After the experiment, the mouse blood lipid and lipopolysaccharide levels, levels of inflammatory factors and intestinal tight junction proteins were assessed. Mouse stool samples were analyzed using 16S ribosomal RNA sequencing. The results showed that LF reduced serum total cholesterol, triglycerides and low­density lipoprotein levels, elevated high­density lipoprotein levels, suppressed metabolic endotoxemia and attenuated chronic low­grade inflammatory responses in obese mice. In addition, LF upregulated zonula occludens­1 and occludin protein expression levels in the intestine, thereby improving intestinal barrier integrity. LF altered the intestinal microbial structure of obese mice, reduced the ratio of Firmicutes and an elevated ratio of Bacteroidota, modifying the bacterial population to the increased relative abundance of Alistipes, Acidobacteriota, Psychrobacter and Bryobacter.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Inflammation , Lactoferrin , Mice, Inbred C57BL , Mice, Obese , Obesity , Animals , Lactoferrin/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Obesity/metabolism , Obesity/drug therapy , Male , Inflammation/drug therapy , Inflammation/metabolism , Diet, High-Fat/adverse effects , Occludin/metabolism , Occludin/genetics , Lipopolysaccharides
9.
J Agric Food Chem ; 72(26): 14663-14677, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38887904

ABSTRACT

Pomegranate juice (PJ) and inulin have been reported to ameliorate diet-induced metabolic disorders by regulating gut microbiota dysbiosis. However, there was a lack of clinical evidence for the combined effects of PJ and inulin on regulating gut microbiota in individuals with metabolic disorders. A double-blind, parallel, randomized, placebo-controlled trial was conducted, and 68 overweight/obese individuals (25 ≤ BMI ≤ 35 kg/m2) were randomly assigned to receive 200 mL/d PJ, PJ supplemented with inulin, or placebo for 3 weeks. Our results showed that PJ and PJ+inulin did not significantly alter the levels of anthropometric and blood biochemical indicators after 3 weeks of treatment. However, there was an increasingly significant impact from placebo to PJ to PJ+inulin on the composition of gut microbiota. Detailed bacterial abundance analysis further showed that PJ+inulin treatment more profoundly resulted in significant changes in the abundance of gut microbiota at each taxonomic level than PJ. Moreover, PJ+inulin treatment also promoted the production of microbiota-associated short-chain fatty acids and pomegranate polyphenol metabolites, which correlated with the abundance of the bacterial genus. Our results suggested that PJ supplemented with inulin modulates gut microbiota composition and thus promotes the production of microbiota-associated metabolites that exert potential beneficial effects in overweight/obese subjects.


Subject(s)
Bacteria , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Inulin , Obesity , Overweight , Pomegranate , Humans , Inulin/pharmacology , Inulin/administration & dosage , Inulin/metabolism , Gastrointestinal Microbiome/drug effects , Male , Adult , Obesity/metabolism , Obesity/microbiology , Obesity/diet therapy , Obesity/drug therapy , Pomegranate/chemistry , Pomegranate/metabolism , Female , Middle Aged , Overweight/metabolism , Overweight/microbiology , Overweight/drug therapy , Overweight/diet therapy , Double-Blind Method , Fruit and Vegetable Juices/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/drug effects , Dietary Supplements/analysis , Fatty Acids, Volatile/metabolism , Young Adult
10.
J Agric Food Chem ; 72(26): 14786-14798, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902910

ABSTRACT

Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.


Subject(s)
Anti-Obesity Agents , Curcumin , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Male , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/administration & dosage , Humans , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Liver/chemistry , Thermogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/chemistry
11.
Nutrients ; 16(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38931172

ABSTRACT

Obesity and type 2 diabetes are prevalent metabolic diseases that have significant links to several chronic diseases, including cancer, diabetes, hypertension, and cardiovascular disease. Muscadine grape extracts have shown the potential to reduce adiposity and improve insulin sensitivity and glucose control. Thus, this study was designed to determine the potential of muscadine grape berries extract (Pineapple and Southern Home) for its antiobesity properties in 3T3-L1 cells as a model for obesity research. The current study's data indicated the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydraziyl (DPPH) activity were higher in cultivar (CV) Southern Home, meanwhile, elevated the total flavonoid content (TFC) in Pineapple. Both extracts were safe across the tested range (0-5 mg/mL). A noticeable reduction in lipid accumulation was also found in extract-treated cells. In preadipocytes and adipocytes, the tested extracts showed significant alterations in various genes involved in glucose homeostasis and obesity. The most remarkable findings of the current study are the upregulation of two genes, Cntfr (+712.715-fold) and Hrh1 (+270.11-fold) in CV Pineapple extract-treated adipocytes 3T3-L1 and the high fold increase in Ramp3 induced by both Pineapple and Southern Home in pre-adipose cells. Furthermore, the tested extracts showed a potential to alter the mRNA of various genes, including Zfp91, B2m, Nr3c1, Insr, Atrn, Il6ra, Hsp90ab1, Sort1, and Npy1r. In conclusion, the data generated from the current study suggested that the two extracts under investigation are considered potential candidates for controlling insulin levels and managing obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Anti-Obesity Agents , Obesity , Plant Extracts , Vitis , Animals , Mice , Plant Extracts/pharmacology , Anti-Obesity Agents/pharmacology , Obesity/metabolism , Obesity/drug therapy , Obesity/genetics , Vitis/chemistry , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Fruit/chemistry
12.
In Vivo ; 38(4): 1557-1570, 2024.
Article in English | MEDLINE | ID: mdl-38936927

ABSTRACT

BACKGROUND/AIM: This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice. MATERIALS AND METHODS: Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs. 400 mg TT/kg diet) factorial design for 14 weeks. RESULTS: Statin and TT improved glucose tolerance only when each was given alone, and only statin supplementation decreased insulin resistance. Consistently, only statin supplementation decreased serum insulin levels and HOMA-IR. Pancreatic insulin was also increased with statin treatment. Statin and TT, alone or in combination, reduced the levels of serum IL-6, but only TT attenuated the increased serum leptin levels induced by a HFD. Statin supplementation increased bone area/total area and connectivity density at LV-4, while TT supplementation increased bone area/total area and trabecular number, but decreased trabecular separation at the distal femur. Statin supplementation, but not TT, reduced hepatic inflammatory cytokine gene expression. Neither TT supplementation nor statin supplementation statistically altered microbiome species evenness or richness. However, they altered the relative abundance of certain microbiome species. Most notably, both TT and statin supplementation increased the relative abundance of Lachnospiraceae UCG-006. CONCLUSION: TT and statin collectively benefit bone microstructure, glucose homeostasis, and microbial ecology in obese mice. Such changes may be, in part, associated with suppression of inflammation in the host.


Subject(s)
Bone and Bones , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Homeostasis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Obesity , Tocotrienols , Animals , Gastrointestinal Microbiome/drug effects , Tocotrienols/pharmacology , Tocotrienols/administration & dosage , Mice , Homeostasis/drug effects , Obesity/drug therapy , Obesity/metabolism , Male , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Diet, High-Fat/adverse effects , Bixaceae/chemistry , Mice, Obese , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Glucose/metabolism , Mice, Inbred C57BL , Insulin Resistance , Blood Glucose , Disease Models, Animal , Liver/drug effects , Liver/metabolism , Liver/pathology , Biomarkers , Carotenoids
13.
Chem Biol Interact ; 398: 111104, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38906502

ABSTRACT

Interrupted ER homeostasis contributes to the etiology of obesity cardiomyopathy although it remains elusive how ER stress evokes cardiac anomalies in obesity. Our study evaluated the impact of ER stress inhibition on cardiac anomalies in obesity. Lean and ob/ob obese mice received chemical ER chaperone tauroursodeoxycholic acid (TUDCA, 50 mg/kg/d, p.o.) for 35 days prior to evaluation of glucose sensitivity, echocardiographic, myocardial geometric, cardiomyocyte mechanical and subcellular Ca2+ property, mitochondrial integrity, oxidative stress, apoptosis, and ferroptosis. Intracellular Ca2+ governing domains including sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) were monitored by45Ca2+uptake and immunoblotting. Our results noted that TUDCA alleviated myocardial remodeling (fibrosis, hypertrophy, enlarged LVESD), echocardiographic anomalies (compromised fractional shortening and ejection fraction), cardiomyocyte contractile dysfunction (amplitude and velocity of cell shortening, relengthening time) and intracellular Ca2+ anomalies (compromised subcellular Ca2+ release, clearance and SERCA function), mitochondrial damage (collapsed membrane potential, downregulated mitochondrial elements and ultrastructural alteration), ER stress (GRP78, eIF2α and ATF4), oxidative stress, apoptosis and ferroptosis [downregulated SLC7A11, GPx4 and upregulated transferrin receptor (TFRC)] without affecting global glucose sensitivity and serum Fe2+ in obese mice. Obesity-evoked change in HSP90, phospholamban and Na+-Ca2+ exchanger was spared by the chemical ER chaperone. Moreover, in vitro results noted that TUDCA, PERK inhibitor GSK2606414, TFRC neutralizing antibody and ferroptosis inhibitor LIP1 mitigated palmitic acid-elicited changes in lipid peroxidation and mechanical function. Our findings favored a role for ferroptosis in obesity cardiomyopathy downstream of ER stress.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Ferroptosis , Obesity , Taurochenodeoxycholic Acid , Taurochenodeoxycholic Acid/pharmacology , Animals , Endoplasmic Reticulum Stress/drug effects , Mice , Ferroptosis/drug effects , Obesity/drug therapy , Obesity/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Calcium/metabolism , Mice, Inbred C57BL , Ventricular Remodeling/drug effects , Oxidative Stress/drug effects , Myocardial Contraction/drug effects , Mice, Obese
14.
Cell Metab ; 36(7): 1534-1549.e7, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38878772

ABSTRACT

Tirzepatide, a glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist, has, in clinical trials, demonstrated greater reductions in glucose, body weight, and triglyceride levels compared with selective GLP-1R agonists in people with type 2 diabetes (T2D). However, cellular mechanisms by which GIPR agonism may contribute to these improved efficacy outcomes have not been fully defined. Using human adipocyte and mouse models, we investigated how long-acting GIPR agonists regulate fasted and fed adipocyte functions. In functional assays, GIPR agonism enhanced insulin signaling, augmented glucose uptake, and increased the conversion of glucose to glycerol in a cooperative manner with insulin; however, in the absence of insulin, GIPR agonists increased lipolysis. In diet-induced obese mice treated with a long-acting GIPR agonist, circulating triglyceride levels were reduced during oral lipid challenge, and lipoprotein-derived fatty acid uptake into adipose tissue was increased. Our findings support a model for long-acting GIPR agonists to modulate both fasted and fed adipose tissue function differentially by cooperating with insulin to augment glucose and lipid clearance in the fed state while enhancing lipid release when insulin levels are reduced in the fasted state.


Subject(s)
Adipocytes , Mice, Inbred C57BL , Receptors, Gastrointestinal Hormone , Animals , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/agonists , Adipocytes/metabolism , Adipocytes/drug effects , Humans , Mice , Male , Insulin/metabolism , Glucose/metabolism , Lipolysis/drug effects , Triglycerides/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Obesity/metabolism , Obesity/drug therapy , Nutrients/metabolism , Signal Transduction/drug effects , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-2 Receptor
15.
Int J Biol Macromol ; 273(Pt 2): 133164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878919

ABSTRACT

Obesity is a global health challenge that causes metabolic dysregulation and increases the risk of various chronic diseases. The gut microbiome is crucial in modulating host energy metabolism, immunity, and inflammation and is influenced by dietary factors. Gac fruit (Momordica cochinchinensis), widely consumed in Southeast Asia, has been proven to have various biological activities. However, the composition and effect of crude gac aril polysaccharides (GAP) on obesity and gut microbiota disturbed by high-fat diet (HFD) remain to be elucidated. Compositional analysis showed that GAP contains high oligosaccharides, with an average of 7-8 saccharide units. To mimic clinical obesity, mice were first made obese by feeding HFD for eight weeks. GAP intervention was performed from week 9 to week 20 in HFD-fed mice. Our results showed that GAP inhibited body weight gain, eWAT adipocyte hypertrophy, adipokine derangement, and hyperlipidemia in HFD-induced obese mice. GAP improved insulin sensitivity, impaired glucose tolerance, and hepatic steatosis. GAP modulated the gut microbiota composition and reversed the HFD-induced dysbiosis of at least 20 genera. Taken together, GAP improves metabolic health and modulates the gut microbiome to relieve obesity risk factors, demonstrating the potential of dietary GAP for treating obesity-associated disorders.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Obesity/etiology , Obesity/microbiology , Diet, High-Fat/adverse effects , Polysaccharides/pharmacology , Mice , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Dysbiosis , Mice, Inbred C57BL , Insulin Resistance
16.
Hastings Cent Rep ; 54(3): 6-10, 2024 May.
Article in English | MEDLINE | ID: mdl-38842904

ABSTRACT

New anti-obesity medications (AOMs) have received widespread acclaim in medical journals and the media, but they also raise critical ethical, public health, and public policy concerns that have largely been ignored. AOMs are very costly, need to be taken by a patient in perpetuity (since significant rebound weight gain otherwise occurs), and threaten to shift resources and focus away from other crucial efforts at obesity treatment and prevention. Many people may feel less motivated to exercise or reduce their caloric consumption, if they assume that obesity is now medically treatable. Policy-makers may similarly come to feel that the solution to the obesity pandemic is simply to prescribe medications and that prevention efforts are far less necessary. These drugs raise concerns about justice (since AOMs will disproportionately benefit the wealthy), medicalization, and marketing. Policy-makers, clinicians, and others need to engage in multipronged educational and policy efforts to address these challenges.


Subject(s)
Anti-Obesity Agents , Health Policy , Obesity , Public Health , Humans , Obesity/drug therapy , Public Health/ethics , United States
17.
Expert Rev Cardiovasc Ther ; 22(6): 217-230, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864827

ABSTRACT

INTRODUCTION: Heart failure with preserved ejection fraction (HFpEF) is a highly heterogeneous syndrome, making it challenging to improve prognosis with pharmacotherapy. Obesity is one of the leading phenotypes of HFpEF, and its prevalence continues to grow worldwide. Consequently, obesity-targeted interventions have attracted attention as a novel treatment strategy for HFpEF. AREAS COVERED: The authors review the association between the pathogenesis of obesity and HFpEF and the potential for obesity-targeted pharmacotherapeutic strategies in HFpEF, together with the latest evidence. The literature search was conducted in PubMed up to April 2024. EXPERT OPINION: The STEP HFpEF (Semaglutide Treatment Effect in People with obesity and HFpEF) and SELECT (Semaglutide Effects on Cardiovascular Outcomes in People with Overweight or Obesity) trials recently demonstrated that the glucagon-like peptide 1 analogue, semaglutide, improves various aspects of clinical outcomes in obese HFpEF patients and significantly reduces cardiovascular and heart failure events in non-diabetic obese patients, along with a substantial weight loss. Future clinical trials with other incretin mimetics with more potent weight loss and sub-analyses of the SELECT trial may further emphasize the importance of the obesity phenotype-based approach in the treatment of HFpEF.


Subject(s)
Heart Failure , Obesity , Stroke Volume , Weight Loss , Humans , Heart Failure/drug therapy , Heart Failure/physiopathology , Obesity/complications , Obesity/drug therapy , Stroke Volume/drug effects , Weight Loss/drug effects , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Prognosis , Animals , Glucagon-Like Peptides
18.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893341

ABSTRACT

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Subject(s)
3T3-L1 Cells , Anti-Obesity Agents , Cinnamates , Depsides , Perilla frutescens , Plant Extracts , Rosmarinic Acid , Mice , Perilla frutescens/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Depsides/pharmacology , Depsides/chemistry , Depsides/isolation & purification , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/isolation & purification , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Obesity/drug therapy , Obesity/metabolism , Thermogenesis/drug effects
19.
Front Endocrinol (Lausanne) ; 15: 1386542, 2024.
Article in English | MEDLINE | ID: mdl-38894744

ABSTRACT

Background: Glucagon-like peptide-1 receptor-agonists (GLP-1ra), such as semaglutide, have emerged as promising treatments, demonstrating sustained weight reduction and metabolic benefits. This study aims to assess the impact of oral and subcutaneous semaglutide on body composition and metabolic parameters in patients with T2DM and obesity. Methods: A 24-week quasi-experimental retrospective study including adults with T2DM and obesity (BMI ≥ 30 kg/m²) who were treated with either daily-oral or weekly-subcutaneous semaglutide. Body composition was measured using bioelectrical impedance analysis, evaluating fat mass, fat-free mass, total body water, skeletal muscle mass, and whole-body phase angle. Analytical parameters included lipid profile and glycaemic control. Statistical analyses were performed using SPSS v.26. Results: Participants (n=88) experienced significant weight loss after treatment with semaglutide (9.5% in subcutaneous, 9.4% in oral, P<0.001). Weight reduction primarily resulted from fat mass reduction without substantial lean mass compromise. Visceral fat area decreased, whiles phase-angle remained stable. Improvements in lipid profiles and glycaemic control were observed, with a decrease in both HbA1c and insulin requirements. Multivariate analysis demonstrated comparable impacts of oral and subcutaneous semaglutide on body composition. Conclusion: Semaglutide, administered orally or subcutaneously, demonstrated positive effects on body composition, metabolic and glycaemic control in patients with T2DM and obesity. This real-world study highlights the potential of bioelectrical impedance analysis in assessing antidiabetic drugs' impact on body composition, providing valuable insights for future research and clinical applications.


Subject(s)
Body Composition , Diabetes Mellitus, Type 2 , Glucagon-Like Peptides , Hypoglycemic Agents , Obesity , Humans , Glucagon-Like Peptides/therapeutic use , Glucagon-Like Peptides/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Body Composition/drug effects , Male , Female , Middle Aged , Retrospective Studies , Obesity/drug therapy , Adult , Hypoglycemic Agents/therapeutic use , Aged , Weight Loss/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism
20.
Ann Endocrinol (Paris) ; 85(3): 179-183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871515

ABSTRACT

During the past years, several drugs have been developed for the treatment of obesity. Some are already used in clinical practice: orlistat, GLP-1 receptor agonists (RA), GLP-1/GIP biagonists and the melanocortin 4 receptor (MC4R) agonist, setmelanotide. Some should be available in the future: GLP-1/glucagon biagonists, GLP-1/GIP/glucagon triagonists. These drugs act mainly by reducing food intake or fat absorption. However, many of them show specific effects on the adipose tissue. All these drugs show significant reduction of fat mass and, more particularly of visceral fat. If most of the drugs, except orlistat, have been shown to increase energy expenditure in rodents with enhanced thermogenesis, this has not yet been clearly demonstrated in humans. However, biagonists or triagonist stimulating glucagon seem to a have a more potent effect to increase thermogenesis in the adipose tissue and, thus, energy expenditure. Most of these drugs have been shown to increase the production of adiponectin and to reduce the production of pro-inflammatory cytokines by the adipose tissue. GLP-1RAs reduce the size of adipocytes and promote their differentiation. GLP-1RAS and GLP-1/GIP biagonists reduce, in the adipose tissue, the expression of several genes involved in lipogenesis. Further studies are still needed to clarify the precise roles, on the adipose tissue, of these drugs dedicated for the treatment of obesity.


Subject(s)
Adipose Tissue , Anti-Obesity Agents , Energy Metabolism , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Energy Metabolism/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Thermogenesis/drug effects , Thermogenesis/physiology , Glucagon-Like Peptide 1/agonists , Orlistat/therapeutic use , Orlistat/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...